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ABSTRACT 

Objects: The purpose of this study was to observe a 
correlation between PETCO2 and PaCO2 in intubated 
neonates under intermittent mandatory ventilation 
with spontaneous breathing. Material and methods: 
A total of 55 paired PETCO2 measured by mainstream 
capnometry and PaCO2 values were obtained from 4 
intubated neonates in our neonatal intensive care 
units at Nagano Children’s Hospital, Nagano, Japan. 
Results: PETCO2 and PaCO2 were significantly corre- 
lated (r2 = 0.928, p < 0.0001). For samples in venti- 
lated neonates with spontaneous breathing, maximum 
PETCO2 and mean PETCO2 correlated strongly with 
PaCO2 (maximum PETCO2: r2 = 0.9401, p < 0.0001; 
mean PETCO2: r2 = 0.8587, p < 0.0001). Although 
PaCO2 also correlated with minimum PETCO2 (r2 = 
0.2884, p < 0.01) in ventilated infants with spontane- 
ous breathing, a significant difference was seen with 
maximum PETCO2 (p < 0.05) and mean PETCO2 (p < 
0.05) in the correlation coefficient r between PaCO2 
and PETCO2. Conclusion: Present study showed that a 
good correlation exists between PETCO2 and PaCO2 
in intubated neonates under intermittent mandatory 
ventilation with spontaneous breathing. Lightweight 
with low amounts of dead space mainstream cap- 
nometry can be used as noninvasive monitor in incu- 
bated neonates with spontaneous breathing. 
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1. INTRODUCTION 

Capnography, which displays the level and waveform of 
CO2 in exhaled air, is a simple technique that appears to 
accurately indicate arterial PCO2 (PaCO2) and provides 
information on cell metabolism, blood perfusion, and 

alveolar ventilation [1-3]. The use of end-tidal CO2 
(PETCO2) for monitoring and as a tool for verifying en- 
dotracheal tube (ETT) position is another common prac- 
tice in the operating room and in adult and pediatric in- 
tensive care units [3]. This procedure was also intro- 
duced to neonatal intensive care units (NICUs), but there 
are limitations of the technique in smaller babies, espe- 
cially for extremely low birth weight infants due to is- 
sues such as the weight of sensors or water droplets 
within circuits, dead space, and leakage from tracheal 
intubation tubes. Recently, a lightweight mainstream 
capnometer was developed. We have previously reported 
a strong correlation between PETCO2 and PaCO2 under 
controlled ventilation when tidal volume/body weight 
(TV/BW) was 6 - 15 mL/kg and the leakage rate was 
<60% in rabbits. Furthermore, under conditions of 6 
mL/kg of tidal volume (TV), PaCO2 was significantly 
increased by a dead space increase of only 1 mL, repre- 
senting >7% of TV [4]. 

Capnometry is expected as one of the non-invasive 
monitor in NICUs. Although several investigators have 
demonstrated good relationships between values for 
PETCO2 and PaCO2 in infants [5-8], the value of cap- 
nometry in estimating PaCO2 has been questioned during 
anesthesia with spontaneous ventilation [9,10]. On the 
other hand, while TV is larger than spontaneous breaths, 
PETCO2 is close to the PaCO2 and to that observed with 
voluntary maximal expiration [11]. The purpose of this 
study was to observe a correlation between PETCO2 and 
PaCO2 in intubated neonates under intermittent manda- 
tory ventilation (IMV) with spontaneous breathing. 

2. MATERIAL AND METHODS 

A total of 55 paired PETCO2 and PaCO2 values were ob- 
tained from the 4 neonates who had been admitted to the 
NICU at Nagano Children’s Hospital between April and 
July 2009. Neonates deemed as non-viable by the at- 
tending physician were excluded, as were those with 
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conditions such as acute shock, infection, or hemody- 
namic instability. Before enrollment into this study, in- 
formed consent was obtained from the parents or guard- 
ian of each infant. Study subjects comprised 4 neonates. 
Mean (±standard deviation (SD)) gestational age and 
birth weight were 36.7 ± 2.1 weeks and 2446 ± 487 g, 
respectively. Data on demographics, clinical characteris- 
tics, and laboratory findings for subjects were collected 
by referring to the clinical laboratory records.  

