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ABSTRACT 

We deal with the Copenhagen problem where the two big bodies of equal masses are also magnetic dipoles and we 
study some aspects of the dynamics of a charged particle which moves in the electromagnetic field produced by the 
primaries. We investigate the equilibrium positions of the particle and their parametric variations, as well as the basins 
of attraction for various numerical methods and various values of the parameter λ.  
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1. Introduction 

The Copenhagen problem is a particular case of the fa- 
mous restricted three-body problem where the two big 
spherical and homogeneous primaries have equal masses 
and rotate with constant angular velocity in circular or- 
bits around their centre of mass, while a small massless 
particle moves under the resultant Newtonian action of 
the two primaries. The problem was exhaustively studied 
by Stromgren and his collaborators in the decade of 
1920’s and has been revisited during the last ten years 
after the discovery of many exosolar planetary systems. 
A large part of these systems that have been identified 
since 1990, are two-body systems where the two prima- 
ries have almost equal masses. In this work we deal with 
a very interesting version of the Copenhagen problem in 
which we consider that the two big primaries are also 
magnetic dipoles and that the particle is a small charge 
which moves in the electromagnetic field produced by 
the two rotating dipoles. This new consideration besides 
the application to the aforementioned dynamical systems 
could also be applied to magnetic binary stars, the exis- 
tence of which has been already confirmed. The dynam- 
ics of a charged particle in a magnetic binary system has 
been studied in the past ([1,2]). The material of this work 
is organized in four sections. In the first section we ex- 
tract the equations of motion of the charged particle, in 
the second section we study the equilibrium positions, 
their stability and their parametric variation, in the third 
section we investigate the basins of attraction of these 
equilibria by applying two well known numerical meth- 

ods, the Newton’s method and an improved Modified 
Broyden’s one. Finally, in the last section, we discuss the 
obtained results and we expose some of the major con- 
clusions concerning our investigation.  

2. The Problem 

We consider a synodic coordinate system Oxyz centered 
at the mass centre O of the system, where the plane Oxy 
is the plane of the primaries’ motion, and the x-axis is the 
axis of syzygies of the primaries which create dipole- 
type magnetic fields. We assume that the axes of the 
magnetic moments are perpendicular to the Oxy plane 
and that the primaries rotate about their centre of mass in 
circular orbits with constant angular velocity ω (Figure 
1). That is  

 0,0,1i iM M , i = 1, 2. 

The magnetic inductions of the dipoles are, 

iiB curl A , i = 1, 2 

where iA  are the vector potentials. From Faraday’s law 
we obtain  

1 i
i

A
E

c t





, i = 1, 2. 

A small particle of charge q and mass m is acted upon 
by a Lorentz’s force created by the two rotating primaries 
P1 and P2 

B
mr qE qr

c
    , 
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Figure 1. The configuration of the primaries-magnetic di-
poles and the small body S. 
 
where  

1 2E E E  , 1 2B B B  . 

Under these assumptions, the normalized differential 
equations that describe the planar motion of S in the 
synodic coordinate system Oxyz, are,  

,x y

U
x fy U y fx U

U

x y

          
    


    (1) 

where 

   
2

2 2

2 y xU x y xA y
     A  

is the potential function, Ax, Ay are the x and y-compo- 
nents of the vector potential of the resultant electromag- 
netic field expressed in the synodic system, with  

1xA yp  , 1 1yA xp q  , 

1 3 3
1 2

1
p

r r


  , 1 3 3

1 2

1 1

2
q

r r

 
  

 
 

where r1 and r2 are the distances of the particle from the 
primaries,  

 22 2
1 0.5r x y   , 

 22 2
2 0.5r x y   , 

2 y x
x y

A A
U x A x y

x x
 

 
      

, 

2 y x
y x

A A
U y x A y

y y
 

 
      

, 

y x
z

A A
U x y

z z


 
    

 

or analytically, 

 2 2
1 1 2

2
2 2

2 3 3

6 3

xU x xp q y q x x y

x q xs

    

 

     

 
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2p
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 2 2
1 22 3 3yU y yp xyq y x y p         

and  

 2 2
1 22 2 3 6 32 2f p x y p xq      s  

with 

2 5 5
1 2

1
p

r r


  , 2 5 5

1 2

1 1

2
q

r r

 
  

 
, 2 5 5

1 2

1 1

4
s

r r

 
  

 
 

The dynamical system is characterized by the parame- 
ter 2 1M M   which is the ratio of the two magnetic 
moments. Since parameter λ connects the magnitudes of 
these moments, its role in the formation of the resultant 
electromagnetic field is very important. From Equation 
(1) we obtain a Jacobian-type integral of motion which 
has the form  

 2 22C U x y                   (2) 

where C is a constant that is called the Jacobian constant 
or energy constant. 

