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Abstract 
 
This paper investigates the steady state property of queue length for a batch arrival queue under N-policy 
with single vacation and setup times. When the system becomes empty, the server is turned off at once and 
takes a single vacation of random length V . When he returns, if the queue length reaches or exceeds thresh-
old ( 1)N N  , the server is immediately turned on but is temporarily unavailable due to a random setup time 

U  before offering service. If not, the server stays in the system until the queue length at least being N . We 
derive the system size distribution and confirm the stochastic decomposition property. We also derive the 
recursion expressions of queue length distribution and other performance measures. Finally, we present some 
numerical examples to show the analytical results obtained. Sensitivity analysis is also performed. 
 
Keywords: Queue Length, Recursion Expressions, N Policy, Setup 

1. Introduction 
 
This paper pays attention to a batch arrival queueing 
system under N-policy with a single vacation and setup 
times, which can model queue-like manufacturing/prod- 
uction/inventory system. Consider a system of process-
ing in which the operation does not start until some pre-
determined number (N) of semi-finished products wait-
ing for processing. To be more realistic, the machine 
need a setup time for some preparatory work before 
starting processing. When all the semi-finished products 
in the system are processed, the machine is shut down 
and leaves for a vacation. The operator performs ma-
chine repair, preventive maintenance and some other 
jobs during the vacation. After these extra operations, the 
operator returns and checks the number of semi-finished 
products in the queue determining whether or not start 
the machine. 

Queueing system with vacations has been attracted 
considerable attention to many authors. It has effectively 
been applied in computers and communication systems, 

production/inventory system. Doshi [1] and Takagi [2] 
presented an excellent survey of queueing system with 
server vacations. One of the important achievements for 
vacation queueing system is the famous stochastic 
decomposition results, which was first established by 
Fuhrmann and Cooper [3].  

The N-policy was first introduced by Yadin and Naor 
[4], which is a control policy turning the server on 
whenever N (a predetermined value) or more customers 
in the system, turning off the server when system is 
empty. Lee et al. [5] successfully combined the batch 
arrival queue with N-policy and obtained the analytical 
solutions. Later, Lee et al. [6,7] analyzed in detail a 
batch arrival Mx/G/1 queue under N-policy with a single 
vacation and repeated vacation respectively. They de-
rived the system size distribution which confirmed the 
famous stochastic decomposition property, and the opti-
mal stationary operating policy was also investigated. At 
the present day, batch arrival queueing system under 
N-policy with different vacation policies have been re-
ceived considerable attention because of its practical 
implication in production/inventory system. A number of 
searchers, such as Choudhury et al. [8-10], Ke [11,12], 
and Reddy et al. [13], and many authors not be listed 
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above have considered batch arrival queueing system 
under N-policy with various vacation policies. 

It is to be noted that few authors involved above con-
sidered the probability distribution of the number of cus-
tomers in the system for batch arrival queue under 
N-policy with different vacations policies. Recently, 
Wang et al. [14] analyzed the behaviors of queue length 
distributions of a batch arrival queue with server vaca-
tions and breakdowns based on a maximum entropy ap-
proach [15,16]. Ke et al. [17] also used the maximum 
entropy solutions for batch arrival queue with an 
un-reliable server and delaying vacations. They all de-
rived the approximate formula for the probability distri-
bution of the number of customers in the system. Tang 
and his co-author [18,19] paid attention to the queue 
length distribution for queueing system, because it is an 
important performance measure for the system design 
and optimization. For example, the queue-length distri-
bution has been applied for the communication system 
buffer design [20]. 

To the best of our knowledge, fewer researchers have 
derived the queue length distribution under N-policy 
batch arrival queueing system. Although, the batch arri-
val under N-policy have been studied extensively, but the 
exact analytical solutions for queue length distribution do 
not be obtained. This motives us to develop an approach 
for the queue length distribution of the N-policy batch 
arrival queueing system. In this paper, we study the 
steady state queue length for an Mx/G/1 under N policy 
with single vacation and setup times. First, we derive the 
system size distribution by the supplementary variables 
method. Second, using the Leibniz formula of derivation 
combing some knowing results, we obtain the additional 
queue length distribution and the recursion expressions 
of the queue length distribution. Finally, we present sev-
eral examples for application of these recursion expres-
sions. Also, the effect of different system parameters on 
the queue length distribution is investigated. 
 
