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ABSTRACT 

The Traveling Salesman Problem (TSP) and its allied problems like Vehicle Routing Problem (VRP) are one of the 
most widely studied problems in combinatorial optimization. It has long been known to be NP-hard and hence research 
on developing algorithms for the TSP has focused on approximate methods in addition to exact methods. Tabu search is 
one of the most widely applied metaheuristic for solving the TSP. In this paper, we review the tabu search literature on 
the TSP and its variations, point out trends in it, and bring out some interesting research gaps in this literature. 
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1. Introduction 

Many managerial problems, like vehicle routing prob- 
lems, facility location problems, scheduling problems, 
network design problems, can either be modeled as com- 
binatorial optimization problems, or solve combinatorial 
optimization problems as sub-problems. A very com- 
monly researched combinatorial optimization problem in 
this and other contexts is the Traveling Salesman Prob- 
lem (TSP). In a TSP (see e.g. [1]), we are given a 
weighted graph with a nodeset V and an arcset A. Cardi- 
nality of the nodeset V defines the problem size, i.e. |V| = 
n, and number of arcs is denoted by |A|. Cost of each arc 
connecting node i and node j is represented by  

ij  . Given these input parameters, it is re- 
quired to find a tour in the graph visiting each node ex- 
actly once such that the sum of the costs of the edges or 
arcs in the tour is the minimum possible. TSPs serve as 
a representation of many managerial problems, espe-
cially in logistics and distribution. Many more prob-
lems, though not obviously related to the TSP can be 
modeled as TSPs. A large number of other problems 
are not equivalent to solving TSPs, but solve TSPs as 
subproblems.  

; ,c R i j V 

Apart from being a recurrent problem in managerial 
situations, the TSP is among the most widely studied 
problems in combinatorial optimization. It was one of the 
first problems whose decision version was shown to be 
NP-complete (see [2]), and has been a testbed for theo- 
retical and computational studies ever since. Rich classes 
of benchmark problems exist for the TSP (see e.g., [3,4]), 
as do efficient implementations for solving reasona- 

bly large problems to optimality (see for example, NEOS: 
http://neos.mcs.anl.gov/neos/solvers/co:concorde/TSP.ht
ml). 

The TSP is known to be NP-hard. This means that no 
known algorithm is guaranteed to solve all TSP instances to 
optimality within reasonable execution time. So in addition 
to exact solution approaches, a number of heuristics and 
metaheuristics have been developed to solve problems 
approximately. Heuristics and metaheuristics trade opti-
mality of the solutions that they output with execution 
times. They are used to find “good” quality solutions with-
in reasonable execution times. Metaheuristics are normally 
improvement algorithms, i.e., they start with one or more 
feasible solutions to the problem at hand and suggest 
methods for improving such solutions. Typical examples of 
metaheuristics include local search, tabu search, simulated 
annealing, and genetic algorithms. The literature shows that 
tabu search is one of the most widely used metaheuristic 
procedures to solve combinatorial optimization problems. 
It is an improvement heuristic based on local search. It 
starts with an initial solution to the problem, (a tour in case 
of the TSP), calls it a current solution, and searches for the 
best solution in a suitably defined neighborhood (a collec-
tion of tours that can be “easily” reached from the current 
solution) of the solution. It then designates the best solution 
in the neighborhood as the current solution and starts the 
search process again. Tabu search terminates when certain 
terminating conditions, either involving execution time or 
maximum iteration count conditions, or solution quality 
objectives, or both, have been met. In order to prevent tabu 
search from considering solutions that it has visited in re- 
cent iterations, tabu search maintains a list of neighbor ge- 
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neration moves that it considers forbidden, or tabu (hence 
the name, tabu search) and ignores solutions that can be 
reached using those tabu moves while searching the neigh- 
borhood of a solution. Once a move enters the list of tabu 
moves, it stays there for a pre-specified number of tabu 
search iterations (called the tabu tenure of the move). The 
list of tabu moves therefore changes continuously during 
the execution of the search, making tabu search an adaptive 
memory search algorithm. Several researchers have added 
features that enrich the basic tabu search algorithm de- 
scribed here, such as intermediate term memory structures, 
long term memory structures, and aspiration criteria, which 
have been widely applied to tabu search implementations 
for most problems in TSP or in VRP. Other features that 
have been proposed, but not commonly implemented for 
tabu search on TSPs are strategic oscillation, path relinking, 
candidate list strategies etc. 

