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ABSTRACT 

In this paper, we study the principle of equal probability (i.e., unless we have sufficient reason to regard one possible 
case as more probable than another, we treat them as equally probable) in measurement theory (i.e., the theory of quan-
tum mechanical world view), which is characterized as the linguistic turn of quantum mechanics with the Copenhagen 
interpretation. This turn from physics to language does not only realize the remarkable extension of quantum mechanics 
but also establish the method of science. Our study will be executed in the easy example of the Monty Hall problem. 
Although our argument is simple, we believe that it is worth pointing out the fact that the principle of equal probability 
can be, for the first time, clarified in measurement theory (based on the dualism) and not the conventional statistics 
(based on Kolmogorov’s probability theory). 
 
Keywords: Linguistic Interpretation; Quantum and Classical Measurement Theory; Philosophy of Statistics; Fisher 

Maximum Likelihood Method; Bayes’ Theorem 

1. Introduction 

1.1. Monty Hall Problem 

The Monty Hall problem is well-known and elementary. 
Also it is famous as the problem in which even great 
mathematician P. Erdös made a mistake (cf. [1]). The 
Monty Hall problem is as follows:  

Problem 1 [Monty Hall problem 1]. You are on a 
game show and you are given the choice of three doors. 
Behind one door is a car, and behind the other two are 
goats. You choose, say, door 1, and the host, who knows 
where the car is, opens another door, behind which is a 
goat. For example, the host says that  
(♭) the door 3 has a goat.  

And further, He now gives you the choice of sticking 
with door 1 or switching to door 2? What should you do?  

In the framework of measurement theory [2-12], we 
shall present two answers of this problem in Sections 3.1 
and 4.2. Although this problem seems elementary, we 
assert that the complete understanding of the Monty Hall 
problem can not be acquired within Kolmogorov’s prob-
ability theory [13] but measurement theory (based on the 
dualism). 

1.2. Overview: Measurement Theory 

As emphasized in refs. [7,8], measurement theory (or in 
short, MT) is, by a linguistic turn of quantum mechanics 

(cf. Figure 1: ③ later), constructed as the scientific the-
ory formulated in a certain C*-algebra A (i.e., a norm 
closed subalgebra in the operator algebra  B H  com-
posed of all bounded operators on a Hilbert space H, cf. 
[14,15]). MT is composed of two theories (i.e., pure 
measurement theory (or, in short, PMT] and statistical 
measurement theory (or, in short, SMT). That is, it has 
the following structure:  

(A) MT (measurement theory) 

   
   

   

   
   

   

1

P

2

S

A : PMT

pure measurement causality

Axiom 1 Axiom2

A : SMT

statistical measurement + causality

Axiom 1 Axiom2



    






   



 

where Axiom 2 is common in PMT and SMT. For com-
pleteness, note that measurement theory (A) (i.e., (A1) 
and (A2)) is not physics but a kind of language based on 
“the (quantum) mechanical world view”. As seen in [9], 
note that MT gives a foundation to statistics. That is, 
roughly speaking,  

(B) it may be understandabl  to consider that PMT and  e 
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Figure 1. The development of the world views from our standing point. For the explanation of (①-⑧), see [8,10]. 
 
SMT is related to Fisher’s statistics and Bayesian statis-
tics respectively. 

Also, for the position of MT in science, see Figure 1, 
which was precisely explained in [8,10].  

When  cA B H , the C*-algebra composed of all 
compact operators on a Hilbert space H, the (A) is called 
quantum measurement theory (or, quantum system the-
ory), which can be regarded as the linguistic aspect of 
quantum mechanics. Also, when A is commutative (that 
is, when A is characterized by , the C*-algebra 
composed of all continuous complex-valued functions 
vanishing at infinity on a locally compact Hausdorff 
space  (cf. [16])), the (A) is called classical meas- 
urement theory. Thus, we have the following classifica- 
tion:  

 0 ΩC

Ω

(C) 
  
  0

quantum MT when
MT

classical MT when Ω

cA B H

A C









 

The purpose of this paper is to clarify the Monty Hall 
problem in the classical PMT and classical SMT. 

