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ABSTRACT

We show the multidimensional stability of subsonic phase transitions in a non-isothermal van der Waals fluid. Based on
the existence result of planar waves in our previous work [1], a jump condition is posed on non-isothermal phase bounda-
ries which makes the argument possible. Stability of planar waves both in one dimensional and multidimensional spaces

are proved.
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1. Introduction

The motion of a 2-dimensional non-isothermal van der
Waals fluid is governed by the following Euler equations

op+V-(pu)=0 (D)
o (pu)+V-(pu®u+p)=0

[ ol )

where v:(ax,ay)T, p is the density, u:(u,v)T is

the velocity with |u|2 =u’>+V*, p is the pressure satis-
fying the following state equation

p(2.0)=—0 2 (15p), @)

T-b ¢

with 7=p™' being the specific volume, & being the
temperature, R being the perfect gas constant and a, b
being positive constants, € is the specific internal energy
given by

e(r.0) = —§+CV6', 3)

and i is the specific enthalpy given by
i=e+ pr. @)

"Project 10901107 supported by National Natural Science Foundation
of China.

Project 11101076 supported by National Natural Science Foundation
of China.

Supported by “The Shanghai Committee of Science and Technology
(11ZR1400200)”.

Copyright © 2012 SciRes.

Otherwise, according to the second law of thermody-
namics, the specific entropy S and the specific free en-
ergy f of the fluid is defined by

s=RlIn(r-b)+C,In0+C, (5)
and
f=—2_RoIn(r-b)-C,0l0 6)
T

respectively. Regarding (p,u,V,s) as independent vari-

ables and denoting U = (p,u,v,s)T s

p pu
pu PV 4P
F(U)= PV , R(U)= UV ,

and

u p 0 0

|¢/p u 0 ap(ps)p
0 0 u 0 ’
0 0 0 u
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v 0 p 0
o vo 0
1¢p 0 v ap(ps)p |

0 0 0 Y

where ¢*=0,p(p,s) is the sound speed, we can re-
write (1) as

6tF0(U)+6XF](U)+6yF2(U)=0 @)
or

oU +A(U)oU +A (U)o,U =0. ®)

When 6 e(a/4bR,27a/8bR), the state Equation (2) is
not monotonic with respect to 7, which means that there
exist 7,(0) and 7" (@) such that

0.p(r,0)<0 re (b,r* (9)) u(r* (9),+oo)

©)
0, p(r,ﬁ) >0 7€ (z; (49),2'* (49))

The fluid is in liquid phase in the region (b,z,(6)),
while it is in vapor phase in the region (r* (6). +oo) . The
region (r* (0),7 (6’)) is a highly unstable region (spi-

nodal region) where no state can be found in experiments
[2]. Due to such monotonicity, subsonic phase transitions
can be found in a van der Waals fluid, which is different
from the well-known classical nonlinear waves such as
shock waves, rarefaction waves and contact discontin-
uities.

A subsonic phase transition is a discontinuous solution
to the Euler Equation (1) with a single discontinuity,
which changes phases across the discontinuity and satis-
fies certain subsonic condition on both sides of the dis-
continuity. To explain the concept with more detail, let
us consider the following planar subsonic phase transi-
tion

U =(p.,u.,v.s.) x<ot

U (t = 10
(t,%,y) {uf(p“uwvo,a) oot (0

where p,,U,,V,,S, are constant states of the flow, o
is the constant speed of the discontinuity {X = o‘t} and
p, belong to different phases. The solution (10) satis-
fies the Rankine-Hugoniot condition

o[ R (U)]-[FR(U)]=0, (11)
and the subsonic condition
u,—o

C.

M. =

+

<1, (12)

Copyright © 2012 SciRes.

where [-] denotes the difference of a function across the
discontinuity {x=ot}, M, and ¢ =d_ p(p,,s,) are

the Mach number and the sound speed on each side of
the discontinuity {X =ot} respectively.