In this paper, we review the literature on application of 
tabu search to TSPs and problems very closely related to it, 
like vehicle routing problem and its variations. We re- 
viewed 76 papers on the application of tabu search to these 
problems. The papers that we reviewed mostly appeared in 
print in the last twenty years. We classify the literature 
based on problem size (Section 2), generation of initial 
solutions (Section 3), selection of moves (Section 4), the 
choice of short, medium, and long term memory structures 
(Section 5 through Section 7), and aspiration criteria (Sec- 
tion 8). We summarize our findings in Section 9. 

2. Problem Size 

60 papers describe the problem context on TSPs and on 
VRPs where tabu search was implemented. Table 1 pro- 
vides a summary of the problem sizes considered by dif- 
ferent authors in the literature. For TSP, problem size is 
defined as number of nodes to be visited and for VRP, 
problem size is considered as number of customers (or 
demand nodes) to be covered. It is interesting to note that 
even though metaheuristics are meant to handle large 
problems, nearly half of the papers deal only with prob-  

lem sizes up to 100 nodes. There are only 11 papers which 
address problem sizes of more than 400 nodes. Only 
three papers (e.g. [5-7]) address problem sizes between 
500 and 1035 nodes. With the advent of more powerful 
computers one would expect recent papers to deal with 
larger problems. However, as is evident from Table 1, 
this trend is not observed in published literature. For 
example, in the last three years, we have not encountered 
a single paper that implements tabu search on TSPs with 
more than 400 nodes. 

3. Initial Solution Generation 

Initial solution plays a vital role in finding out a good 
solution using local search based metaheuristic like tabu 
search. We have identified various methodologies used 
to generate initial solutions and have categorized papers 
in published literature using those methodologies in Ta-
ble 2. To keep number of categories manageable, we 
have ignored minor customizations used to generate ini- 
tial solutions in some papers while putting it into a cate- 
gory. 

General Randomized Adaptive Search Process 
(GRASP) is a modification of a greedy tour construction 
heuristic. In a greedy heuristic, a tour is constructed by 
growing a path in the graph and joining the end points 
once the path includes all the nodes in the graph. The 
first point is randomly chosen, and the node closest to the 
endpoints of the path being formed is the next point to be 
added to the path. In a GRASP heuristic, the point that is 
added to the path being grown is not necessarily the 
closest one to the endpoints, but a random one chosen 
from a set of points that are close enough to the end- 
points of the existing path. 

Route First Cluster Second (RFCS) algorithm is 
used specifically in the context of VRP. Initially a giant 
tour is constructed by relaxing the vehicle capacity con-
straint as done in TSP. Then clusters are formed by 
breaking the giant tour into smaller tours which satisfy 
constraints specific to VRP, e.g. time window, capacity  

 
Table 1. Problem sizes considered in published literature. 

Years 
Problem Size 

Before 1996 1996-2000 2001-2005 2006-2010 After 2010 Total 

100 or less [8-10] [11-13,20-22,26-31] [7,14-16,23,24] [17-19,25] -- 25 

101 - 150 -- [32] [33,34] [35] -- 4 

151 - 200 [36-38] [39-41] -- [17,42] -- 8 

201 - 250 [43] -- -- [44,45] -- 2 

251 - 300 -- [46,47] [34] [48-50] 51 7 

301 - 350 -- -- -- -- -- 0 

351 - 400 -- [52] -- [53] [54] 3 

401 or more [55,56] [57-59] [5-7,62] [60,61]  11 
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Table 2. Methods to generate initial solutions. 