2. Classical Measurement Theory (Axioms 
and Interpretation) 

2.1. Mathematical Preparations 

Since our concern is the Monty Hall problem, we devote 
ourselves to classical MT in (C). Throughout this paper, 
we assume that  is a compact Hausdorff space. Thus, 
we can put , which is defined by a Ba-
nach space (or precisely, a commutative C*-algebra) 
composed of all continuous complex-valued functions on  

Ω
 C  0 Ω C Ω

a compact Hausdorff space , where its norm Ω  ΩC
f  

is defined by  
Ω

max f





. Let  be the dual Ba- 

nach space of . That is, 

 *ΩC

  ΩC *
ΩC  

 ΩC

 is a con-

tinuous linear functional on , and the norm 

 *ΩC
  is defined by    sup ΩC :f f   such that 

  Ω
1

C
f  . The bi-linear functional  f  is also de- 

noted by 
   * ΩΩ

,
CC

f , or in short , f .  

Define the mixed state  such that    *
ΩC  

 *Ω
1

C
   and  f  0  for all  such that 

. And put 

 Ωf C

0f 

     * *
Ω Ω is a mixed state .mS C C    

Also, for each Ω , define the pure state  
   *
ΩmS C 

 

 such that  

      * ΩΩ
, Ω

CC
f f f C    . And put  

     * *
Ω Ω is a pure state ,pS C C     

which is called a state space. Note, by the Riesz theorem 

(cf. [16]), that *(Ω) (Ω)C M     is a signed meas-

ure on Ω  and      *

1Ω Ωm mS C M     is a meas- 

ure on Ω  such that   Ω 1  . Also, it is clear that 

    0 0

*
ΩpS C    is a point measure at , 

where 

0 Ω 

     0f f  

pS C

 
0

d Ωf  

  *
Ω

Ω

C
Ω
 . This im-

plies that the state space  can be also iden-

tified with  (called a spectrum space or simply, spec-
trum) such as 

  
  

*
Ω Ω

state space              spectrum

pS C   ∋


      (1) 

Also, note that  ΩC

 ΩC

 is unital, i.e., it has the identity 
I (or precisely, I ), since we assume that  is com-
pact.  

Ω

According to the noted idea (cf. [17]) in quantum me-
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chanics, an observable  : , ,XO X B F  in  ΩC  is 
defined as follows:  

(D1) [Field] X is a set, , the power set of X) 
is a field of X, that is, “ ”, 
“Ξ Ξ ”.  

( 2X
XB 

1 2,   1 2X XB B  

B
X X

(D2) [Additivity] F is a mapping from X  to 
B X B  

 ΩC  
satisfying: 1): for every ,  is a non-nega- 
tive element in  such that 

Ξ XB


 ΞF
0ΩC  ΞF I , 2): 

 and   0F    F X I
 ΩC
Ξ Ξ

, where 0 and I is the 0-ele- 
ment and the identity in  respectively. 3): for any 

,  such that 1Ξ 2Ξ  XB 1 2   , it holds that 
.   Ξ Ξ Ξ  ΞF 1 2 1 2

For the more precise argument (such as countably ad-
ditivity, etc.), see [7,9]. 

F F

2.2. Classical PMT in (A1) 

In this section we shall explain classical PMT in (A1). 
With any system S, a commutative C*-algebra  ΩC  

can be associated in which the measurement theory (A) 
of that system can be formulated. A state of the system S  

is represented by an element  and an 

observable is represented by an observable  

  *
ΩpS C  

 : , ,XO X B F  in . Also, the measurement of 
the observable O for the system S with the state 

 ΩC

  is  

denoted by or more precisely,  

. An observer can obtain 

a measured value 

    Ω ,CM O S


    : , , ,XX B F S


 


  ΩCM O 

x X

  S


 by the measurement  

.   Ω ,CM O

The AxiomP 1 presented below is a kind of mathe-
matical generalization of Born’s probabilistic interpreta-
tion of quantum mechanics. And thus, it is a statement 
without reality.  