The infants were ventilated mechanically using a time- 
cycled pressure-limited ventilator (Calliope®; Metran, 
Saitama, Japan). Peak inspiratory pressure (PIP), fraction 
of inhaled oxygen (FiO2), inspiratory time, positive end 
expiratory pressure (PEEP) and respiratory rate were 
settled to provide the optimal arterial PaO2 and PaCO2 as 
defined by the neonatologists and were not manipulated 
for the purposes of the study. 

Mainstream PETCO2 was measured via a capnograph 
connected to the proximal end of the endotracheal tube 
(Cap-One®; TG-970P, Nihon-Kohden, Tokyo, Japan). 
Data was continuously recorded on a laptop computer 
using the software programmed by LabVIEW (National 
Instruments, Texas, USA) through CO2 monitor (OLG- 
2800; Nihon-Kohden, Tokyo, Japan) each patients. We 
distinguished between spontaneous breaths and ventilator 
breaths on the basis of capnography for 20 s at the time 
of blood gas analysis. For each 20-s sample period, we 
determined the maximum, mean and minimum values of 
PETCO2 (Figure 1). Measurements of PETCO2 that did 
not show an alveolar plateau due to a large amount of 
leakage were excluded. 

The tidal volume was measured by mainstream 
capnography (CO2SMO 8100, Fukuda Denshi, Tokyo, 
Japan). The leakage ratio was calculated using the fol- 
lowing equation: 

 Inspiratory TV Expiratory TV
Leakage ratio 100

Inspiratory TV


   

Blood samples were drawn from indwelling arterial 
lines into a 0.1 mL heparinized syringe to prevent co- 
agulation. Blood sampling was performed by heel punc- 
ture when arterial line was not placed. Measurements  

were then immediately made using a bedside blood gas 
analyzer (ABL 700; Radiometer, Copenhagen, Denmark) 
for PaCO2. Blood gas analysis was performed for the 
purposes of evaluation of the patient (including PaO2, 
PaCO2, electrolytes or lactate, etc.) only. Calibrations 
were performed automatically for the blood gas analyzer 
and the accuracy of the capnography was checked by 5% 
CO2 gas cylinder. 

All statistical analyses were conducted using SPSS 
Statistics version 17.0 (SPSS, Chicago, Illinois). To de-
termine whether PETCO2 were representative of PaCO2, 
the relationship between PETCO2 and PaCO2 was ana-
lyzed by simple linear regression. The standard tech-
nique of Fisher’s Z transformation was performed to 
determine whether a significant difference existed in the 
correlation coefficient r between PaCO2 and each group 
of PETCO2. 

Furthermore, Bland-Altman plots were performed to 
assess measurements of PETCO2. Bland-Altman plots 
demonstrate “good agreement” not only when differences 
between methods are consistent across all measurements 
but also when the differences are small. In a situation in 
which the difference between measurements is expected 
to change based on a third variable, Bland-Altman plots 
lose importance. Precision of PETCO2 and the agreement 
between PETCO2 and PaCO2 were assessed by bias, SD 
and calculating the 95% confidence interval (CI) for the 
bias (bias = PETCO2 – PaCO2). Values of p < 0.05 were 
determined to be significant. 

This study was carried out under the control of the 
Ethics Committee of Medicine and Medical Care, Na-
gano Children’s Hospital, Nagano, Japan. 

3. RESULTS 

Mean TV/BW and leakage ratio were 7.3 ± 1.7 mL/kg 
and 9.5% ± 12.0%, respectively (Table 1). All patients 
were treated using sedative drugs. 