Years 
Method 

Before 1996 1996-2000 2001-2005 2006-2010 After 2010 Total 

GRASP -- [30] -- -- -- 1 

RFCS -- [26] -- [42] [54] 3 

CFRS -- -- -- [42] -- 1 

RandsIns -- [12,28,40,57] [34,62,62] [19,25,60,61] [51] 12 

NN -- [13,22,29,30,40,41] [6,16,23,33,64,65] [17,19,35,53] -- 15 

Sweep -- [58] -- [35,44,49,53] -- 5 

GENI [36] [46] -- -- -- 2 

C&W [37] [11,59] -- [17,49,50] -- 6 

 
constraints etc. 

Cluster First Route Second (CFRS) Algorithm is 
used in the context of VRP for initial allocation of cus-
tomers to vehicles. In this algorithm, a set of nodes are 
identified to form a cluster by meeting VRP constraints. 
Then a feasible tour is constructed by visiting each of 
those nodes in a single cluster. 

Randomized Insertion (RandIns) starts with a partial 
tour and inserts nodes randomly into tour without form- 
ing sub-tours in between. It stops when all nodes in the 
graph have been included in the tour. 

Nearest Neighbor (NN) also starts with a partial tour. 
It then searches for a node not included in the partial tour 
and has the minimum distance from the last added node 
in the partial tour. It adds this node to the partial tour. If 
the graph describing the TSP is not complete, there is a 
possibility that after the completion of this procedure, 
some of the nodes remain unconnected to the tour. These 
nodes are then added to the tour using the RandIns pro- 
cedure (by not forming sub-tours in between). In some 
papers, e.g. [6], authors implement minor variations of 
this method like double ended nearest neighbor etc. 

Sweep heuristic is suited for TSPs defined on a plane. 
A reference point is chosen and an arbitrary axis is drawn 
through the reference point. Next the vertices are ar-
ranged in increasing order of angle between the line 
linking the vertex to the reference point and the axis de-
fined. Ties are generally broken by choosing the vertex 
having the smallest distance to the reference point. Mul-
tiple reference points are used for multiple depots in the 
context of VRP. 

Clarke and Wright (C & W) heuristic is widely used 
in the context of VRP (see [63]). It is based on the notion 
of savings. Initially routes are created to connect depot 
and customers. Those routes are then merged based on 
maximum savings possible in the parallel version of the 
algorithm. In the sequential version of the algorithm, the 
same route keeps expanding until no feasible route is 
possible. 

We summarize our findings in usage of methods to 

generate initial solutions in Table 2. We can see that the 
two most popular methods are Randomized Insertion 
(RandsIn) and Nearest Neighbor (NN). Ease in imple-
mentation is a reason behind wide selection of those 
moves in published literature. Sweep and C & W heuris-
tics are also used specifically in the context of VRP. 

4. Moves 

Tabu search being an improvement heuristic moves from 
one solution to the next in search of an optimal solution. 
The method of moving from one solution to another is 
described by a set of rules and is called a move. The set 
of all solutions that can be reached from a given solution 
using a pre-specified move is called the neighborhood of 
the solution. Out of the papers we reviewed, we found 98 
instances of move description with multiple moves being 
discussed in some papers. One paper that emphasizes the 
influence of the choice of moves on the solution gener-
ated is by Osman ([37]), although it deals only with 
VRPs. The following types of moves have been used in 
the literature in the context of TSP and related problems. 
Again while putting the instances under a move category, 
we ignored the minor deviations from standard moves in 
some papers for problem specific implementation. The 
detailed paperwise summary is given in Table 3. 

2-opt move involves removal of two non-adjacent 
edges from an existing tour and two new edges are in- 
serted by connecting the head and tail nodes of the de- 
leted edges to create a new tour without creating subtours. 
While performing this move in an asymmetric graph, an 
additional operation is required to reverse the intermedi- 
ate arc chain and it increases the computational comple- 
xity. A minor variation of this move is used in the con- 
text of VRP which is denoted by 2-opt* move in Table 
3. 

r-opt move is a generalization of the 2-opt move 
where r > 2 edges are involved in deletion/addition op- 
eration. Computational complexity of an r-opt move is 
O(nr) in a symmetric graph where n is the problem size.  
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Table 3. Types of moves used in tabu search. 