AxiomP 1 [Measurement]. The probability that a mea- 
sured value  x X  obtained by the measurement  

   
0

Ω : , , ,XCM O X B F S
 

 

  
 

 Ξ XB  

 belongs to a set  

 is given by  0ΞF   . 

Next, we explain Axiom 2 in (A). Let  ,T   be a 
tree, i.e., a partial ordered set such that “ 1 3t t  and 

2 3 ” implies “ 1 2  or 2 1 ” In this paper, we 
assume that T is finite. Also, assume that there exists an 
element , called the root of T, such that 

t t t t t t

0t T 0t t   

 t T   holds. Put   2 2
1 2 1 2, t T t t   T t . The fam- 

ily     
  22 1

1 2,
: Ω Ωt t

t t T
C C




1 2,Φt t  is called a causal  

relation (due to the Heisenberg picture), if it satisfies the 
following conditions (E1) and (E2).  

(E1) With each , a C*-algebra  is asso-

ciated.  

t T  ΩtC

(E2) For every   2
1 2,t t T , a Markov operator  

   1
ΩtC

 2 1
Ωt tC

I

1 2 2,Φ : Ωt t tC 

 1 2, Ω
Φt t C

I  
 

 is defined (i.e., ,  

). And it satisfies that 

1 2,Φ 0t t 

2 3t t 1 3, ,Φ Φt t  

holds for any  1 2,t t ,  2 3,t t 2T .  

The family of dual operators  

      
 

1 2 1 2 2
1 2

* **
,

,

Φ : Ω Ωm m
t t t t

t t T

S C S C


  

is called a dual causal relation (due to the Schrödinger 
picture). When  

     1 2 1 2

* **
,Φ Ω Ωp p

t t t tS C S C  
 

  

holds for any   2
1 2,t t T , the causal relation is said to 

be deterministic.  
Here, Axiom 2 in the measurement theory (A) is pre-

sented as follows:  
Axiom 2 [Causality]. The causality is represented by a 

causal relation     
  21 2 2 1

1 2
,

,
Φ : Ω Ωt t t t

t t T
C C


 .  

For the further argument (i.e., the W*-algebraic formu-
lation) of measurement theory, see Appendix in [7]. 

2.3. Classical SMT in (A2) 

It is usual to consider that we do not know the state 
0

  

when we take a measurement . That is 

because we usually take a measurement 

 
0

,CM O S
  

 




 CM O




0

S


,  
 

  
 

 

in order to know the state 
0

 . Thus, when we want to 

emphasize that we do not know the the state 
0

 , 

 
0

,CM O S
  

 


 

  is denoted by     *,C M O S . Also, 

when we know the distribution  

      *
C0 1

m mM S     of the unknown state 
0

 , 

the  
0

,CM O S
  

 

  
 

 is denoted by .     *,CM O S    0

The AxiomS 1 presented below is a kind of mathe-
matical generalization of AxiomP 1.  

AxiomS 1 [Statistical measurement] The probability 
that a measured value  x X  obtained by the meas- 

urement          0Ω *: , , ,XCM O X B F S   belongs to 

a set  F   is given by  

         *0 0 ΩΩ
,

CC
F F    .  
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Remark 1. Note that two statistical measurements 

 and  can 

not be distinguished before measurements. In this sense, 
we consider that, even if 

    
1

0Ω ,CM O S


  
    

2
0Ω ,CM O S


  

1 2  , we can assume that  

           
     

1

2

0 ( ) 0Ω *

0Ω

, ,

, .