Due to the subsonic property (12), the well-known Lax
entropy inequality [3] is violated for subsonic phase tran-
sitions. Hence, several admissibility criteria were intro-
duced to select the physical admissible subsonic phase
transitions, among which the viscosity capillarity crit-
erion proposed by Slemrod [4] is an important one. Ever
since, for a long time, attention has been paid to isother-
mal phase transitions and related problems with numer-
ous works devoted to such topics. For problems in one
dimensional spaces, see [2,4-6] and references therein.
For problems in multi-dimensional spaces, see [7-10] and
references therein.

Compared with isothermal phase transitions, there is
much less knowledge on non-isothermal phase transi-
tions and there are fewer papers available. Slemrod [11]
and Grinfeld [12] proved the existence of traveling
waves in Lagrange coordinates by Conley index theory.
Hattori [13] considered certain cases of the Riemann
problem by the entropy rate criterion. Recently, the au-
thor [1] proved the existence and structural stability of
traveling waves by using the center manifold method, in
light of which, we can expect to reveal more insights of
multidimensional phase transitions.

The purpose of this paper is to study the multidimen-
sional stability of non-isothermal phase transitions. With
straightforward computation, we show that the corre-
sponding linearized initial boundary problem for the
planar phase transition satisfies the uniform Lopatinski
condition [14,15]. Without giving much detail, here we
briefly state the main result of this paper

Theorem 1.1 There exists v, >0 and K; > 0 de-
pending on the bounds of U, and o given in (10)and
£ given in (18), such that for 0<v<v, and 0 <K <
Ki, the (v,K)-admissible phase transition (10) is uni-
formly stable.

The definitions of the parameters v, K, £ and (v,K)-
admissible will be given in Section 2, and the uniform
stability will be described in detail in Section 4.

The paper is arranged as follows. Section 2 is a brief
recall of the viscosity capillarity criterion for phase tran-
sitions and related existence results of traveling waves. In
Section 3, we propose the main problem and prove the
stability of phase transitions in one dimensional spaces.
The multidimensional stability of phase transitions is
presented and proved in Section 4.

For the simplicity of notations, we will need the fol-
lowing quantities in the coming arguments.

R 2 (T a
p = pr ===,
T

r-b’
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a
e'=—=,e" =C,0,
T

s' =RIn(r-b),s" =C,In6+C,,

t' =—2_RoIn(r-b), " =—C,0m 0.
T
Considering the planar subsonic phase transition (10),
we denote by j=p, (ui - 0') the mass transfer flux,
and m=p,+j’z, and =€, +nz, —j’r2/2 . Then,
the Rankine-Hugoniot condition (11) and the subsonic
condition (12) can be rewritten as

[i]=0, [x]=0, [¢]=0 (13)
and
jZ

—| <1, 14
drp(rivsi) ) ( )

respectively.

2. Viscosity Capillarity Profiles

Analogue to the traveling wave method for viscous
shocks, the viscosity capillarity criterion is applied to
find the planar wave (10) which admits the existence of
the following traveling wave

u(g):u(x_‘ﬁj (15)

&

satisfying U(iroo)zUi and the Navier-Stokes equa-
tions

op+V-(pu)=0
o, (pu)+V-(pu®u+ p):stu—gZVA(p’l)

(it dov (mbe])

=W -(UV-u)-£’u-VA(p )+ exno,

where A=0; +0, is the Laplace operator, sv is the
viscosity coefficient, &” is the capillarity coefficient
and ex is the heat conductivity coefficient with £ >0,
v>0, x>0. Substituting (15) into (16) and noticing
the Rankine-Hugoniot conditions (11), we can derive the
following heteroclinic problem for the unknown func-

tions (z(£).6(¢)).
" =vijr'+n-p(r,0)-j’r

:2

N2
0 = [—%+e(r,€)+m—%rz—5 (17)

T(0) =7, O(+0)=6,,

where the prime ' denotes the derivative of a function

Copyright © 2012 SciRes.

with respectto & .

In order to deal with the above problem by the center
manifold method, we proposed the following assumption
in 1],

l:O[CLJ as C, > ,(A)

K v

which was later simplified as

1 PK (18)

K

with M being a positive constant and K = L Employ-
v

ing the Rankine-Hugoniot conditions (13), the hectero-
clinic problem (17) becomes

" =vjr'+n-p(r,0)-j’r

"2 -
o' = jKﬂ{%—;+m’—Jyrz

(19)

i2

_[_im-%ﬁ} iB(o-0.)

