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ABSTRACT 

A numerical scheme for a SIS epidemic model with a delay is constructed by applying a nonstandard finite difference 
(NSFD) method. The dynamics of the obtained discrete system is investigated. First we show that the discrete system 
has equilibria which are exactly the same as those of continuous model. By studying the distribution of the roots of the 
characteristics equations related to the linearized system, we can provide the stable regions in the appropriate parameter 
plane. It is shown that the conditions for those equilibria to be asymptotically stable are consistent with the continuous 
model for any size of numerical time-step. Furthermore, we also establish the existence of Neimark-Sacker bifurcation 
(also called Hopf bifurcation for map) which is controlled by the time delay. The analytical results are confirmed by 
some numerical simulations. 
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Bifurcation 

1. Introduction 

In this paper we reconsider a SIS epidemic model with 
maturation delay developed in [1]:  
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 (1) 

Here  is a birth rate function. The size of ma-
ture population 

 B n
 n   at time   is divided into sus-

ceptible  s   and infective  i   classes, so that  
   n s  i   . 1 , 0    are the death rates of 

immature and mature population, respectively. The delay 
  is considered as the maturation time. The parameter 

0  , 0   and 0   are respectively the constant 
contact rate, the disease induced death rate constant and 
the recovery constant rate, respectively.  

In this paper we consider a special class of Equation (1) 
by assuming that the death rate in each stage prior to the 
adult stage and the disease induced death are negligible, 
i.e. 1 0   . Using the Rick function as the birth rate 

function     anB n pe   , Equation (1) becomes 
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Note that Equation (2.c) is decoupled and is called the 
Nicholson’s blowflies equation which proposed by [2]. 
The dynamics of Equation (2.c) have been studied by 
many authors; see e.g. [3,4]. 

In [1], the basic reproduction number for system (2) 
has been identified as  

0R


 



.                (3) 

It has also been shown in [1] that 0  determines the 
existence of equilibria as well as their stability properties. 
They have shown numerically that if the delay 

R

  is 
sufficiently large then the positive solutions of system (2) 
oscillate about the positive equilibrium. The existence 
and stability of Hopf bifurcation were established by Wei 
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and Zou [5]. In this case, the bifurcation is controlled by 
parameter p. The bifurcation analysis of system (2) using 
time delay as the control parameter has been done by Chi, 
Qu and Wei [6]. 

For practical purposes, we need to do numerical simu-
lations and therefore we have to transform the continuous 
model (2) into a discrete system. We expect that the dy-
namical properties of the discrete system are in accor-
dance with its continuous counterpart (2). Kunnawutti-
preechachan [7] and the author [8] considered the Euler 
discretization of system (2) and showed that the discrete 
system has exactly the same equilibria as those of system 
(2). Using different method of analysis, Kunnawutti-
preechachan [7] and the author [8] derived the sufficient 
conditions of the numerical step-size for equilibria to be 
asymptotically stable. It was concluded that the stability 
conditions of equilibria of the discrete system obtained 
by the Euler method are consistent with system (2) only 
if the numerical time-step is relatively small.  

To overcome the dependence of stability condition on 
the time-step size, we will apply a nonstandard finite 
difference (NSFD) scheme. This method, which is de-
veloped by Mickens [9,10], has been applied to various 
problems; see e.g. [11-16], in which the numerical solu-
tions preserve dynamical properties of the continuous 
model. We will show that the discrete SIS epidemic 
model with a delay obtained by the NSFD method main-
tains the stability properties of equilibria irrespective of 
the size of numerical time-step. Besides the stability 
conditions, the existence of bifurcation of the discrete 
model will also be investigated. 