CC

C

M O S M O S

M O S











 

 













  (2) 

2.4. Linguistic Interpretation  

Next, we have to answer how to use the above axioms as 
follows. That is, we present the following linguistic in-
terpretation (F) [= (F1) – (F3)], which is characterized as 
a kind of linguistic turn of so-called Copenhagen inter-
pretation (cf. [7,8]). That is, we propose: 

(F1) Consider the dualism composed of “observer” and 
“system (= measuring object)”. And therefore, “ob-
server” and “system” must be absolutely separated.  

(F2) Only one measurement is permitted. And thus, the 
state after a measurement is meaningless since it can not 
be measured any longer. Also, the causality should be 
assumed only in the side of system, however, a state 
never moves. Thus, the Heisenberg picture should be 
adopted.  

(F3) Also, the observer does not have the space-time. 
Thus, the question: “When and where is a measured 
value obtained?” is out of measurement theory, and so on. 
This interpretation is, of course, common to both PMT 
and SMT. 

Remark 2. Note that quantum mechanics has many in-
terpretations (i.e., several Copenhagen interpretation, 
many worlds interpretation, statistical interpretation, etc.). 
On the other hand, we believe that the interpretation of 
measurement theory (A) is uniquely determined as in the 
above. This is our main reason to propose the linguistic 
interpretation of quantum mechanics. We believe that 
this uniqueness is essential to the justification of Heisen-
berg’s uncertainty principle (cf. [10,18]). 

2.5. Preliminary Fundamental Theorems 

We have the following two fundamental theorems in 
measurement theory: 

Theorem 1 [Fisher’s maximum likelihood method (cf. 
[9])]. Assume that a measured value obtained by a meas-  

urement       Ω *: , , ,XCM O X B F S  belongs to  

 Ξ XB . Then, there is a reason to infer that the un-
known state  *  is equal to 

0
 , where  0 Ω   is 

defined by 

       0
Ω

Ξ max Ξ .F F


 


        

Theorem 2 [Bayes’ method (cf. [9])]. Assume that a 
measured value obtained by a statistical measurement  

     ( ) [*] 0: , , ,C XM O X B F S    belongs to  XB  .  

Then, there is a reason to infer that the posterior state 
(i.e., the mixed state after the measurement) is equal to 
vpost, which is defined by  

 
     
     

 

0

0

d

d

; Borel field .

D
post

F
D

F

D B

  


  




  
  

 


  

The above two theorems are, of course, the most fun-
damental in statistics. Thus, if we believe in Figure 1, we 
can answer to the following problem (cf. [4,9]):  

(G) What is statistics? Or, where is statistics in science? 
which is certainly the most essential problem in the phi-
losophy of statistics.  

3. The First Answer to Monty Hall Problem 

3.1. Fisher’s Method (The First Answer) 

In this section, we present the first answer to Problem 1 
(Monty-Hall problem) in classical PMT. Put  

 1 2 3Ω , ,    with the discrete topology. Assume that  

each state    *
ΩpS C   means 

m

 
the state that the car is behind the door 1

1, 2,3
m

m

 


  (3) 

Define the observable  in     1,2,3
1 11, 2,3 , 2 ,O F

 Ω  such that C

         
         
         
         
    

1 1 1 1

1 1 1 2

1 2 1 2

1 3 1 3

1 3

1 0.0, 2

3 0.5, 1

2 0.0, 3

1 0.0, 2

3 0.0,

F F

F F

F F

F F

F

 

 

 

 



       
       
       
       
   

 

0.5,

0.0,

1.0,

1.0,

  (4) 

where it is also possible to assume that    1 12F   , 
     1 13 1 0 1F       . Thus w   e have a meas-

urement     ,1Ω *CM O S , which should be regarded as  

the meas tical representation of the meas-urement theore

 
urement that you say “door 1”. Here, we assume that  

1) “measured value is obtained by the measurement

    1Ω *,CM O S ”  The host says “Door 1 has a goat”;  

d v ue is obtained by the measurement 2) “measure al

    1Ω *,CM O S ”  The host says “Door 1 has a goat”; 

d v ue is obtained by the measurement 3) “measure al
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    1Ω *,CM O S ” 