3. Equilibrium Locations and Their  
Parametric Variation  

As it is known, in an equilibrium position on the plane of 
the primaries’ revolution the following conditions hold, 

0x y x y                      (3) 

Therefore, the coordinates of these positions are the 
solutions of the system of non-linear algebraic equations, 

0, 0x yU U                  (4) 

We have found that for our case where the magnetic 
moments are perpendicular on the plane of the primaries’ 
revolution, all the equilibrium positions of the particle 
are located on this plane. Some of these points are dy- 
namically equivalent, which means that are characterized 
by the same Jacobian constant C and by the same state of 
stability. Τhe total number of the existing equilibrium 
locations depends on the value of parameter λ. More pre- 
cisely:  
 When .60 2   there are three collinear equilib- 

rium positions (L1, L2, L3). 
 When 2.6 ≤ λ ≤ 10.8, there are three collinear posi- 

tions (L1, L2, L3) and four triangular positions that 
form two pairs (L4, L5) and (L6, L7). The points of 
each pair are symmetric with respect of the x-axis and 
are dynamically equivalent since they are character- 
ized by the same Jacobian constant C and the same 
state of stability. 

 When λ > 10.8 there are three collinear points (L1, L2, 
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L3) and one pair of dynamically equivalent triangular 
points (L4, L5). 

Figure 2 shows the distribution of these equilibria on 
the Oxy plane for various λ. 

4. Methods and Algorithms for Finding the 
Basins of Attraction 

4.1. Basins of Attraction  

As we have mentioned before, in order to locate the equi- 
librium positions of the particle, we have to solve nu- 
merically the non-linear algebraic system (4). This is 
achieved by applying an iterative scheme, provided that 
an initial approximation is given. This starting value 
represents a point on plane (x, y). The iterator stops when 
some predetermined accuracy is reached for an equilib- 
rium point which can be considered as an “attractor” of 
the method. We call the set of the initial points that lead 
to the discrete equilibrium points or the dynamically 
equivalent points, “basins of attraction” (or “basins of 
convergence”, or “attracting domains”). These regions 
have been studied in the past in some problems of Celes- 
tial Dynamics, such as the restricted three-body problem 
[3], the ring problem of (N + 1)-bodies [4-8], and the 
Hill’s problem with radiation and oblateness [9]. The 
technique to find these regions is based on a double 
scanning process of the Oxy plane. Here, we have con- 
sidered the intervals  3.5, 2.5ox   ,  0 0, 2.0y   for 
the vertical and the horizontal scanning respectively and 
a step equal to 0.005. We have created in this way a 
dense grid, the nodes of which are the initial values of 
the algorithm in use. In all the considered cases we have 
used 10−8 as the accuracy criterion to terminate the itera- 
tive process. We have stored in separate files all the ini- 
tial points that lead to dynamically equivalent equilib- 
rium points. At the same time, for each initial point, we 
have recorded the number of the iterations required to 
find the equilibrium position with the aforementioned 
accuracy. Naturally, the number of the iterations required 
to locate an equilibrium position depends on the prede- 
termined accuracy, while the number of the points that  
 

 

Figure 2. Distribution of the equilibrium positions for vari-
ous values of λ. 

constitute the set of the attracting domain of dynamically 
equivalent set of equilibrium positions depends on the 
step-size of the scanning process, and the method used. 
At this point we notice that many numerical methods 
solving systems of nonlinear algebraic equations have 
been proposed and described in the past (see for example 
[10,11]). In what follows we briefly describe the two 
algorithms used, that is, the old classic Newton’s algo- 
rithm and a modified version of Broyden’s iteration 
scheme.  