PETCO2 and PaCO2 were significantly correlated (r2 = 
0.928, p < 0.0001). In the Bland-Altman plot test, the 
mean difference (bias) and SD of the differences for  

 

A: maximum 

C: minimum

B: mean

 

Figure 1. Continuous recording of PETCO2. For each 20 s sample period, we determined 
maximum A, mean B and minimum C PETCO2. 
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Table 1. Baseline characteristics. 

Characteristics Number of patients

Sex 

Male 3 

Female 1 

Inborn/Outborn 

Inborn 3 

Outborn 1 

Underlying disease 

Congenital heart disease 2 

Intraventricular hemorrhage 1 

Perioperative management 1 

Gestational age (week) 

Mean ± SD 36.7 ± 2.1 

Range 34 - 39 

Birthweight (g) 

Mean ± SD 2446 ± 487 

Range 1778 - 2894 

Tidal volume/Body weight (mL/kg) 

Mean ± SD 7.3 ± 1.7 

Range 4.8 - 8.6 

Leakage ratio (%)  

Mean ± SD 9.5 ± 12.0 

Range 0 - 27 

 
PETCO2 was –0.88  2.69 mmHg (95% CI for the bias, 
−1.61 to –0.16 mmHg) (Figure 2). We chose the maxi- 
mum for PETCO2 on the basis of capnograms for each 20 
s period at the time of blood gas analysis. 

Due to breath-to-breath variation, we evaluated three 
measurements of PETCO2 to determine which one most 
consistently and accurately predicted PaCO2. From 55 

measurements, we have selected 24 paired PETCO2 and 
PaCO2 values which were obtained at the time when 
spontaneous breathing was present. 

For samples in ventilated infants with spontaneous 
breathing, maximum PETCO2 and mean PETCO2 corre-
lated strongly with PaCO2 (maximum PETCO2: r2 = 
0.9401, p < 0.0001; mean PETCO2: r2 = 0.8587, p < 
0.0001). Although PaCO2 also correlated with minimum 
PETCO2 (r

2 = 0.2884, p < 0.01) in ventilated infants with 
spontaneous breathing, a significant difference was seen 
with maximum PETCO2 (p < 0.05) and mean PETCO2 (p < 
0.05) in the correlation coefficient r between PaCO2 and 
PETCO2 (Figures 3(a)-(c)). 

Bland-Altman analysis showed that PETCO2 underes- 
timated PaCO2 by a mean difference (bias) of –0.175  
2.31 mmHg (95% CI for the bias, –1.15 to 0.799 mmHg) 
in the maximum PETCO2, –5.01  3.55 mmHg (95% CI 
for the bias, –6.50 to –3.51 mmHg) in mean PETCO2, and 
–14.6  8.82 mmHg (95%CI for the bias, –18.3 to –10.9 
mmHg) in minimum PETCO2 (Figures 3(d)-(f)). 

4. DISCUSSION 

Advances in the treatment of neonatal respiratory failure, 
including exogenous surfactant [12,13], inhaled nitric 
oxide (iNO) [14,15], and a growing repertoire of assisted 
ventilation strategies [16] have decreased morbidity and 
mortality rates. Patient monitoring has played a critical 
role in the safe and effective application of these ad-
vanced therapies. 

Pulse oximetry provides a noninvasive method of as- 
sessing oxygenation and continuous surveillance of the 
partial pressure of arterial oxygen [17]. Maintaining 
PaCO2 within the desired range by frequent arterial sam- 
pling can increase the need for multiple transfusions in 
the NICU [18], highlighting the need for methods of 
continuous non-invasive monitoring of CO2 levels. Both 
hypocarbia and hypercarbia are detrimental to extremely 
low birth weight infants and have been implicated as 
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Figure 2. The relationship between PETCO2 and PaCO2 (a) and Bland-Altman plot shows bias against average values of PETCO2 and 
PaCO2 in ventilated infants (b). PETCO2 and PaCO2 were significantly correlated (r2 = 0.928, p < 0.0001). 
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Figure 3. The relationship between PETCO2 and PaCO2 (a), (b) and (c) and Bland-Altman plot shows bias against average 
values of PETCO2 and PaCO2 in ventilated infants with spontaneous breathing (d), (e) and (f). Maximum PETCO2 and mean 
PETCO2 correlated strongly with PaCO2. Conversely, PaCO2 did not correlate with minimum PETCO2. 

 
causative factors in periventricular leukomalacia, intra- 
ventricular hemorrhage and chronic lung disease [19-21]. 
Critical event analyses have documented that hypoxemia 
secondary to depressed respiratory activity is a principal 
risk factor for near misses and death [22,23]. 