Recall that, ro
go  

 The host says “Door 1 has a goat”. 

in P blem 1, the host said “Door 3 has a 
at”. This implies that you get the measured value “3” 

by the measurement     1Ω *,CM O S . Therefore, Theo- 

rem 1 (Fisher’s maxim  method) says that um likelihood

,

(5) 

and thus, there is a reason to infer that 

you should pick door number 2. That is because we see 
that 

      

              
1 2

1 1 1 2 1 3

3 1.0 max 0.5,1.0,0.0

max 3 , 3 , 3

F

F F F



 

    

           
 

 
2

* 
 first ans

. Th

3.2. Bayes’ Method (Answer to Modified Monty 

In th n Remark 3 later, the following 

all problem 2]. Sup-
po

ecided by the 
ca

A urther, the host says, for example, 

ant to pick door number 2?” 
Is

us, 
you should switch to door 2. This is the wer to 
Problem 1 (the Monty-Hall problem 1). 

Hall Problem 2) 

e sense mentioned i
modified Monty Hall problem (Problem 2) is completely 
different from Problem 1 (the Monty Hall problem 1). 
However, it is worth examining Problem 2 for the better 
understanding of Problem 3 later.  

Problem 2 [Modified Monty H
se you are on a game show, and you are given the 

choice of three doors (i.e., “number 1”, “number 2”, 
“number 3”). Behind one door is a car, behind the others, 
goats. You pick a door, say number 1. Then, the host, 
who set a car behind a certain door, says  

(#1) the car was set behind the door d
st of the distorted dice. That is, the host set the car 

behind the k-th door (i.e., “number k”) with probability 
pk (or, weight such that 1 2 3 1p p p   , 1 2 30 , ,p p p  

1 ).  
nd f

(♭) the door 3 has a goat.  
He says to you, “Do you w

 it to your advantage to switch your choice of doors?  
In what follows we study this problem. Let   and 

1  be as in Section 3.1. Under the hypothesis ( , de-
e the mixed state 

O
fin

#1)
  0

mM  such that:  

  
1 

     0 1 1 0 2 2 0 3, ,p p       3p   (6) 

Thus we have a statistical measurement  

. Note that  

1) “measured value he statistical meas-

ur

at”; 
d value is obtained by the statistical meas-

ur



       1 0Ω *,CM O S 

 is obtained by t

ement    M O S  ”  The host says “Door 

1 has a go
2) “measure

    1 0Ω *,C

ement        1 0,M O S  ”  The host says “Door 

2 has a go
3) “measure

Ω *C

at”; 
d value is obtained by the statistical meas-

urement        1 0,M O S  ”  The host says “Door 

1 has a go
Here, assum

Ω *C

at”. 
e that, by the statistical measurement  

      1 0*,C O SM  , you obtain a measured value 3,  

which corresponds 
 

to the fact that the host said “Door 3 
has a goat”. Then, Theorem 2 (Bayes’ theorem) says 

that the posterior state   post
mM  is given by  1 Ω

  
  

1 0
post

0 1

3

, 3

F

F







                (7) 

That is,  

     

  

1

2
post 1 post 2

1 1
2 2

post 3

2 , ,

2 2

0.

p
p

p p
p p

   

 

 
 



   (8) 

Particularly, we see that  
(H) if 1 2 3 1 3p p p   , then it holds that  

  post 1 1 3   ,   post 2 2 3 ,    post 3 0   , 

and thus, you sho ick Door 2. 
 Problem 1 and 

Pr

4. The Second Answer to Monty Hall  

In this section, we shall present the second answer. 

4.1. The Principle of Equal Probability  

uld p
Remark 3. The difference between
oblem 2 should be remarked. Since the (#1) in Problem 

2 is the information from the host to you, Problem 1 and 
Problem 2 are completely different. Although the above 
(H) may be generally regarded as the proper answer of 
the Monty Hall problem, we do not admit that the (H) is 
proper. That is, we consider that the (H) is not the second 
answer to the Monty Hall problem.  