2. The Mathematical Model and Notations 
 
This paper considers an Mx/G/1 queueing system where 
the arrival occurs according to a compound Poisson 
process with random batch size X . Arriving customers 
in the queue form a single waiting line and the service 
discipline is assumed to be FCFS. The service time is an 
independent and identically distributed random variable 
with a general distribution function ( ), 0S t t  , and with 

finite mean service time. The server can only process one 
customer at a time. The server is turned off each time if 
there is no customer in the queue and leaves for a vaca-
tion of random length V . When he returns from the 
vacation and finds the queue length is no less than N , 
the server starts to setup with random length U . Other-

wise, he stays in the system and does not start setup until 
the customers reaches and exceeds N. When the setup is 
completed, the server begins to serve the customers until 
there is no customer in the system.  

Throughout the analysis, the following notations and 
the variables will be adopted. 

N  threshold ( 1N  ) 
  mean arrival rate 
  mean service rate 

 E V mean vacation time 

 E U  mean setup time 

S  service time random variable 
V  vacation times random variable  
U  setup times random variable 

 s x  the probability density function S  

 v x  the probability density function V  

 u x  the probability density function U  

 *S   the laplace-Stieltjies transform (LST) of S  

 *V   the LST of V  

*ˆ ( )U   the LST of U 

 0S t  remaining service time of the customer in ser-

vice at time t  

 0V t  remaining vacation time of the customer in 

vacation at time t  

 0U t  remaining setup time of the customer in setup 

at time t   

 N t j , the number of customers in the queue at 

time t  

k  probability that k  customers arrival during a 

vacation 

 kg P X k  , where 1, 2,k    

 
1

k
k

k

X g z



z = , the p.g.f. of each batch size 

 Y t 0  if the server is on vacation 

1  if the server is in dormancy 
2  if the server is in setup 
3  if the server is busy 

  traffic intensity,  E X   . In the steady 

state   should be assumed to be less than unity  

  1 km k m m     , the number of customers pre-

sents the sum of k  batches of customers 
1

1

1
[ ] 1 1 1

1
k

k

ii

k
m k j m m

and i i j
   

           , the sum of 

k  batches of customer equals to 1j  . 
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3. Preliminary Formula for Mx/G/1  
Queueing System 

 
Before discussing our model, let us recall some results in 

the ordinary Mx/G/1 queueing system. Let 0 limj
t

p P


   

 ( ) , 0N t j j   be the steady state queue length dis-

tribution for the Mx/G/1 queueing system. From Tang et 
al. [19], the recursion expressions of queue-length dis-
tribution are as follows: 

0
0 1p                     (1) 

 
1

0

1 1

1 1 , 1
j s

j j j s i
s i

p g j   



 

          
     (2) 

where 

 
 1

1 s

s




 


 ;    
0

ts e dS t
   ; 

     

     

1

1

1

0
1 [ ] 1

1

1 0
1 1 [ ]

1
1

!

1
!

i

k

ij
t

j m m
i m i j

kj i i
t

j m m
i i m k k

t
g g e S t dt

s i

t
s g g e dS t

k











 

  

  

  


  


     


      

  

  

   

 

1j  . 

Let  G z  be the p.g.f. of the number of customers in 

the queue at stationary. We have 

 
     

  
z S X z

G z
S X z z

  

 



 

1- 1- -
=

-
       (3) 

 
4. The System Size Distribution 
 
This section, we set up the system equation for the sys-
tem size distribution at stationary and derive the p.g.f. of 
the system size distribution. We introduce the supple-

mentary variables  0S t ,  0V t and  0U t for obtain-

ing a Markov process     ,N t t , where    0t V t   

if   0Y t  ,   0t  , if   1Y t  ,    0t U t  , if 

  2Y t   and    0t S t  , if   3Y t  . Denote 

       0, , , 0

0,1,
n

Q x t dt P N t n x V t x dt Y t

n

       
  

 

     , 1 , 0, , 1
n

R t P N t n Y t n N         

       0, , , 2

0,1,
n

U x t dt P N t n x U t x dt Y t

n

       
  

 

       0, , , 3

0,1,
n

P x t P N t n x S t x dt Y t

n

       
  

 

Following the argument of Lee et al. [5-7], we can 
easily set up the following steady state system equations 
the supplementary variables technique.  