(T,H)(ioo)_: (7..6.).

Therefore, the admissibility of subsonic phase transi-
tions can be defined by

Definition 2.1 The planar phase transition (10) is ad-
missible if and only if the problem (19) has a solution.
The solution (r(é),&(ﬁ)) is called the viscosity capil-
larity profile, or (v,K)-profile for simplicity. The pair
(7.,6.), (z,.0,) iscalled (v,K)-admissible.

To state the existence result of (v, K )-profile, we will
need the following quantities. As usual for fixed 6 e
a/4bR,8a/27bR) , the Maxwell equilibrium
grm (0).7y ()} is defined by the equal area rule

[ p(,(6),0)- p(7,0))dr =0.

m (9)

Then there exists a unique point 7, (6) (7, (8),+»),
which satisfies that the chord connecting the points

(7.(6). p(,(0).0)) and (7, (6).p(z(6).0)) is tan-
gent to the graph of p=p(z,0) at the point
<T1 (6).p(z, (:9),0)) . Denote

jz (9) _ p(TI (9)’9)_ p(Tm (0)’9)
1 70 (0)-7,(0)
When v=K =0, the (0,0)-profile satisfies

"=n— p(z’,H)—jzz'
0'=iM(6-6.) (20)
(T,H)(ioo):(z’i,ﬁi),

which implies @ =6, . Setting 6(&)=6._, there exists

AM



676 S. Y. ZHANG

7(&;j,0.) satisfying the first equation of (20) by the
generalized equal area rule as in [8], which means

[[(n=p(z.0)-i*r)dz=0.

Moreover, for every 6 e(4a/bR,8a/27bR) and j
(0<T2 < jf(&_)), a unique pair ( (1.6.).7.(7.6. ))
can be found such that (7,6_) and (7,,6_) can be
connected by the (0,0) -profile with the parameters j
and 6 .

Based on the existence of (0,0) -profile, the following
theorem shows the existence of (v, K) -profile for small
v and small K in [1].

Theorem 2.1 For every 6_<(a/4bR,8a/27bR) and
0<7°<j’(6.), there exist v,>0, K,>0 and neighbor-

hoods J,, . 7, of T, (7 (19) (1.0))). 0

respectively, such that, for (j,v,K)eJ,x[0,v,]x[0,K,],
there are unique pair (r_,7,)e), and 6, €7, for
which (z_,6.) and (z,,6,) are (v,K)-admissible with
the parametersjand 6 .

Moreover, an additional jump condition can be derived
for (10), which plays an essential role in the study of the
stability of phase transitions. In the isothermal case [4],
due to the subsonic condition (12), the Rankine-Hugoniot
condition (11) is not sufficient to guarantee the well-
posedness of the boundary value problem for phase tran-
sitions, which is also the situation that we encounter in
the study of non-isothermal case.

By multiplying the first equation of (19) with 7'(&)
and integrating from —oo to +oo with respect to &,
we get the following jump condition on the phase
boundary

2
{f' +nr—%rz}:—va(j,0_;v,K)

@2y
-Kb(j,0;v,K)
where
a(j.6v.K)= [ (7' (£)) de,
b(i,a;v,K) [Jor(6)s' (¢)de
with ©(&£)=(0(£)-0.)/K, s'(£)=RIn(r(&)-b) and

(z(¢).0(& )) belng the (v,K)-profile with the parame-
ters jand 6.

Remark 2.1 ©(&) is a bounded function which also
possesses a uniform limitas K - 0", v —0". Indeed,
from the second equation of (19), we have

{ Ai(h(s)+@)
O(+w)=-h(z,), O(-x)=0,

where

Copyright © 2012 SciRes.