Problem 

However, before it, we have to prepare the principle of 
equal probability (i.e., unless we have sufficient reason to 
regard one possible case as more probable than another, 
we treat them as equally probable). For completeness, 
note that measurement theory urges us to use only Axi-
oms 1 and 2.  

Put  Ω , , , ,1 2 3 n      with the discrete topology. 
And con e  1 1, ,XO X B F  in sider any observabl  ΩC .  

Define the bijection 1 :    such that 
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  j n
 

1
1

1

j
j j n


 


  

 

and define the observable k  in  , ,k XO X B F  ΩC  
such that  

       
 

1 1

, 1, 2, ,

k kF F

k n

  


        

   
 

where    0 Ω     and  



Let be a non-negative real number 
su

 .  

Here, we can easily see that the probab
m

    1 1 , 1,2, ,k k k n        .   

 1, ,kp k n   
at 

1
1

n

kk
p


 .

example, fix
ch th   
(I) For  a state  1,2, , . And, 

by
m

m n  
e, you choose an o the cast of the distorted dic bserv-

able  , ,k X kO X B F  with probability pk. And further, 
you ta t  

:M O 

ke a measuremen

  , , ,
m

k X kC X B F S
  

  

ility that a 
easured value obtained by the measurement (I) belongs 

to  Ξ XB  is given by  

     Ξ ,   1 1
Ξ

m

n n

k k k k mk k
p F p F 

 
      (9) 

which is equal to    11 1
Ξ ,

k m

n

kk
F p  

 . This im
ent (I) is equivalent t


Note that the (9) depends on the state 

plies 
that the measurem o a statistical 
measurement: 

M O       11 1Ω 1
( : , , ,

k mm

n

X kC k
X B F S p

  


   
 . 

m . Thus, we 
can not calculate the (9) such as the (8).  

However, if it holds that 1kp n k 1, ,n  , we 

see that  11

1 n   is indepe  of 
k mkn  

ndent of the choice

the state 
m

 . Thus, putting  11

1 n

k m ekn   


 , we 

quivalent to the st

equivalent  the formula 

).  
bove notation, we have the following 

see that the asurement (I) is e atisti-

cal measurement     1Ω , eCM O S  
   , which is also 

(2) in Remark 1
Thus, under the a

th

 me

 to 

m  

       1Ω *, eCM O S   (from

eorem.  
Theorem 3 [The principle of equal probability (i.e., 

the equal probability of selection)]. If 1kp n   
 1, ,k n  , the measurement (I) is i ent of the 
choice  state m

ndepend
of the  . Hence, the (I) is equivalent to a 

urement  

        

statistical meas

 1 1Ω , , ,X eCM O X B F S  .  *:

It should be noted that the principle of equal robabil-
ity is not “principle” but “theorem” in measu
or

 

l Problem 3)  

ing m

 

tch your choice of doors?  

u

In the conventional statistics based on Kolmogorov’s 

 p
rement the-

y.  
Remark 4. This theorem was also discussed in [5,6], 

where we missed the formula (2) in Remark 1. Thus, the
argument in [5,6] was too abstract. And thus, it might be 
regarded as ambiguous and vague. In fact, we must admit 
that the explanation in [5,6] is not yet accepted generally. 
Therefore, we recommend readers to read [5,6] after the 
understanding of the concrete explanation (I) in the lin-
guistic interpretation (F). Also, note that Theorem 3 is 
independent of Axiom 2. And further, for the principle of 
equal (a priori) probabilities in equilibrium statistical 
mechanics, see [11], in which how to use measurement 
theory (and thus statistics) in statistical mechanics is ex-
plained.  

4.2. The Second Answer to Monty Hall Problem 
(i.e., Modified Monty Hal

As an application of Theorem 3, we consider the follow-
odified Monty-Hall problem:  

Problem 3 [Modified Monty Hall problem 3]. Sup-
pose you are on a game show, and you are given the
choice of three doors (i.e., “number 1”, “number 2”, 
“number 3”). Behind one door is a car, behind the others, 
goats.  