       1 1 2 0
d

P x P x P s x
dx

                  (4) 

         
1

1
1

0 ,

2, , 1

n

n n n n k k
k

d
P x P x P s x P x g

dx

n N

 


 


    

  


 

(5) 

     

     

1

1

1

( ) 0

0 ,

n n n

n

n k k n
k

d
P x P x P s x

dx

P x g U s x n N












   

  
  (6) 

       0 0 1 0
d

Q x Q x P v x
dx

                 (7) 

     
1

,

1, 2,

n

n n n k k
k

d
Q x Q x Q x g

dx

n

  


   

  

          (8) 

       

   
1

0

0N N N

N

k N k
k

d
U x U x Q u x

dx

u x R x g









   

 
           (9) 

         

 

1

1

0

0

, 1,

n N

n n n k k n
k

N

k n k
k

d
U x U x U x g Q u x

dx

u x R g n N

 













    

    




 

(10) 

 0 00 0R Q                            (11) 

 
1

0 0 , 1, , 1
n

n n n k k
k

R Q R g n N  


           (12) 

Taking the LST of both sides of Equations (4)-(10), 
we get 

         1 1 1 20 0P P P P S                 (13) 
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         

 

1

1

1

0 0

,

2, , 1

n n n n

n

n k k
k

P P P P S

P g

n N

    

 

  








  



   

        (14) 

         

   

*
1

1
*

1

0 0

(0) ,

n n n n

n

n k k n
k

P P P P S

P g U S

n N

    

  

 








  

 



  (15) 

         0 0 0 10 0Q Q Q P V                (16) 

       
1

0 ,

1,2,

n

n n n n k k
k

Q Q Q Q g

n

       




  

  


    (17) 

         

 

*

1
*

0

ˆ0 0

ˆ

N N N N

N

k N k
k

U U U Q U

U R g

    

 

 






  

 
     (18) 

       

     

1

1

0

0

ˆ ˆ0 ,

1,

n N

n n n n k k
k

N

n k n k
k

U U U U g

Q U U R g

n N

     

  


  





 




  

 

  



  (19) 

Noted that the LST of  nP x ,  nQ x and  nU x  is 

defined as follows: 

   
0

x
n nP e P x dx

   ,    
0

x
n nQ e Q x dx

   , 

   
0

x
n nU e U x dx

   . 

Now, we define the following p.d.f. 

   
1

, n
n

n

P z P z 


 



  ,    
1

,0 0 n
n

n

P z P z




   

   
0

, n
n

n

Q z Q z 


 



  ,    
0

,0 0 n
n

n

Q z Q z




   

   , n
n

n N

U z U z 


 



  , 
0

( ,0) (0) n
n

n

Q z Q z




   

 
1

0

N
n

n
n

R z R z




  . 

From Equations (13)-(15), we have 

     

         1

, ,0

,0
0 ,0

X z P z P z

P z
S P S U z

z

   

 



 

    
 

   
 

  (20) 

Letting  X z    , we get  

 
     

 
1,0 0

,0
zS X z U z P

P z
z S X z

 

 





       
   

   (21) 

Substituting (21) into Equation (20), we have 

 
        

    
1,0 0

,
z S X z S U z P

P z
z S X z X z

  


    

 




        
         

 

(22) 

Similarly, from (16), (17) and (18), (19) respectively 
and combining (11) and (12), we have  

     1,0 0Q z P V X z                 (23) 

 
      

 
1 0

,
P V X z V

Q z
X z

  


  

 


   
 

  (24) 

   
     

ˆ,0

,0 1

U z U X z

Q z X z R z

 



   
      

      (25) 

      
     

 

ˆ,

,0 1

U z U X z U

Q z X z R z

X z

   



  

      

     
 

    (26) 

Let  P z  be the p.g.f. of the queue size at an arbi-

trary time epoch. Then, 

         ,0 ,0 ,0P z P z Q z U z R z        (27) 

Using Equations (21)-(26) in  P z , we have 

 
   

 

   
   

   
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1

ˆ1
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ˆ

z S X z
P z

z S X z

V X z U X z
P

X z

U X z R z

 

 

   
 

 





 



   
   

            

   


 (28) 