Years 
Method 

Before 1996 1996-2000 2001-2005 2006-2010 After 2010 Total 

2-opt/2-opt* [8,10,37,38] [20,29,40,47,57] [7,23,33,62] [18,53,60,68] [67] 19 

r-opt (r > 2) -- [29,52,57] -- [25,61] -- 5 

Or-opt [10] [20,57] [7] [68] -- 5 

CrossEx -- [12,57] [65] [18,53,68] -- 6 

VertexIns [9,36,37] [11,28,39-41,58,59] [5,6,16,23,24,34,50,64,62,65] [17-19,35,45,49,53,60,61] [54,69] 31 

VertexEx -- [28,32,39-41,59] [6,7,16,23,24,62,65] [17-19,35,45,49,53,50,61] [54] 23 

GENI -- [58] [6] [44,48,68] -- 5 

λ-InterCh [37,55] [22] [7] -- -- 4 

 
Hence mostly 3-opt or 4-opt moves are used in local 
search. It is practically infeasible to generate a neigh- 
borhood with r > 4 because it needs large computational 
time. 

Or-opt move is a modification of the r-opt move. It 
was proposed by Or in 1976 (see [1] for details). It con- 
siders a small fraction of exchanges that would be consi- 
dered by a regular r-opt move. In this move, due to com- 
putational convenience, only those exchanges are con- 
sidered that would result in a string of up to three cur- 
rently adjacent cities being inserted between two other 
cities. 

Cross Exchange (CrossEx) is an advancement of 
2-opt* move specifically used in VRP. Two edges are 
deleted from two different tours and the open nodes from 
each tour are connected to each other. 

Vertex Insertion (VertexIns) consists of a move 
where a random vertex is chosen to remove from an ex-
isting tour and it is inserted between two other vertices to 
create a new neighboring tour.  

Vertex Exchange (VertexEx) is a move where the 
positions of two vertices are interchanged to create a new 
tour from the existing one. In case of TSP, the vertices 
are exchanged in the same tour. In the context of VRP, 
vertices chosen can be from different tours as well. 

Generalized Insertion (GENI) is a move introduced 
by Gendreau et al. ([66]). This move performs insertions 
of unrouted customers or removals of customers from 
their current routes and their reinsertions into different 
routes. In this move, one unrouted vertex is chosen, and 
is joined to two p-closest vertices (and not necessarily 
adjacent also) with p defined by a threshold distance. The 
nodes displaced from the route due to this operation are 
introduced at appropriate positions to complete the route. 
λ-Interchange (λ-InterCh) is a move suggested by 

Osman ([37]), it works in the same principle as vertex 
exchange in a reduced neighborhood; only λ of the near- 
est nodes from a given node are considered for inter- 
change. 

Table 3 summarizes the choice of moves in published 

literature over time. It can easily be seen that the three 
frequently used moves are 2-opt, vertex insertion and 
vertex exchange. These moves are the easiest to imple- 
ment among all the moves considered. They result in 
neighborhoods whose sizes are quadratic in the number 
of nodes in the TSP. Moves that result in larger neigh-
borhoods often provide more improvement in each tabu 
search iteration, but searching them takes longer. For 
example, r-opt or GENI tends to produce a better solu- 
tion in each iteration but in expense of higher computa- 
tional time. 

5. Choice of Short Term Memory Structure 

Short term memory structures are used in tabu search to 
prevent the search from re-visiting solutions that it has 
visited in the immediate past. They are normally stored 
as a collection of forbidden moves in a list called the tabu 
list. Each move in the tabu list remains in the list for a 
pre-specified number of tabu search iterations. This num- 
ber is called its tabu tenure. Tabu search implementations 
either keep the tabu tenure as a fixed number or one that 
changes deterministically with algorithm parameters (e.g., 
the number of tabu search iterations already executed) or 
problem parameters (e.g., problem size) or generate the 
tenure randomly within a pre-specified range. We refer to 
the first two kinds of tabu tenure as static tabu tenures, 
and the second one as random tabu tenure. 