(#2) You choose a door by the cast of the fair dice, i.e., 
with probability 1/3. 

According to the rule (#2), you pick a door, say num-
ber 1, and the host, who knows where the car is, opens 
another door, behind which is a goat. For example, the 
host says that  
(♭) the door 3 has a goat.  

He says to you, “Do you want to pick door number 2?” 
s I it to your advantage to swi

[Answer]. Consider Ω  and O1 as in Section 3.1. 
Then, Theorem 3 says that the answer of Problem 3 is the 
same as the (H). Thus, yo  should pick the door 2.  

Remark 5. The difference between the (#1) in Problem 
2 and the (#2) in Problem 3 is clear in the dualism (F). 
The former is host’s selection, but the latter is your se-
lection (i.e., observer’s selection). That is, in Problem 3, 
the information from host to you is only the (♭). This 
situation is the same as that of Problem 1. In this sense, 
we think that Problems 1 and 3 are similar. That is, we 
can conclude that Problem 1 [resp. Problem 3] is the 
Monty Hall problem in PMT [resp. SMT]. Also, our re-
cent report [19] will promote a better understanding of 
measurement theory.  

5. Conclusions  
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lem 3 may be unconsciously pp. 277-306. doi:10.1016/S0165-0114(96)00114-5 

[4] S. Ishikawa, “Statistics in Measurements,” Fuzzy Se

probability theory, Prob  
confused with Problem 2. On the other hand, as men-
tioned in Remark 5, the difference between Problems 2 
and 3 can be clearly described in measurement theory 
(based on the dualism (F)). This is the merit of measure-
ment theory.  

What we executed in this paper may be merely the 
translation from “ordinary language” to “scientific lan-
gu

ts and 
Systems, Vol. 116, No. 2, 2000, pp. 141-154.   
doi:10.1016/S0165-0114(98)00280-2 

[5] S. Ishikawa, “Mathematical Foundations of Measurement 

nintentional Ran-

antum Mechan-
 

Theory,” Keio University Press Inc., 2006. 
http://www.keio-up.co.jp/kup/mfomt/  

[6] S. Ishikawa, “Monty Hall Problem in U

age”, that is,  

   

dom Measurements,” Far East Journal of Dynamical Sys-
tems, Vol. 3, No. 2, 2009, pp. 165-181.  

[7] S. Ishikawa, “A New Interpretation of Qu

  

MT
translation


Section 3.1, 4.

ordinary language scientific language



We believe that this translation is just “the mechanical
world view” or “the method of science” (at least, science
in
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Journal of Quantum Information Science, Vol. 2, No. 1, 
2012, pp. 2-9. doi:10.4236/jqis.2012.21002 

[9] S. Ishikawa, “A Measurement Theoretical F

 
 

 the series ○L  of Figure 1). That is, ordinary science (at 
least, its basic statements) should be described in terms 
of measurement theory. For example, for the translation 
of equilibrium statistical mechanics and the Zeno’s 
paradoxes, see [11] and [12] respectively. Probably, we 
refrained from the publication of [12], if we were not 
sure of “MT = the method of science (or the form of sci-
entific thinking)”. 

In this paper (as well as [9]), we showed one of ad-
vantages of the measurement theoretical foundation of 
sta

oundation of 

, “The Linguistic Interpretation of Quantum 

tis-

Statistics,” Applied Mathematics, Vol. 3, No. 3, 2012, pp. 
183-192.  
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tistics through the examination of the Monty Hall 
problem. Also, recall that measurement theory possesses 
a great power to answer to the problem (G). However, 
our methodology should be tested from various points of 
view, because the classic statistics methodology (based 
on Kolmogorov’s probability theory) can be good ap-
plied in many fields. We hope that our approach will be 
examined from various view points.  
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