Following Lee et al. [7], we have 

   
1

1
0

1
0

N
n

n
n

R z P z






           (29) 

where  0 0 V    , 

0

, 1
n

n i n i
i

n  


   , 0 1  , 

and 
1

, 1
n

n i n i
i

g n  


  . n  is the probability that 

system state visit n  during an idle period in the Mx/G/1/ 
N-policy queue [5].  
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Taking (29) into (28), we have  

 
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   
   

           


     






 (30) 

From Equation (30) and (1) 1P  , we get  

   

    
1 1

0

1
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n
n

P
E U E V

 
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
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  
       (31) 

Thus, the p.d.f. of the system size distribution in the 
steady state becomes 

     P z G z z             (32) 

where 

 
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

      






 

Remark 4.1 

Note that for  0 1P U   ,   0E U   and Û  


 

  1X z  , then the Equation (32) agrees with Equa-

tion (25) of Lee et al. [7].  

Remark 4.2 
Let 1N  , our model can be reduced to the batch ar-

rival queue under a single vacation policy with startup. 
In this case the result (32) coincides with Equation (30) 
of Ke [21], in which the closedown time is assumed to be 
zero. 
 
5. The Queue Length Distribution 
 
5.1. The Additional Queue Length Distribution 
 
This section, we will derive the additional queue length 
distribution. From (32), we see that the stationary queue 
length distribution of the Mx/G/1queue under N policy 

with a single vacation and setup times decomposes into 
two independent random variables: one is the stationary 
queue length distribution of the ordinary Mx/G/1 queue; 
another is the additional queue length ( aL ) distribution 
due to N policy with a single vacation and setup times. 

From the definition of p.d.f., the additional queue 

length distribution a
jp  is given by 

    0

1
|

!

j
a a
j zj

d
p P L j z

j dz
          (33) 

Obviously, the probability of additional queue length 
being zero is as follows 

 
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z N

n
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E U E V




 



 
  

     (34) 

When 1, , 1j N   , we can get the probability dis-

tribution of the additional queue length aL j  by di-

rect derivative of ( )z . 
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    (35) 

Following Leibniz formula, we have 
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
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
 

(36) 

First, let us define the following functions  xf z   

 
1

1 X z
,    Vf z V X z      and  ˆ

ˆ
U

f z U    

 X z    . For sake of convenience, we note 

     0| 0
k

k
X z xk

d
f z f

dz   . It is to be noted that the fol-

lowing recursion expressions hold. 



Z. YU  ET  AL. 
 

Copyright © 2010 SciRes.                                                                                  IIM 

370 
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         (39) 

where 
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   , tX zy z t e . 

Substitute (37)-(39) into (36), after some manipula-
tions, we have 
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 (40) 

When , 1,j N N   , in the similar manner pro-

ceeding with (36), we get the following additional queue 
length distribution. 
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
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With a direct method, we have derived the additional 
queue length distribution presented by (34), (40) and (41). 
Also, following the stochastic decomposition (32), the 
analytical queue length distribution can be derived. 
 
5.2. The Queue Length Distribution in  

Equilibrium 
 
Let  jp P L j   be the steady state probability dis-

tribution of queue length ( L ) for the Mx/G/1 queueing 

system under N-policy with a single vacation and setup 
times. From (32), (1) and (34), we have 
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 (42) 

When 1, , 1j N   , the probability of queue length 

L j  is given by 
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(43) 

where a
j kp   is given by (40). 

When , 1,j N N   , we first analyze the following 

two cases: 

1) If k j N  , that is j k N  , a
j kp   is given by 

(41). 

2) If 1k j N   , that is 1j k N   , a
j kp   is 

given by (40).  
So, the probability of queue length  L j j N   is 

given by 

0 0 0

0 0 1

j j N j
a a a

j k j k k j k k j k
k k k j N

p p p p p p p


  
    

         (44) 

The recursion expressions (42), (43) and (44) present 
the steady state queue length distribution for the Mx/G/1 
queueing system under N-policy with a single vacation 
and setup times. We can see that linking j  with (37)- 

(39) the queue length distribution could be calculated by 
these recursion expressions. 
 