5.1. Static Tabu Tenure 

47 of the instances in papers that we surveyed dealt with 
non-random tabu tenures. Of those, 26 dealt with tabu 
tenures that were fixed, and the other 21 instances dealt 
with tabu tenures that varied with the number of itera- 
tions already performed by tabu search, or with the in- 
stance size. While varying with number of iterations, 
search procedure actually sees the change in solution 
quality to determine the updated tabu tenure values. Ta-
ble 4 provides a list of the papers that dealt with fixed 
tabu tenures. Table 5 presents a group of papers by the 
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Table 4. Papers with static tabu tenure with fixed tenure values. 

Years 
Tenure Values 

Before 1996 1996-2000 2001-2005 2006-2010 After 2010 Total 

0 - 4 [43] -- -- -- -- 1 

5 - 9 [10,43]  [20,26,32] [6,64,70] -- -- 8 

10 - 14 [55] [26,32] [6,7,65] -- -- 6 

15- 19 -- [26,32] [23] [45] -- 4 

20 - 24 -- [26] [62,65] [42] -- 5 

25 - 30 -- -- [65] -- -- 1 

>30 -- -- [16] -- -- 1 

 
Table 5. Papers with static tabu tenure with dependent tenure values. 

Years 
Dependence Type 

Before 1996 1996-2000 2001-2005 2006-2010 After 2010 Total 

Number of Iterations -- [12,57] -- [49,68] [54] 5 

Problem Size [8,37] [12,22,28,29,57] [5,71,72] -- -- 8 

 
parameter that they use to determine the tabu tenure. 

From Table 4 we see that the range of values for the 
tabu tenure lies mostly in between 5 to 25 across years. 
Further, nearly 60% of these papers use tabu tenures be- 
tween 5 and 14. In papers like [26,43,70], the authors 
conducted experiments to see the effect of different te- 
nure values on solution quality. In [26], the authors 
showed that static tenure outperforms all other kinds of 
tabu tenures in tabu search applied to TSPs. Of the dif- 
ferent non-random tabu tenures used, a tabu tenure of 15 
emerges as the best choice in [26]. In [70], the authors 
attempted to find out optimal tabu tenures for different 
sets of problems but were unable to generate any univer- 
sal recommendation. 

From Table 5, we observe that most of the papers that 
do not fix tabu tenure irrespective of the problem in- 
stance vary the tabu tenure based on the problem size. 
Only one of the papers that we surveyed ([37] for VRPs), 
describes an elaborate mechanism for determining the 
tabu tenure. In that paper describing tabu search imple- 
mentation in VRP context by Osman, the tenure value 
depends on four problem parameters; a customer identi- 
fication number, a vehicle identification number, a ca- 
pacity ratio of the demand to the available vehicle ca- 
pacities, and the type of moves considered. It was shown 
through computational experiments that results obtained 
by using this strategy gave a better solution than simu- 
lated annealing results, although the paper did not com- 
pare its strategy with other variants of tabu search. 

There is also a more formalized approach called the 
functional approach (see e.g., [8,9]) to determine tabu 
tenures. In this approach the tabu tenure is determined 
using a function of problem specific parameters. The 
form of the function is pre-specified. The coefficients of  

the function are derived by regressing tenure value over 
other problem parameters for the best solutions found. In 
some papers like [5,35,44,58,71], the functional approach 
is followed to determine static tabu tenures. In [5,58], the 
form of the function is logarithmic, while in [35], both 
logarithmic and linear functions are used. The size of the 
TSP instance is taken as the only independent variable 
during regression in these papers. A detailed comparison 
of such static tabu tenures over different problem sizes 
appears in [29]. In this paper, tabu tenures ranging from 
n/32 to 3n/2 (where n is the size of the TSP) were tested 
for TSPs with sizes varying between 20 and 100 nodes. 
The paper concludes that the tabu tenure should be with- 
in n/8 and n/4 for 2-opt moves, and between n/16 and n/8 
for 3-opt moves. 

5.2. Random Tabu Tenure 

The change of tabu tenure from deterministic to random 
was initiated in [74] for the quadratic assignment prob- 
lem. Among the papers we surveyed, in 23 instances au- 
thors used random tabu tenures. In all of these papers, 
tabu tenures are picked randomly from a uniform distri- 
bution with fixed lower and upper bounds. In $10$ pa- 
pers, the limits of the distributions from which the tabu 
tenure is drawn varied with the problem size or number 
of iterations. Table 6 summarizes the range of tabu ten-
ures in papers where the support of the distribution from 
which tabu tenures did not depend on the problem being 
solved. It shows that the support of the distribution from 
which tabu tenure values were drawn was [5,10] in a 
majority of the papers. This support was first used in [36] 
and was motivated by a suggestion in [75]. 