Monitoring of PETCO2 is a simple and noninvasive 
technique that appears to accurately indicate PaCO2 in a 
variety of clinical situations [1,24]. However, levels of 
PETCO2 and PaCO2 depend on ventilation, cardiac output, 
CO2 output, and pulmonary function; a change in any of 
these will cause a change in PETCO2 [25]. For instance, a 
growing degree of difference between PETCO2 and 
PaCO2 can indicate the severity of pulmonary embolism 
[26] or even the effects of thrombolytic therapy [27]. 

PETCO2 varied appreciably from breath to breath. The 
reliability of this value under conditions of significant 
ventilation perfusion inequality or heterogeneous tidal 
volumes has thus been questioned [28]. In many cases, 
spontaneous breaths of variable tidal volumes far out- 
numbered ventilator breaths, but still contributed rela-
tively little to alveolar minute ventilation. We found that 
maximum PETCO2 during each sampling period showed 
the best correlation with PaCO2. A number of investiga-
tors have suggested that larger tidal volumes are neces-
sary to measure PETCO2 accurately, as small (e.g., spon-
taneous) breaths may fail to “wash out” the anatomic 
dead space [11,29]. 

Weinger et al. [30] also found a wide range in differ-
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ences between PETCO2 and PaCO2 over time. However, 
they measured mean peak PETCO2 over a period of 8 min. 
Although averaging maximal PETCO2 values over a 
longer time span might improve the stability and reliabil-
ity of PaCO2-PETCO2, assessing the respiratory status to 
measure PETCO2 over a long time would be difficult. The 
respiratory apparatus might change second to second.  

Takano et al. [31] reported that reliable PETCO2 was 
obtained when a vital capacity maneuver was performed 
on each nonintubeted patient, indicating that full expira- 
tion to the maximal expiratory position is necessary for 
precise estimation of PaCO2. 

Comparison with spontaneous breathing, end tidal 
CO2 measured from ventilated breath is close to the 
PaCO2 and to that observed with a voluntary maximal 
expiration. This PCO2 gradient between ventilator and 
spontaneous breathing indicates a large dead-space to 
tidal volume ratio; much of the expired CO2 appearing 
with spontaneous breathing is diluted, with dead space 
air lowering the concentration at any point during expira-
tion. 

Although our prospective observational study revealed 
a good correlation and agreement between PaCO2 and 
maximum PETCO2, the present study included only a 
very small number of participants, and the conditions of 
patients were not constant. Furthermore, in children with 
congenital cyanotic heart disease, right-to-left intracardiac 
shunting reportedly causes an obligatory difference be- 
tween PaCO2 and PETCO2 [32,33]. Our subjects included 
patients with congenital heart disease because they 
showed stable cardiorespiratory status in this study.  

This study consisted of only a small number of parti- 
cipants, the statistical implications of repeated measure-
ments in the same infants, and the conditions of the cases 
were not constant. In addition, we did not adjust for car-
diac output their measurements, though differences in 
cardiac output are known to affect PETCO2 measurements 
[25]. Therefore, we would like to study these issues in 
the future. 

5. CONCLUSION 

Our results indicate that a good correlation exists be- 
tween PETCO2 and PaCO2 in intubated neonates under 
intermittent mandatory ventilation with spontaneous brea- 
thing. Furthermore, maximum PETCO2 correlated strongly 
with PaCO2 compared to minimum PETCO2. Lightweight 
with low amounts of dead space mainstream capnometry 
can be used as noninvasive monitor in incubated neo-
nates with spontaneous breathing. 
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