6. Numerical Experiments 
 
This section we try to illustrate the application of these 
recursion expressions by taking several numerical exam-
ples. Here we assume that the batch size distribution is 

displaced geometric distribution i.e.   11 ,k
kg p p    

1k  . From (37), we have ( ) (0) ! 1 , 1n
xf n p n   , 

which can be derived by the mathematical induction. The 
service time distributions are assumed to follow the ex-
ponential distribution with mean [ ] 1E S  . Further-

more, we take the vacation time distributions and setup 
time distributions are 3-stage Erlang distribution with 
finite mean [ ] 3E V v  and 4-stage Erlang distribution 

[ ] 4E U u  respectively. For the sake of convenience, 

we take 0.5, 2p    and 10  . We will investi-

gate the effects of ,N v  and u  on the queue length 
distribution with constant other system parameters.  
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We present the results of the queue length distribution 
in Tables 1-3 with different ,N u  and v . Observing the 

Table 1, it is clear that: 1) the probability of the system 

being empty (P0) decreases as N  increases; 2) when 
N  is constant, the probability increases from P1 to P3 
and then decreases and converges to zero. 

 
Table 1. Queue length distribution vs the threshold N. 

u = 10, v = 12 

N 4 6 8 10 12 14 

P0 0.1944 0.1504 0.1227 0.1036 0.0897 0.0791 

P1 0.1469 0.1137 0.0928 0.0783 0.0678 0.0598 

P2 0.1515 0.1172 0.0956 0.0808 0.0699 0.0616 

P3 0.1526 0.1181 0.0964 0.0814 0.0704 0.0621 

P4 0.0960 0.1180 0.0963 0.0813 0.0704 0.0620 

P5 0.0720 0.1175 0.0958 0.0809 0.0701 0.0618 

P6 0.0531 0.0732 0.0953 0.0805 0.0696 0.0614 

P7 0.0387 0.0544 0.0946 0.0799 0.0692 0.0610 

P8 0.0279 0.0398 0.0586 0.0795 0.0688 0.0606 

P9 0.0200 0.0288 0.0433 0.0791 0.0684 0.0603 

P10 0.0142 0.0206 0.0316 0.0488 0.0681 0.0601 

P11 0.0102 0.0148 0.0229 0.0361 0.0680 0.0600 

P12 0.0073 0.0106 0.0165 0.0264 0.0419 0.0598 

P13 0.0053 0.0075 0.0118 0.0191 0.0310 0.0598 

P14 0.0039 0.0054 0.0084 0.0137 0.0227 0.0368 

P15 0.0031 0.0039 0.0060 0.0098 0.0164 0.0273 

P16 0.0026 0.0029 0.0043 0.0070 0.0118 0.0199 

P17 0.0022 0.0023 0.0032 0.0050 0.0085 0.0144 

P18 0.0020 0.0019 0.0023 0.0036 0.0061 0.0104 

P19 0.0018 0.0017 0.0019 0.0026 0.0044 0.0075 

P20 0.0017 0.0015 0.0016 0.0020 0.0031 0.0053 

EL 3.3376 4.0702 4.8892 5.7465 6.6072 7.7492 

sum 0.2660 0.2693 0.4023 0.4126 0.4192 0.4216 
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Table 2. Queue length distribution vs the parameter u. 