Reference [38] influenced the trend of making tabu 
tenures depend on problem and search characteristics. In  
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Table 6. Papers with random tabu tenure with specified range. 

Years 
Tenure Range 

Before 1996 1996-2000 2001-2005 2006-2010 After 2010 Total 

5 - 10 [36] [27,40,52,59] [24,33] [17] -- 8 

10 - 20 -- [40] [65] [53] -- 3 

20 - 30 -- [21] [21] -- -- 2 

 
this paper, the authors modified the tabu tenure based on 
solution values in previous iterations. After this, 10 pa-
pers have appeared in the literature in which the support 
of the distribution from which the tabu tenure is chosen 
is based on the problem being solved. All of them (ex- 
cept [52] and [53]), considered instances with between 
50 and 150 nodes. Reference [53] considered instances 
with 400 nodes. 

Most of the work on the dependence of tabu tenure on 
instance size is due to Cordeau, Gendreau and their co- 
authors. They developed a functional relation for the 
ranges of distribution based on the instance size. There 
are however two distinct trends in the modeling of the 
dependence. In [11,13,47], the support of the distribution 
from which tabu tenures are chosen were directly propor-
tional to the problem size, while in [34,58], the depend-
ence is logarithmic. There is no empirical evidence to 
show that one of these forms is better than the other. 

6. Choice of Intermediate Term Memory  
Structure 

Intermediate term memory structures are used in tabu 
search to intensify the search by restricting it to promis- 
ing regions of the solution space. We found 24 instances 
in the papers reviewed implemented intermediate term 
memory structures. We classify the strategies used into 
the following broad four categories: 

Strategy IT1: Edges that occur frequently in low cost 
tours are forced into candidate tours for next few itera- 
tions. 

Strategy IT2: The search is re-started with a tour that 
was one of the lower cost tours found in previous itera-
tions. 

Strategy IT3: Higher probabilities are assigned to in-
clude the edges common to previously encountered low 
cost tours in a probabilistic tabu search. 

Strategy IT4: Changing tabu tenure (in comparison to 
existing tenure value) whenever a local optimum is rea- 
ched. 

As mentioned in the previous sections, we ignored 
minor deviations from the categories identified for grou- 
ping convenience. Table 8 presents information about 
the use of the four strategies. We see that the first two 
strategies have been used in two-third of the papers cited. 
Strategy IT1 has a wide acceptability because it restricts  

the solution space. In Strategy IT2, the search is re-initi- 
ated from a promising region without any particular re- 
striction in the search process. The scarcity of papers 
involving Strategy IT3 is expected, because it works for 
probabilistic tabu search, which itself is not frequently 
used. In some papers (see e.g., [24,38,57]), more than 
one of these strategies are used together. 

7. Choice of Long Term Memory Structure 

Tabu search uses long term memory structures to diver- 
sify the search to new regions in the solution space. We 
found 34 instances in papers that used long term memory 
structures to achieve diversification. We list the broad 
strategies used below. 

Strategy LT1 is a frequency based diversification 
scheme implemented by adding a penalty value to the 
cost of each edge. The penalty is proportional to the 
number of times the edge appeared in previously visited 
tours. The objective here is to create a disincentive for 
including edges that were often encountered previously. 

Strategy LT2 is a modification of strategy LT1, in 
which the penalty value also includes terms that are not 
dependent on frequency measures. 

Strategy LT3 attains diversification by changing the 
way in which tours are evaluated in order to move the 
search to new parts of the search space. It may also in- 
volve changing the move being used in the search. 

Strategy LT4 creates a diversification mechanism by 
changing the stopping criterion to allow more non-im- 
proving moves. 

Strategy LT5 is a diversification scheme which re- 
starts tabu search iteration from different initial solutions. 
It helps to change the initial search space and creates a 
chance to reach to a different solution region. 