4.2. The Numerical Methods Used 

4.2.1. Newton’s Algorithm 
For our particular problem this very popular and simple 
algorithm takes the form, 

   

   

   

   

1 1
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,
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2

,

n n

n n

x yy y xyn n
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x x

U U U

U U U U
y y

U U U

 

 






 




 



     (5) 

 nx ,  are the values of x and y at the n-th approxi- 
mation of the iteration process. Relations (5) can also be 
written in the form, 

 ny

       1 11 1
1 1,n n n n

n x n yx x A U y y A U  
      

where 1nA   is the Jacobian matrix 

  
    1 1

1
1

,n n

xx xyn
n

yx yy x y

U U
A J x

U U  




 
   

 
. 

4.2.2. Modified Broyden’s Method  
Broyden’s method is based on the secant’s one (it is a 
generalization of it) and belongs to a class of methods 
called quasi-Newton. We suppose that       0 0 0,x x y  
is an initial solution x  of the non-linear system  

 
0

0
x

y

U
F x

U

   
    

  
 

and we compute the Jacobian matrix 

  
 0 0

0
0

,

xx xy

yx yy x y

U U
A J x

U U

 
   

 
 

and its inverse 

      
 0 0

1
0 01

0

,

1 det yy yx

xy xx x y

U U
A J x J x

U U


  
    

 
 

We calculate the next approximation  1x  in the same 
manner as in Newton’s method and then we determine 
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     1 1
1

n n n
nx x A F x 
  1 , for n = 2, 3, ···, 

solving the system       1 1
1

n n n
nA x x F x 
     , at  

each step, until the criterion of convergence is satisfied. 
In this method 1nA   has replaced the Jacobian matrix  

  1nJ x    that appears in Newton-Raphson’s method.  

This is the main difference between the two methods. 
Broyden’s method has convergence that is called “super- 
linear”; this implies that 

 

 1
lim 0

n

n n

x x

x x
 





, 

On the contrary, Newton’s method has a “quadratic” 
convergence. For our problem,  

      ,
Tn n nx x y  

and  

         1
1 1,n n n n

n x n
1

yA x x U A y y U
        (6) 

for Broyden’s method, where 1nA   is given by the for- 
mula:  

  2

1 1 2
, 1, 2, 1,T

i i ii i i iA A w A s s s i n n        (7) 

where    1i i
is x x   . This method has been applied by 

Gousidou and Kalvouridis [5-8].  
An improvement of Broyden’s method is based on the 

Sherman-Morrison’s matrix inversion formula. This for- 
mula computes the inverse matrix 1

iA  directly from 
1
1iA
 , eliminating in this way, the need for a matrix in-

version in each iterative step. So, we have not to inverse 
the matrix 1

iA , which appears in Newton’s method 

  1 i
i ig A F x                (8) 

and not need to solve a system  

  i
i iA g F x   

with  

     1i ii
ig x x  , 

in each iteration, as it is needed in Broyden’s method. Its 
convergence is also “superlinear”, but with less number 
of operations than the original Broyden’s method, since 
the operations that are needed are those for the multipli- 
cation of a matrix by a vector, as it is resulted from the 
formula: 

 1 1 1 1 1
1 1 1

T T
i i i i i i i i i

   1i i
is x x    

and  

     1i i
iw  F x F x  , for , (10) 

(Faires and Burden [12]). 

ments  

number of 

rts of the 

  dense regions of Newton- 

fa
den’s  

1,2, 1, ,i n n  

5. Discussion of the Results 

5.1. General Remarks and Com

Newton-Raphson’s method gives a greater 
converging points per equilibrium point, in comparison 
to Broyden’s method which gives a few number of con- 
verging points. This is shown in the bar charts of Figure 
3 for the three considered cases with λ = 2, 10 and 12. 

The general structure of the obtained basins of attract- 
tions generally consists of some very dense parts that 
mainly evolve around the respective equilibrium point 
and of dispersed points that lie on the boundaries of the 
dense regions of this equilibrium or other ones. Figures 
4-7 illustrate the results obtained from our investigation. 
The two methods provide results showing similarities 
and differences that mostly arise from the philosophy and 
the geometric origin of the individual method.  