2 T 2 T

"2 -2 :2
h(z) =ﬂ—i+m’—1—r2 —[—i+n’f —1712)

Simple calculation yields

[ pin(z(¢))e" ) ag <0
= _Emﬂjh(r(év))eﬁj(g_g)dg_h(ﬁ) j>0.
When K > 0", v—> 0", ® has a uniform limit
| [ pin(E(¢))e" g i<
I:m ) - pih(F())e" ds -h () j=0,

where 7 (&) isthe (0,0)-profile.
Moreover, from the following jump conditions

[o-17]-
j2
K{eI +nr—712}+[9]=0

2

{f' +nr—j—
2

72} =—va(j,0;v,K)-Kb(j,0_;v,K).

(22)

the functions (z,,7_,6,) of (j,6,v,K) can be de-
termined by the implicity function theorem for (v,K)
near (0,0) and every (j,0_) satisfying the conditions
given in Theorem 2.1. The following identities can be
easily verified

i[7] p. 5 +%'
_. | c _.|ec cir]
[ j[Z_'] 7. E| §|+§I
O T =\ "ar [ 00| T || 5o~ mrr= |
i) | © i) | ¢ c?[7]
0 1
. _ (23)
3 (i.0.) by (J.6.)
_ c:[7] _ c:[7]
T, . T, .
ol= || &) || b (3s6)
e [y ) e |
0, - 0, -
0 0

where — denotes the value of a function for (v,K)=
(0,0) and
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Cl=-(0.p(7..0.)+J*).

3. Linearized Problems and One
Dimensional Stability

In this section, we propose the nonlinear problem for a
multidimensional subsonic phase transition and derive
the corresponding linearized problem. Then we prove the
1-dimensional stability for the linear problem.

3.1. Linearized Problems

Endow the Euler Equation (1) with the following initial
data

24
L(xy) x> (y) 29

where {X =¢)0(y)} is the initial discontinuity and p)
belong to different phases. If the initial data (24) satisfies
certain compatibility conditions, then we can expect to
construct the following multidimensional subsonic phase
transition

~ U_(txy) x<o(ty)
U(t’x’y)_{u+(t,X,Y) X>¢(t,y) (25)

UO(X’y):{SE(X»y) x<,(y)

which satisfies the following nonlinear initial boundary
value problem

61U1+A1(Ut)axU1+Az( )a U7 =0, ( )

o[ R (U)]-[F )]+, [F(U)]=0 = (t y)
[I(p,s)-i-%}:—va(j,e;v,K)—Kb(j,9;V,K), (t,y) (26)
Ui|t=o :UE(X) ¢)|l:0 =%

where the third equation is a reformulation of the jump condition (21) with | ( 2, ) =f'+pr,

J—,0+

149 v, K jJ-m
and 7(&j,v,K), 6(&),v,K) satisfying

"=vir'+n- p(r,@)— i‘r

"2 .
0'= jKﬂ{%—§+nr—%rz —[

(7.0)(x0) =(z..0.)

x=g(t,y)

-V, — g, /\/1+¢y

d§ b(j,0;v,K) j@

=

_i+nz-_ —j?zrfJJ—i- jﬂ(é’—@_).

Following [15], we introduce the following transformation to map the free boundary {X = (/)(t, y)} into a fixed

boundary {X=0}

x=+(x-9p(ty)),

+(x-gp(t,y))>0

J @7)
f=t
U(f’ X) y) (t) X’ y)
Then the problem (26) becomes
0. +(A(U.)p,A (U,)-¢1)aU, +A,(U,)o,U, =0, Xt>0
‘Pt[Fo (U )]_I:Fl (U )]‘Hﬂy[Fz (U )]:0’ x=0
2
U—g@V— (28)
I(p,s)+w =-va(j,0;v,K)-Kb(j,0;v,K), x=0
2(1+¢})
Ui t=0 :UE(X’y) (p|t:0 =%
Copyright © 2012 SciRes. AM
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where we have dropped the tildes for simplicity of nota-
tions.