Strategy LT6 is used in some papers for diversi- 
fication if no improvement is seen in the best tour cost 
for certain number of iterations, diversification is att- 
ained by adding a parameter called influence measure to 
the tour costs for neighboring solutions. The influence 
measure measures the degree of similarity between two 
consecutive solutions. 

This list of diversification strategies is not exhaustive 
and we clubbed minor variations of some strategies into 
broad categories defined above. 

Table 9 presents the usage of long term memory stru- 
ctures in the tabu search literature on TSP and VRP. It is  
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Table 7. Papers with random tabu tenure with dependent range. 

Years 
Range Dependency 

Before 1996 1996-2000 2001-2005 2006-2010 After 2010 Total 

Number of Iterations [38] [11] [24] -- -- 3 

Problem Size -- [11,13,31,39,47,58] [34] -- -- 7 

 
Table 8. Papers with intermediate term memory function. 

Years 
Strategy 

Before 1996 1996-2000 2001-2005 2006-2010 After 2010 Total 

IT1 [38] [12,20,22,40] [62,76] [53,60] -- 9 

IT2 [36] [52,57] [24] [19,35,73] -- 7 

IT3 [56] [57] [24] -- -- 3 

IT4 [9,38] [31] -- [68] [54] 5 

 
Table 9. Papers with long term memory function. 

Years 
Strategy 

Before 1996 1996-2000 2001-2005 2006-2010 After 2010 Total 

LT1 [8] [12,13,22,27,39,57] [6,24,65,76] [45,48,53] [51,54] 16 

LT2 [36] [58] [5,34] [25,35,61] -- 7 

LT3 -- [20] [24,33] [49] -- 4 

LT4 -- [31,52] -- [19] -- 3 

LT5 [56] -- [24] -- -- 2 

LT6 -- -- [62] [60] -- 2 

 
clear from the table that Strategy LT1 is the most com- 
monly used strategy for using long term memory stru- 
ctures. Reference [36] used Strategy LT2 for the first 
time in their tabu search implementation. In their imple- 
mentation, the penalty value was dependent on a factor 
equal to absolute difference between two successive va- 
lues of objective function, the square root of the neigh- 
borhood size for a particular move, and a scaling factor 
to control the intensity of diversification to be achieved. 
The concept of a scaling factor was also used in [5,34, 
35,58], among others. Reference [24] used Strategy LT3 
in their tabu search implementation. They modified the 
cost of tours to facilitate the inclusion of non-frequent 
moves. In the tabu search implementation in [33], edges 
do not enter the tabu list if the cost of the tour is within 
10% of the cheapest tour up to that iteration. In reference 
[20], Or-opt moves were used instead of 2-opt move 
when it could not improve the best tour for a specific 
number of iterations. References [60,62] used influence 
measures to diversify their tabu search. By inserting this 
expression in the objective function, they restricted moves 
to visit similar kinds of tours. 

8. Aspiration Criteria 

Aspiration criteria are a set of conditions which if sati- 

sfied, permits tabu search to make use of tabu moves to 
reach neighboring solutions. 40 of the papers that we 
reviewed used aspiration criteria. Although the design of 
aspiration criteria can be finely tuned, all the papers 
except [58] chose to overrule the tabu status of moves if 
they allowed the search to find a tour that was better than 
the best found until that iteration. [58] developed attri- 
bute specific adaptive aspiration level functions instead 
of taking solution values. 