Fundamental similarities:  
  of the central paIn all diagrams, the shapes

corresponding attracting regions that evolve in the 
neighborhood of the dynamically equivalent equilib- 
rium points are similar. 

 The boundaries of these central parts are not clearly 
defined. They look as if they are being unraveled or 
unweaved. If one chooses launching points near these 
boundaries, very slight differences can give rise to 
very different outcomes. 

Substantial differences: 
eThe central parts of th

Raphson’s method are “compact” and homogeneous, 
that is, all their points lead to the equilibrium posi- 
tions of a particular set and therefore show the deter- 
ministic aspect of these areas for the particular nu- 
merical method. On the contrary, the corresponding 
regions obtained by means of modified Broyden’s 
method are less extended and less cohesive than the 
previous ones. 

 The initial approximations of plane (x, y) which do 
not lead to a target in the Newton-Raphson method, 
are very few. On the contrary, in the modified Broy- 
den’s method, a great number of non-convergent ini- 
tial approximations exists. Most of them are located 
at a relatively great distance from the primaries and 
are distributed in some extended areas of the diagram. 

Newton-Raphson’s method “strikes” the target very 
st, after a very few iterations. On the contrary, Broy- 

 method needs many more iterations to achieve 

1 iA A s A w s A s A    
     w

where  

   (9) 
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(a) 

 
(b) 

 
(c) 

Figure 3. Bar charts showing the number of convergi  
points per equilibrium poin t in each nu- 

Figure 
 as well as in the Table 1 where we give the results ob- 

 Sub-Regions of High or Low Speed of  
Convergence 

e way 
with ting domain of an equilibrium point 

 

ng
t or equilibrium se

merical method used. (a) λ = 2; (b) λ = 10; (c) λ = 12. 
 
convergence. This is depicted in the bar charts of 
3
tained for the three considered cases with λ = 2, 10 and 
12. 

5.2.

We have extended our investigation by studying th
which the attrac

or set is resolved into smaller regions, according to the 
number of the iterations needed to reach the equilibrium 

 
(a) 

 
(b) 

Figure 4. λ = 2. Newton’s method. Basins of attraction of the
equilibrium points: (a) L1; (b . 

 
) L2

 

 
(a) 

 
(b) 

Figure 5. λ = 2. Modified Br den’s method. Basins of at- 
traction of the equilibrium points: (a) L1; (b) L2. 

oy
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(c) 

Figure 6. λ = 10. Newton’s od. Basins of attraction of 
the equilibrium points: (a) L ) L ; (c) L . 

have already 

 

meth
; (b1 3 4

 
positions of this particular set. As we 
stressed in the previous section, the number of the re- 
quired iterations in order to achieve the location of an 
equilibrium position depends on the predetermined ac- 
curacy. In order to provide clear and instructive pictures, 
we have classified the points of the attracting regions of 
each equilibrium set and for both methods used in this 
work, in four class intervals 1 - 10 (very fast conver- 
gence), 11 - 20 (fast convergence), 21 - 40 (moderate 
convergence) and >40 (slow or very slow convergence) 
for the number of iterations and accuracy of 10−8.  

The general observations that concern all sets of points 
and both methods can be summarized as follows: 
 The subset of the “launching” points of (x, y) plane 

corresponding to the class interval 1 - 10 iterations for 
any equilibrium position of any equilibrium set, con- 
sists of a small region which occupies the central part 

 
(a) 

 
(b) 

 
(c) 

Figure 7. λ = 10. Modified Broyden’s method. Basins of 
attraction of the equilibrium 1; (b) L3; (c) L4. 

o- 
sition of this particular set and of some dispersed 

 
f each set consists of re- 

r way as in the 
previous class.    

 points: (a) L
 

of the attracting domain around each equilibrium p

points, which appear near these areas or between the 
dense regions of other equilibria or sets. Regarding 
Modified Broyden’s method this class appears as a 
sparse cluster of points that are scattered among the 
points of the second class.  
The subset of the points corresponding to the class 
interval 11 - 20 iterations o
gions or points which complement the central regions 
of the first class interval and of a large number of 
isolated points in the attracting area of this particular 
equilibrium point or set. These points are spread in a 
widely extended area on (x, y) plane.  