Consider the perturbation, (U ,U?, of ) of the planar
phase transition (10), which satisfies the problem (26)
and (U+,U7,(p )g:o =(U,,U_,ox). Denote

(V..V.p)= dd (U U of ) . Then, the following lin-

earized problem for the unknowns (V,,V_,y) can be

derived from (26),

OV, £(AU,) -V, + AUV, = f,, xt>0
bO‘//t +b1(//y +M+V+ +M—V— = g X= 0

(V+,V7,t//)|t<0 vanish
(29)
where
Do) (vl e v,
_ O-FO'(U+)_F1 (U+)
)
_[F (U—)_O'Fo (U—)
A
with
|+=(—a'+,o— 0 au}
p+ a+
ol .00
"(a”(” ) o
U_O-_fpvoni_}/%J
0s_ 0s
and

y=v0,a+Kab, y=10, a+Kd,b.
Remark 3.1 Simple calculation yields
N rke ‘p's', o —K(rp - 0s' )
op 0s
20 _ 2
p

Noticing that the boundary conditions of (29) involve
the quantities 0;a, 8jb , 0pa and 0, b, we will

0

p', f =K@, and d,p(p,s)=Kp'.

need the following lemma to deal with these quantities.
Lemma 3.1 For all (v,K)e[0,v,]x[0,K,], the func-
tions a(j,6 ;v,K) and b(j,0_;v,K) are continuously
differentiable. Moreover, their derivatives are continuous
with respect to (v,K) at (0,0) and are bounded de-

Copyright © 2012 SciRes.

pending on the bounds of U, and o given in (10) and
the constant M given in (18). There exists « >0 such
thatforall jeJ

0
hm —a(J,0;v,K)=2a>0. 30
L (J; ) (30)
Proof. The estimate (30) is immediate from Lemma 2
in [7], once we prove the continuity of 8,a(j,6_;v,K).
Let us show the continuity of 0;a and 0;b. Differen-
tiating (21) with respect to j, we get

06, on .
_sja—j+a—j[r]—JZ[T2]=—Vaja—Kajb. 31
By Taylor’s formula, we have
s, =5, +0(1),
20
e Ll
0 0joK
2—
on 6_ om 8 T K+0( )r

G a aev aieK

where r=+v?+K? and o(l) is an infinitesimal as r
goes to zero. Substituting the above identities into (31)
and employing the calculations (23), we get

—v0;a, —Ko;b, +0(r)=-10,a-Ka,b,
which implies

o Kl;rr%oo 0,a=0;a,, 1;30’0)8jb:6j.b0.
Similar arguments yield the continuity of 0, a and
0, b as the following

lim 0,b=0,b,. O

(v.K)—(0,0)

lim 8 , =0, a,
(v.K)=(0.0 %

3.2. One Dimensional Stability

The one dimensional stability concerns the stability of
the problem (29) without terms of y-derivatives, namely,

oV. (A (U,)-cl)aV, =1, xt>0
by, + MV, + MV_=g x=0 32)
(VJr,V_,t//)|l<0 vanish.

The following theorem shows the stability of planar
phase transitions in one dimensional spaces.

Theorem 3.2 There exists K, >0 depending on the
bounds of U, and o given in (10) and the constant
£ given in (18), such that for any fixed 0<v<v, (v,
is given in Lemma 3.1.) and 0<K <K, the subsonic
phase transition (10) is stable with respect to perturba-
tions in the x-direction, which means the problem (32) is
well-posed.

Proof. The main idea of the proof is to show that the

AM



S. Y. ZHANG 679

boundary values of outgoing characteristics and the free
boundary can be determined by the boundary conditions,
for which we need to investigate the eigenvalues and the
eigenvectors of the matrix A (U,)-ol . The eigenval-
uesof A (U,)-ol are

Ai=u,-c,—0o, 4 =U,+C, —0O.
of multiplicity 1 and
A =U,-0o

of multiplicity 2. The corresponding right eigenvectors
are

r=(1,-¢,7.,0,0)", rf =(1,c,7.,0,0)'
and
i =(0,0,1,0), 15 =(~-Kp!,0,0,c2)’

respectively.
Denote by

T S +ok
Ve =V +Vy 0, + V50, + V3T

+ +

the decompositions of V, on the bases {rli,rﬂ,rzz,rf}

respectively. Since the mass transfer flux j= p, (u L= o-)
is nonzero, we assume | > 0. Then the subsonic condi-
tion (14) becomes