N = 6, v = 12 

u 10 11 12 13 14 15 

P0 0.1504 0.1523 0.1539 0.1552 0.1564 0.1575 

P1 0.1137 0.1157 0.1175 0.1191 0.1204 0.1217 

P2 0.1172 0.1190 0.1205 0.1219 0.1230 0.1240 

P3 0.1181 0.1197 0.1210 0.1221 0.1231 0.1240 

P4 0.1180 0.1194 0.1207 0.1217 0.1226 0.1234 

P5 0.1175 0.1188 0.1200 0.1210 0.1218 0.1226 

P6 0.0732 0.0719 0.0707 0.0696 0.0686 0.0676 

P7 0.0544 0.0529 0.0515 0.0503 0.0492 0.0483 

P8 0.0398 0.0383 0.0371 0.0359 0.035 0.0341 

P9 0.0288 0.0275 0.0264 0.0254 0.0246 0.0239 

P10 0.0206 0.0195 0.0186 0.0179 0.0172 0.0166 

P11 0.0148 0.0140 0.0133 0.0127 0.0122 0.0117 

P12 0.0106 0.0099 0.0094 0.0089 0.0086 0.0082 

P13 0.0075 0.0070 0.0067 0.0063 0.0061 0.0058 

P14 0.0054 0.0051 0.0048 0.0045 0.0043 0.0042 

P15 0.0039 0.0037 0.0035 0.0033 0.0032 0.0030 

P16 0.0029 0.0027 0.0026 0.0024 0.0023 0.0023 

P17 0.0023 0.0022 0.002 0.0019 0.0019 0.0018 

P18 0.0019 0.0018 0.0017 0.0016 0.0016 0.0015 

P19 0.0017 0.0016 0.0015 0.0014 0.0013 0.0013 

P20 0.0015 0.0014 0.0013 0.0013 0.0012 0.0012 

EL 4.0702 3.9953 3.9327 3.8797 3.8343 3.7948 

sum 0.2693 0.3783 0.3711 0.3644 0.3591 0.3541 
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Table 3. Queue length distribution vs the parameter v. 

N = 6, u = 10 

v 10 11 12 13 14 15 

P0 0.1482 0.1494 0.1504 0.1513 0.152 0.1527 

P1 0.1126 0.1132 0.1137 0.1140 0.1142 0.1144 

P2 0.1172 0.1173 0.1172 0.1171 0.117 0.1168 

P3 0.1184 0.1183 0.1181 0.1179 0.1178 0.1176 

P4 0.1182 0.1181 0.1180 0.1179 0.1178 0.1178 

P5 0.1175 0.1175 0.1175 0.1175 0.1175 0.1175 

P6 0.0736 0.0734 0.0732 0.0731 0.0730 0.0729 

P7 0.0547 0.0545 0.0544 0.0542 0.0541 0.0540 

P8 0.0401 0.0399 0.0398 0.0396 0.0396 0.0395 

P9 0.0291 0.0289 0.0288 0.0287 0.0286 0.0285 

P10 0.0209 0.0207 0.0206 0.0205 0.0204 0.0204 

P11 0.0151 0.0149 0.0148 0.0147 0.0146 0.0146 

P12 0.0109 0.0107 0.0106 0.0105 0.0104 0.0103 

P13 0.0079 0.0077 0.0075 0.0074 0.0074 0.0073 

P14 0.0057 0.0056 0.0054 0.0053 0.0053 0.0052 

P15 0.0042 0.0041 0.0039 0.0038 0.0038 0.0037 

P16 0.0032 0.0030 0.0029 0.0028 0.0027 0.0027 

P17 0.0026 0.0025 0.0023 0.0022 0.0021 0.0021 

P18 0.0022 0.0021 0.0019 0.0018 0.0018 0.0017 

P19 0.0020 0.0018 0.0017 0.0016 0.0015 0.0014 

P20 0.0018 0.0016 0.0015 0.0014 0.0013 0.0013 

EL 4.1328 4.0969 4.0702 4.0500 4.0343 4.0220 

sum 0.2740 0.2714 0.2693 0.2676 0.2666 0.2656 
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From Tables 2-3, one sees that 1) the probability of 

the system being empty increases as u  or v  increases; 

2) the probability  P 1 1j j N    increases as u  or 

v  increases, while the probability  Pj j N  de-

creases as u  or v  increases; 3) the probability Pj  

increases from 1P  to 3P  and then decreases and con-

verges to zero under constant u  or v .  
The mean queue length (EL) is also presented in Ta-

bles 1-3 respectively. It is shown that as N  increases 
mean queue length increases, while mean queue length 
decreases as u  or v  increases. It is worth mentioning 
that the mean queue length could not being the only one 
performance measure for the system design and optimi-
zation. For example, when 8,N   10,u   12v  , the 
mean queue length is 4.8892, but the total of the prob-
ability (sum) when the queue length exceeding 5 is 
0.4023, which could not be neglected.  
 
7. Conclusions 
 
In this paper we have derived the additional queue length 
distribution and the recursion expressions of the queue 
length distribution for the Mx/G/1 queueing system under 
N-policy with a single vacation and setup times. Fur-
thermore, we present the numerical results of the queue 
length distribution and the distribution properties are also 
investigated. The results in this paper would be signifi-
cant and useful to system designers and others. The ap-
proach developed in this paper is powerful and can be 
used to analyze more complex queueing system.  
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