2. Discrete SIS Epidemic Model with Delay  

Using the fact that     n s i    

 

, we will only 
consider the last two equations of system (2). Using a 
transformation  I t i   and  N t n    with t  , 
Equation (2.b) and (2.c) can be written as  
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To discretize system (4) we first consider the step-size 
of the form 1h  k  where k is a positive integer. Then, 
applying the forward difference scheme for the derivative 
and a nonlocal approximation for the right hand sides of 
system (4) yields a system of difference equations  
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where jI  and jN  are numerical approximation of 
 0I t  jh  and   ,jh0N t  , respectively. 

The numerical scheme (5) is a nonstandard because it 
uses a nonlocal approximation; see Mickens [9,10]. Here 
we consider initial conditions  

0,1,2,j  

 0 0I I t  and mN m ,           (6) 

where  m mt  , for . It is easy 
to show that the implicit scheme (5) can be arranged to 
get its explicit version, i.e. 
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Direct calculations show that the discrete system (7) has  

a unique equilibrium:  * *
0 0

1
, 0, ln

p
I N

a 
   
 

 if 0 1R    

and 0p  

0p

. This equilibrium is called the disease 
free equilibrium (DFE). On the other hand, if 0  
and 

1R 
   then, in addition to the DFE, there also 

exists an endemic equilibrium (EE):  ,e e I N   where  

* *

0

1
1e eI N
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lne
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N N
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We observe that those equilibria are exactly the same 
as those of the continuous system (4); see e.g. [7]. 

3. Stability and Neimark-Sacker Bifurcation 
Analysis 

It is well known that the stability of equilibrium of a dy-
namical system depends on the distribution of the zeros 
of its associated characteristics equation. In this section, 
the distribution of the roots of the characteristics equa-
tion will be analyzed using the following results of 
Zhang, Zu and Zheng [17]. 

Theorem 1 (Zhang, Zu and Zheng [17]). Suppose 
that  is a bounded, closed and connected set;  B̂ R
     1

1, k k
kf p  p           is continuous  

in  , C B  ˆ   and   is a parameter. Then as   
varies, the sum of the order of the zeros of  ,f    out 
of the unit circle: 

 : 1C    

can change only if a zero appears on or crosses the unit 
circle. 


  (5) 3.1. Disease Free Equilibrium 

First we perform a linearization of system (7) about the 
DFE  * *

0 0,I N  by taking *
0j jI I u   and *

0j jN N v  . 
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The linearized system around the DFE is given by 
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By introducing new variables  

0 1
1, , , k

j j j j n k jv x v x v x    , 

we can rewrite system (8) in the form 
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matrix A is  
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It is clear that if 0  then 1R  1 1   for all 0  . 
Other roots of Equation (10) are determined by  
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when 0  , Equation (11) becomes .  1 0k  
Hence Equation (11), at 0  , has a root 0   of 

multiplicity k and a simple root 1  . Consider the root 
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whenever p  . Consequently all roots of Equation 
(10) lie in 1   for all sufficiently small 0  , and 
the existence of the maximal    follows. □ 

Lemma 2. If 21
p

e


   then Equation (11) has no 

root with modulus one for all 0  .  
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Lemma 3. If 2p
e


  then the roots of Equation (11) 

satisfy 
2

,

d
0,

dhd
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

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   

  . This root depends continu-
ously on  . Based on Equation (11) we have  where    and   satisfy Equation (15). 
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Proof. From Equations (11) and (15) we have 

,

d d
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Based on Theorem 1 and Lemmas 1-3, we have the 
following results on stability and bifurcation of system (5) 
at the DFE. 

Theorem 2.  
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j j j j n k jv x v x v x     , system (16) can be writ-

ten as 

1j jB x
T

x


                (17) 

where . The constant matrix B 
in Equation (17) is  

 0 1, , , , k
j j j j ju x x xx 

1,1 1,2 1, 2

2,2 2, 2

0 0

0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1 0

k

k

B B B

B B




 
 
 
 

  
 
 
  
 






     

B . 