9. Conclusion and Future Directions 

In this literature, we examine various aspects of tabu 
search implementation in the context of TSP and allied 
problems. We reviewed this literature from implemen- 
tation as well as from methodological point of view. 
While seeing the implementation aspect, we find from 
Table 1 that most of the papers do not address a pra- 
ctically sized large problem size. More than 40% of the 
papers chose a problem size of 100 nodes or less. Also 
most authors consider symmetric TSPs (STSP) described 
on complete graphs for tabu search implementation. If 
we look into ATSP, success of tabu search is rather 
limited if compared with the success in the context of 
STSP. As mentioned in [3], one reason for this could be 
the absence of particular instance type in ATSP which  
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enables specific heuristics to reduce computational time 
by exploiting problem characteristics. Contrary to STSP, 
where two dimensional geometric instances dominate, 
there is no single instance type which dominates in the 
field of ATSP. A particular ATSP instance can be 
represented by a list of n(n – 1) inter-city distances, where 
n is the problem size. This creates a large space require- 
ment and makes it difficult to handle large problem in- 
stances. An attempt to address ATSP instances is more 
practically motivated because of two reasons; most pra- 
ctical networks are asymmetric, and the STSP is a special 
case of the ATSP. If we take any distribution and logi- 
stics problem to see the nature of underlying graph, it is 
likely to be asymmetric and typically problem size is 
large. We believe these two important aspects of problem 
context, i.e. size and asymmetry, are missing in existing 
literature. 

While generating initial solutions for tabu search, 
authors do not use very sophisticated methods for tabu 
search implementations (Table 2). It is not clear whether 
they do this because the neighborhoods of good initial 
solutions do not provide other good solutions, or whether 
tabu search is found to be powerful enough to generate 
good quality solutions regardless of the initial solution. 
Computational effort will surely be less to generate ini- 
tial solutions using Random Insertion or Nearest Neigh- 
borhood method. 

To generate neighboring solutions from an initial solu- 
tion, authors prefer moves that are simple to implement 
and which give rise to small neighborhoods. In the last 
few years, they have primarily considered vertex inser- 
tion, vertex exchange,and 2-opt moves. It seems that they 
find running more tabu search iterations with less im- 
provement per iteration to be a better option than running 
few tabu search iterations each of which could provide 
potentially much larger improvement. Reduction on com- 
putational time becomes specifically important for in- 
creasing problem size (with asymmetry). 

The intensification and diversification within the 
search process are achieved by three different memory 
structures: short term, intermediate term and long term. 
Most authors prefer to use short term memory structures 
in their tabu search implementations. The issue of de- 
ciding tabu tenures has not received adequate attention in 
the literature. In aggregate more authors have preferred 
fixed tabu tenures over random tabu tenures. This pre- 
ference seems to have increased in recent years. The pro- 
blem comes while implementing tabu search on large 
problem sizes because commonly used fixed tenure 
values tend to fail since the neighborhood size is large. 
Among authors who have chosen to use fixed tabu ten- 
ures, more authors are beginning to tailor the tabu ten- 
ures. First, papers have looked at only linear and loga- 
rithmic dependences of the tabu tenure on problem size. 

We did not find any justification for restricting them- 
selves to only these functional forms. It would also be 
interesting to experiment with other functional forms of 
dependence of the tabu tenure on problem size. Second, 
papers that have modified tabu tenures based on the 
problems being solved look at the size of the problem as 
the only problem specific criterion. It would be interest- 
ing to see if the length of the tabu tenure could be made 
dependent on other problem characteristics to yield better 
results. 

Intermediate term memory structure is used mostly for 
intensification to focus the search process into a specific 
region. Strategy IT1 has its advantage of reduction of 
neighborhood size and hence reduction in computational 
time. In strategy IT4, typically the tabu tenure is reduced 
to intensify the search process to a specific region. In 
case of functional tenure values, the process of changing 
the tenure values is not explained very clearly in the 
literature. Changes in the functional form is also nece- 
ssary. Detailed study of using a particular type of inter- 
mediate term memory based on the neighborhood stru- 
cture is required to draw some meaningful conclusion 
over the usefulness of this memory structure. Some com- 
posite strategy for intensification can also be experi- 
mented. 

Long term memory structure leads to the diversifica- 
tion of the search process. From the published literature, 
strategy LT1 and LT2 are the two strategies which are 
used over the years to implement this structure in tabu 
search. Following in similar line as suggested in inter- 
mediate term memory structure, composite strategies can 
be developed for diversification as well. 

None of the papers that we reviewed used all of the 
features of tabu search in their tabu search implemen- 
tations. Although in recent years, more number of pub- 
lished papers address tabu search implementation with 
more than two or three features. Components like stra- 
tegic oscillation were ignored in past due to its difficulty 
in implementation. A shift in this area is also observed as 
more infrequent features of tabu search are included in 
recent papers. 
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