A <0<y <A (33)

Accordingly, we rewrite the boundary condition of (32)
as

necessary and sufficient condition for the well-posedness
of the problem (32) is that the determinant

D= det(bo,MJ;,MJ;,MJ;,M,H‘) (34)

does not vanish. Direct computation yields

[r] O .
T,T_
D=j0.CIHA 0 A A
vaja
j[r]+ -7.C, —(T_C_ +v6ja)

+0(1)K
(35)

where O(l) denotes a bounded term depending on the
bounds of U,, o given in (10) and M given in (19).
The determinant on the right side of (35) takes the value

2

ﬂﬂ;ﬂ{ —vaja(c—-+c—+j< 0
T7T, T T,

for O0<v<v, with v, giveninLemma 3.1.

Therefore, we can find K; depending on the bounds
of U,, o given in (10) and the constant £ given in
(18) such that for 0<K <K, and O0<v<v,, A the
problem (32) is well-posed. Similar arguments can be

carried out for the case j<O0. o

4. Multidimensional Stability

First let us introduce the uniform stability in [15] and
state the main result in detail. Denote by

T
v, V=(V.V)
vy and
(B M M M MU )| Vs, | |
A V (s,@,x) =—2I:ji g oyl (t,x,y)dydt
v (2n)
1
vy the Laplace-Fourier transform of V in (t,y)-variables
Vi, with Res > 0. Then, from (29) we know that V satis-
=g —(Mm*,M_ELM_rzE,M_r{) v fies
22
vy V I
} %: B(s,@)V + f 36)
X
to separate the outgoing characteristics together with the
free boundary from the incoming characteristics. The where
~(A(U.)=ol) " (sl +iwA, (U,)) 0

B(s,»)= .

Copyright © 2012 SciRes.

(A(U)-ol) " (sl +iwA, (U.))
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and
n 1A 1A \T
f=((AU)-01)" fm(AU)-a1)" £) .
Denote by {ﬂj}lj:] all the distinct eigenvalues of
B(s,®) with multiplicity being m;. Obviously, we have

_ @Ker[(ljl ~B(s,0))" }
Introduce
E* (S,a))
= {vj € Ker[(ﬂjl - B(S,a)))mj }

the space of boundary values of all bounded solutions of
the special form

Rexlj<0,1£jgl}

m;—1

l]x J X_p
Relz<0 ;) p'
to (36) with f=0

Thus, we can state the uniform stability result in detail

(l - (s,a)))pvj

V(s,@,x)=

S. Y. ZHANG

as follows

Theorem 4.1 There exist v, >0 and K, >0 de-
pending on the bounds of U, , o given in (10) and the
constant S given in (18), such that for any fixed
O<v<y, and 0<K<K, the viscosity-capillarity
admissible phase transition (10) is uniformly stable, i.e.
there is 77 >0 such that the estimate

inf |(bys+ib@) g+ MV, + MV [
\s\2+a)2:1

> (V. 4 f o)

holds for all V =(V,,V_.)eE*(s,») and peR.

(37

4.1. The Space E*(s,)

For simplicity, we shall only consider the case
j=p.(u—0)>0
and the other case j <0 can be studied similarly.

Taking the Laplace-Fourier transform on the equation
of 29) with f, =0 yields

§(u, -o) -Sp,  iawp, (u, o) Ksp.
~2 anl
% $(u,—o) —iwc] _Ksey
3\i+ 1 _ Ps _ Ps .
L=t — iwc’d? §d? iwd?Kp! |V, (3%
ox d, | ——F——= 0 —-— - S
- Ps (Ui_o-) u,-o Ps (ui_o-)
a2
0 0 0 s
u,-o
where §=s+iav, andd, = /¢ —(u, o).
As in [15], if we introduce the transformation
0 0 1 0
c. Loy Kp!
7| e 2 Nope (39)
e L ke T
\/5 + ‘/E ‘/Epici
0 0 1
then (38) is equivalent to
oz
= =+N, (s,0)Z,, 40
OX +(5:0)Z, (40)
where
S ioc, e, 0
U -o V2(u,-0)  V2(u, -0)
= iwc, B § 0 0
— +C
N, (5,0) = 2(u% o+c,) o )
* iwc, §
- 0 - 0
\/E(Ui—d C ) u,-o-¢C,
0 0 0 _S
U —-o
AM
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The eigenvalues of N, (s,@) with negative real part
for Res>0 are
§

u, -o

A=

of multiplicity 2 and

§(u, —o)-c, 35" +@’d?