 The points corresponding to the class interval 21 - 40 
iterations of each set evolve in a simila
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in val. 

Newton Modif. Broyden 

  
Table 1. Number of converg oints per class inter

λ

g p

 = 2 

Class intervals Class intervals 
Equilib. 

point Total 
1 - 10 11 - >40 

Total 
1 - 10 11 - >40  20 21 - 40  20 21 - 40 

L  1 31, 7186 12,77,061 805 26,877 11,193 31,454 2246 8425 8001 782 

L2 286, 57,

9966 13,

Conv.

054 61,151 90,109 77,585 209 8446 1967 1721 933 3825 

L3 117,564 56,171 48,022 9259 4112 39,388 3122 12,609 691 

 points 480,679     79,288     

λ = 10 

Newton Modif. Broyden 

 intervals vals Class Class inter
Equil. 
point 

To l 1 - 10 11 0 >40 
Total 

1 - 10 11 0 >40 ta  - 20 21 - 4  - 20 21 - 4

L  1 34,263 19,678 12,753 1807 25 15,317 727 7067 5582 1941 

L2 66,481 34,857 28,003 3591 30 3679 1711 

2  7  

190, 108, 360, 119, 165,

Con.

1629 284 55 

L3 133,057 78,991 48,859 5146 61 66,497 5902 30,519 2,522 554

L45 56,985 27,267 25,981 3700 37 16,081 4393 9025 2084 579 

L67 021 626 72,131 9171 93 518 2979 196 177 73,166 

 points 480,800     462,092     

λ = 12 

Newton Modif. Broyden 

Class intervals Class intervals 
Equil. 
point Total 

1 - 10 11 - >40 
Total 

1 - 10 11 - >40  20 21 - 40  20 21 - 40 

L  1  89, 3  163, 7 218,431 369 113,808 15,059 195 62,812 1027 24,491 173,327 96

L2 69,607 35,292 30,202 4044 69 3641 1678 1618 287 58 

L3 135, 73, 25,

Con. 482, 454,

937 80,712 49,308 5836 81 132 6334 33,035 086 8677 

L45 58,027 27,259 26,637 4084 47 15,394 4277 8643 1960 514 

 points 002     979     

 
 ng terval  40 itera ns, it merely con-

sists of dispersed points lying either on the boundaries 

ted the attracting areas for the equilib- 
rticle in a magnetic binary system us- 

 

ues of parameter λ nd the at acting domain of ea dy- 
namically equivalent set of equilibria consists of a dense 

 Regardi  class in  > tio

of the dense regions of the previously mentioned class 
interval, or between the dense regions of the other 
equilibrium points or sets. Naturally, a decreasing 
density is observed as the number of iterations in- 
creases.   

6. Conclusion 

We have investiga
ria of a charged pa
ing both Newton’s and Modified Broyden’s methods. In 
this system the number of equilibria depends on the val- 

sub-domain in the close neighbourhood of each equilib- 
rium point of this set and of dispersed points distributed 

 a tr ch 

at the boundaries of the former domain of the same or 
other equilibrium sets. These boundaries are not clear 
and in some cases present a fractal structure. The appli- 
cation of the two methods reveals similarities and differ- 
ences that exist between them. The dense part of an at- 
tracting region calculated with Newton’s method is more 
“compact” than the respective one calculated with Modi- 
fied Broyden’s method. Another difference concerns the 
dispersed points. When these points are calculated with  
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Newton’s method they are distributed in an extended 
area of the diagram and mainly on the boundaries of the 
“compact” regions. In Modified Broyden’s method these 
points are very few and in many cases form small point 
clusters beyond or near the central domain. We also ob- 
serve that Newton’s method “strikes” the final target 
very fast. For the vast majority of the initial approxima- 
tions, the method needs only 1 - 10 iterations. On the 
contrary, Modified Broyden’s method needs often many 
more iterations to achieve convergence. Figures 3-7 and 
Table 1 justify our remarks. The presented material con-
firms that Newton’s method is more efficient than Modi-
fied Broyden’s one (for this type problem) as regards all 
the indices examined, such as the speed of convergence 
and the total number of launching points of the xy-plane 
that lead to the desired final destination. 
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