It is easy to show that the characteristic equation of 
matrix B is  

     1,1 0EE B                (18) 

where   1
2,2 2, 2 .k k

kB B   
    Clearly this char-

acteristic equation has a trivial root  

 
 1 1,1

0

1

1

h
B

hR

  


  
 

 
 
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and other roots are determined by . Direct cal-
culations show that if 

  0  
 then 10 1R  0 1   for all 

0  . Since 2,2 2,B A 2  and 2, 2 2, 2k kB A  ,     is 

 exactly the same as d
by Le 3. Hence ctly have the w

exactly the same as in Equation (1 herefore the 
distribution of its roots is escribed 

mmas 1- we dire  follo ing 
results. 

Lemma 4. If 0 1R   and p

1) and t

  then there exists a 
   such that all roots of Equation (18) have modulus 
less than one for 0    .   

Lemma 5. If 0 1R   and 21 e


   then Equation 

(18) has no root w

p

lus one for all ith modu 0  .  

Lemma 6. If  and 0 1R  2p
e


  th

of , i.e. 

en the modulus 

 trivial root of E (18)quation 
 
 1

01 hR

1 h  


  


 
, 

 

is less than one for all 0   and other roots satisfy 

2

0,hd
 

   

,

d

d
   




 

where    and   
 

satisfy Equation (1 . 

 nd 

5)
Theorem 3. 

1) If 0 1  aR 21 e


   then the E
p

E is asymp-

all totically stable for 0  . 

2) If  and 0 1R  2p
e


  th  

 parameter 

en there exists an infinite 

sequence of time delay 0 1 j       
su at thch th e EE is asymptotically stable when 

 00,   and unstable when 0  . System (7) has a 
 EE when Neimark-Sacker bifurcation at the j  , 

0,1, 2,j    where j  satisfy Equation (15). 
s 2.1 and 3.1 give the sufficient conditions for 

DFE and EE to be asymptotically stable, respectively. 
iscrete sy em obtained by the Eule

Theorem

Unlike the d st r method 
where the stability conditions for equilibria depend on 
the size of time-step h, the proposed discrete system (7) 
has stability conditions which are consistent with the 
stability conditions for equilibria of continuous system (4) 
for any size of time step h; see [7] for the stability prop-
erties of the continuous system. In addition, Theorems 
2.2 and 3.2 show the existence of bifurcation controlled 
by the time delay  . 

4. Numerical Simulations 

To confirm our pre iov us theoretical analysis, in this sec-
simulations using non-

) with time – step h = 
tion we present some numerical 
standard finite difference scheme (7
0.1 (or k = 10). For the simulations we adopt parameters 

used by [7], i.e. 1.1  , 2.0a   and 1.0  . For the 
simulations of DFE and EE scenarios we use 2.0   
and 5.0  , respectively.  

4.1. Disease Free Equilibrium (R0 < 1) 

For s ons of the DFE imulati scenario we use a constant 
contact rate 2.0   and vary the value of p
constant contact rate we have that 0.95R 

. Using this 
 . First 0

we choose 2p e
24 1

  and therefore the conditions for the 
DFE to be stable are satisfied, i.e. 21 p e  . Figure 1 
shows the numerical solutions using 1.0   and 4.0  . 
It is indicate he numerical solutions are convergent 
to the DFE (0.0, 0.9523) for any

d that t
 0  . On the other 

hand, if we take 15p   (i.e., 2p e nd oth
rameters are the same as used in Figure 1 then according 
to the previous analysis the DFE is u le and the sys-
tem undergoes a p  soluti rcation. In this 
case the bifurcation point is 1.6601   . Such behavior 
is shown in Figure 2. Indeed, if 1.60

 ) a

nstab
 bifu

er pa-

eriodic on of

     then the 
numerical solution converges to the DFE (0.0, 1.3064). 
On the contrary, the numeric especially N(t), 
changes its stability from asymptotic stable to periodic 
behavior when 1.70

al solution, 

    .  