dZ

A=

of multiplicity 1, where the %/ denotes the positive real
part square root of a complex value. The corresponding
eigenvectors are

e, =(0,0,0,1)", (41)

e, = (\/5§,ia)(u+ -o),—io(u, —G),O)T (42)
and
er :(—iﬁa)c+,§+ﬂ;(u+ -o-c,),
T (43)
§+2§(u+—a+c+),0)

respectively. The eigenvalue of —N_(s,®) with a ne-
gative real part for Res>0 is

. §(c-u_)-c 35’ +a’d’

= e

and the corresponding eigenvector is

N :(—i\/Ea)cfs—/l;(uf -o-c),
§—/13_(U7—U+C7),0)T.

Remark 4.1 The above eigenvalues and eigenvectors
can be continuously extended to the case Res> 0. With
a little abuse of the notation /- , we still use it to denote
those extensions of square roots appearing in the case
Res=0.

As in [15], for these vectors, we have

Proposition 4.2 (ef,,e,*z,e;,e;) are linearly inde-
pendent for |s|’ +@® =1 and Res>0 exceptat

(44)

{(5.0)8* = (v, -0)" Res>0}.

In the above cases, the following proposition help us
to find the bases of E”(s,w).

Proposition 4.3 1) If §=w(u,—o) and Re§>0,
then 4" =4 =-w and the vectors (41), (44) together
with the following eigenvectors

e, :(ﬁ,—i,i,o)T
er :(u+ ~o+c,,0,iv2(u, —a),O)T

are linearly independent.

Copyright © 2012 SciRes.

2)If §=-w(u, —o) and Re§>0,then ' =4, =w
and the vectors (41), (44) together with the following
eigenvectors

e, = (V2.-1,1,0)
e = (u+ ~o+c,,0,iv2(u, —a),O)T

are linearly independent.

As in [15], in the critical case §=0, the bases of
E*(s,w) is given by

Proposition4.41f §=0 and @ >0, then

@C
+:0’ +:__+’ o=
e )

and the corresponding eigenvectors
e, =(0,0,0,1)",

el+2 = (0717_1:0)T >

o 1i(c+—u++a) i(c,+u, —o) OT
2 ’ \/Ed+ ) \/§d+ ) )
e 1 i(c.-u_+o0) i(c.+u_-o) 0 '
3 T b \/Ed_ B \/Ed_ )

are linearly independent.
Combining the above propositions, if we naturally
expand the eigenvectors as

GGG

then the bases of E* (S,a)) are given for |S|2 +o’ =1
and Res>0.

4.2. Lopatinski Determinant

Now we can show the uniform stability of the phase
transition.

Proof of Theorem 4.1. Taking the Laplace-Fourier
transformation on the boundary condition in (29) with
g =0, multiplying it with the invertible matrix
1 0 0 00
- 1 0 00