4.2. Endemic Equilibrium (R0 > 1) 

For the EE sce e  such that R0 = 
 the numerical 

nario we us 5.0 
2.3810 > 1. Figures 3(a) and (b) show
solutions for 2 ,p e  1.1   (i.e 2p e  ), using 

1.0   and 4.0  , respective e results indicate 
that if 0 1R   then the EE (0.5524, 0.9523) is asym- 
ptotically stable c

ly. Thes

 irrespe tive of  . 
t we tak ame parameters as used in Figure 3 

but with 5
Nex e the s

 1p  , i.e. 2p e  . Theorem 3 predicts that 
a Neimark-Sacker bifurcation w l oil ccur. From Equation 
(1  5) we find that the critical delay (bifurcation point) is 
 

0 5 10 15 20 25 30 35 40
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0.5

1

1.5

time (t)

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5
(a)  = 1.0

I(t)

N(t)

time (t)

I(t)

N(t)

(b)  = 4.0

 

Figure 1. The numerical solutions of the discrete SIS model 
with a delay for the DFE scenario (R0 < 1) where 1 < p/δ < e2 
and (a) τ = 1.0 and (b) τ = 4.0. 
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Figure 2. The numerical solutions of the discrete SIS model 
with a delay for the DFE scenario with p/δ > e2, R0 < 1 usin
(a) τ = 1.60 and (b) τ = 1.70. 

(a)  = 1.60

g 
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Figure 3. The numerical solutions of the discrete SIS model 
with a delay for the EE scenario with 1 < p/δ < e2 and R0 > 1
using (a) τ = 1.0 and (b) τ = 4.0. 

(a)  = 1.0

 

 
1.6601   . This prediction is confirmed by our numeri- 

cal solutions; see Figure 4. It is clearly seen that if we 
change the time delay from 1.60     to τ = 1.70 >  , 
then the behavior of numerical solutions changes from a 
solution converging to the EE (0.7577, 1.3064) to a solu-
tion which oscillates periodically about the EE.  

Finally we compare the numerical solutions obtained 
by Euler method with those obtained by our NSFD 
method. We found that Euler method with a relatively 
big numerical time-step (h) may produce unrealistic 
negative and unbounded solutions. However, using the 
same or even bigger numerical time-step, NSFD method 
always gives positive and bounded solution. Depending 
on the parameters used in the simulations, the solution 
will be periodic or convergent to a correct equilibrium 
point. For example, in Figure 5 we plot the results of 
Euler method and NSFD method for the EE scenario 
using h = 0.25. It is seen from Figure 5(a) that the  
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Figure 4. The numerical solutions of the discrete SIS model 
with a delay for the EE scenario with p/δ > e2, R0 > 1 using 
(a) τ = 1.60 and (b) τ = 1.70. 
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Figure 5. The numerical solutions for the EE scenario with 
p/δ > e2, R0 > 1, h = 0.25 (k = 4) and τ = 2 obtained by (a) 
Euler method and (b) NSFD method. Note that the result o

). Using the 
me value of h the solution of NSFD method oscillates 

ed a discrete delayed SIS 
btained by a nonstandard finite dif- 
nlike the Euler method, the proposed 

f 
Euler method is plotted in logarithmic scaled. 
 
number of infectives tends to negative infinity (notice 
that the graph is shown in logarithmic scaled
sa
about the EE; see Figure 5(b). 

5. Conclusion 

In this paper we have introduc
epidemic model o
ference method. U
scheme reproduces exactly the same equilibria as well as 
their stability conditions as those of continuous model, 
i.e. if 21 p e   then the delay does not affect the 
stability of the equilibria. However, in the case of 

2p e  , the stability of equilibria changes when the 
delay p al value. Here the discrete SIS model 
with a delay has periodic solutions when the stability is 

her words, a Neimark-Sacker bifurcation occurs. 

asses a critic

lost. In ot
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