v, 0 1 00

-, 0 v, 1 0

0 0 0 01

with q? =u’+v] and introducing the transformation

AM
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(39), we get with
Y+ MZ, +MZ =0o0nx=0, 0 YN A Kjz, p!
where \/§T+C+ \/qu c;
[p]s g A AT K
0 o0 M, = V2re, 2z, c
o i | GO
(op.+ 1) l<]s : o WA uE
([u]+7p.)s 2z, 2z, "
o A i _Kicp!
\Er_c_ \Er_c_ c
. K A KiZp!
/\N/lf) = \/Er,C, \/Erfcf c’
j 0 0 0
o v delds s el |, K[
V2r 2rc J2r 2rce h c
and
|~ =10 _ﬁ_ KT+p-:-S-:- _ﬂ1_+_ KT+p-:-54|— K esl _Krfplzsl
+ ) \/E \/§C+ > \/E \/§C+ > +9+ Cf s
- Il ~q— - Il ~q— 2 1241 ~ H ~ |
i - 0,i+ KT,P,S,_ bz ’/11__ KT,p,S,_ JZ K KT*F} S’+¢9_Sl—+7/T;J—;?0_+K7T2’p’ .
V2o Ve e N2 Ve Ve ¢’ ¢’ ¢’
To achieve the result, we need to verify the determi- N A
nant 0 ﬁz- c ﬁz- c 0
L =det(c, M./, M., Me;, Me;) (45) . 2
n 0 ! A 0
being nonzero. M = L2rc V2rc
Noticing that the eigenvector e/, remains the same in j 0 0 0
all the cases mentioned in Section 4.1, the following ~ o _ o
simplification can be made to £, 0 A_A A __TA 0
V2 are N2 Varce

L= 6, det(c, M., Mej, Me; ) +O(1)K,  (46)

where O(1) is a bounded term depending on the
bounds of U,, o givenin (10)and A givenin (19),

ﬂ; 114-

0 - - 0
J2re,  arc,

+2 +2

N 0 - A _A 0
M, = \/§T+C+ \/§z+c+ >

—j 0 0 0

Z;r ﬂ’l-#
0 - - 0

V2 V2

Copyright © 2012 SciRes.

For sufficiently small K >0, the determinant £ is
nonzero as long as the determinant

£, = det(c, Mg, Mej, Me; )

doesn’t vanish. Considering £ , one can find that it is
similar to the Lopatinski determinant for the correspond-
ing problem in the isothermal case [7,9]. Noticing Propo-
sition 4.2-4.4, we need to consider the following three
cases:

1) §#0*(u, —0) and §#0.

We obtain

AM
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4\/5j(§2—a)2(u7—0)2)
= I +(v0,a+Ko.b)ll 47
b 7 <+( ja+Kap) ) @7
where
:2
| = —J%[T]t/? +'d? 4§ +o’d? —[r]c,c s, (48)
and
w*d? jr, (§c_ +jr s +a)2d_2)
T e W e . 9)
[7] [7] s(sc +jr /s + 0?d? )
Following [9], we claim that | +10,all is nonzero for sufficiently small v >0.
In fact, when ReS§>0,if | =0, then we have
2
. . c.c .
<82+a)2df)(sz+w2df)=[mJ §*, (50)
which implies
o (d2 +d? ia)2\/ d2+d?) +4d,d (MM )7 -1
I e e R R o

2((M.M_) 7 -1)

u, -o

with M, = being the Mach numbers. From the
subsonic property (12) of the phase transition, we have
0<M, <1. Due to Re§>0, we deduce that one
should take the plus sign in (51), which is not the root of
| obviously. Thus, | is always nonzero, which gives that
there exist constants M, >0, and v, >0, such that for

any 0<v<vy,, wehave
|1-+v0,all| > M, >0. (52)

When Re§=0 with §*#o’(u, ~o)’ and §20,
we know that if §° does not equal to the right hand side
of (51) with the minus sign, then the inequality (52)
holds for any 0<wv <y, with sufficiently small v, >0.
If § satisfies (51) with the minus sign, then the term |
vanishes. However, the imaginary part of the term Il
given in (49) is nonzero, which implies that for any fixed
v >0, there is a constant M, >0 such that the inequal-
ity (52) holds as well.

Therefore, we can find v, >0 and K, >0 depend-
ing on U, and o given in (10) and the constant f
given in (18) such that £ does not vanish for
O<v<y and 0<K<K,.

2) = (u, —0).
In this case, we get

£, = 8ic, J? m(v §+ard? +T—*wc_]+0(l)7 (53)

T

for +w > 0.

Copyright © 2012 SciRes.

which is nonzero for sufficiently small v >0 and
K>0.

3) §=0.

In this case, we have

=28 (5 []-7), (54)

c.cr.7

which is also nonzero for sufficiently small v >0 and
K>0.

Therefore, combining the above arguments, we draw
the conclusion of the Theorem 4.1. i
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