
Journal of Software Engineering and Applications, 2012, 5, 483-491
http://dx.doi.org/10.4236/jsea.2012.57056 Published Online July 2012 (http://www.SciRP.org/journal/jsea)

483

State Based Static and Dynamic Formal Analysis of UML
State Diagrams

Fahad Alhumaidan

Department of Computer Science, College of Computer Sciences and Information Technology, King Faisal University, Hofuf, KSA.
Email: falhumaidan@kfu.edu.sa

Received March 28th, 2012; revised April 25th, 2012; accepted May 11th, 2012

ABSTRACT

Design and specification is a serious issue in software engineering because of the semantics involved in transforming
the real world problems to computer software systems. Unified Modeling Language (UML) has been accepted as a de
facto standard for design and specification of object oriented systems. Unfortunately, UML structures lack defining se-
mantics of a system. Formal methods are proved powerful, particularly, at requirement specification and design level.
For a moment, formal methods are not welcomed because of much use of mathematics in formal languages. Therefore,
a linkage between UML and formal methods is required to overcome the above deficiencies. In this paper, a new ap-
proach is developed by integrating UML and Z specification focusing on state diagram considering both the syntax and
semantics. It is believed that this new approach will be effective and useful both at academics and industrial level. The
resultant formal models of the approach are analyzed and validated using Z/Eves tool.

Keywords: UML; State Diagram; Formal Methods; Z Notation; Validation and Verification

1. Introduction

In software engineering, requirements analysis and design
specification is a challenging task because transformation
of real world issues to verifiable computer models has
made it a really hard problem. Formal description of sys-
tem’s requirements plays a vital role at initial phases of
software engineering. Formal specification is the mathe-
matical description of a system that may be used to con-
struct the consistent system in a systematic and unambi-
guous way. If we are able to describe formal specification
of a system then it can easily be proved and demonstrated
the correctness of the required system using computer
verification tools. Formal description of a system has
obvious advantages over the existing traditional ap-
proaches, for example, an incorrect and inconsistent de-
sign can be changed and modified before its implementa-
tion reducing the software construction cost. Formal
methods, based on discrete mathematics such as logic, set
theory or graphs, are mathematical techniques used to
describe formal description ensuring quality of software
systems. But formal methods are not as used at industrial
level as their benefits are observed. This is because, for a
moment, the software industry people do not have much
mathematical background as required in real software
engineering.

The Unified Modeling Language (UML) is a standard

set of notations and diagrams for specifying, visualizing
and constructing artifacts of software systems as well as
for business modeling and other non-software systems [1].
UML is a multi-lingual graph based de facto standard used
for design and development of object oriented (OO) sys-
tems, despite the fact that its semantics is still semi-formal
and allows ambiguities in design of a system [2]. Fol-
lowing are few major issues in modeling using UML
diagrams being hybrid and visual language:
 UML structures are based on graphical notations and

are prone to causing errors.
 The hidden semantics of UML allow ambiguities at the

design level of computer software systems.
 The same system needed to be developed can be de-

scribed by multiple notations or diagrams which may
cause inconsistency or ambiguity in design of it.

 UML model may have multiple interpretations that
means, the recipient of the design may not find what
the author(s) has put in the diagrams.

To overcome the above issues, modeling power of
UML can be enhanced by defining semantic rules in a
formal way for the diagrams used in design of a system [3].
This is because, unfortunately, much of the UML struc-
tures are based on graphical notations having informal or
semi-formal definitions which are prone to cause errors [4]
as mentioned above. As a result, there is need of forma-

Copyright © 2012 SciRes. JSEA

http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Mathematics
http://en.wikipedia.org/wiki/Specification

State Based Static and Dynamic Formal Analysis of UML State Diagrams 484

lizing UML diagrams to get full benefit at design level
capturing complete functionality of the system to be de-
veloped. This integration of formal notations and UML
diagrams will result an approach for complete, consistent
and correct modeling of a system. Z notation is a formal
language, having computer tool support, used to describe
and analyze the systems increasing confidence at an ab-
stract level of specification. In this paper, state diagram is
transformed to Z specification following syntax and se-
mantics rules for modeling of statics and dynamics of a
system. This work is part of our ongoing project on inte-
gration UML and formal methods [5]. There exists a few
work formalizing UML and formal methods presented in
the next section in which mostly it is focused on syntax of
the diagrams. In our work, instead of defining only syn-
tactical mapping between UML and Z we have proposed
and developed a conceptual model by capturing its se-
mantics hidden under the diagrams. The major objectives
of this research are:
 Identifying and proposing an integration of UML and

formal approaches to be useful in modeling of com-
plex software systems

 Investigating and providing syntactical and seman-
tics-based relationships between most commonly used
UML diagrams and Z notation

 Analyzing and proving correctness of the proposed
integration of above approaches

 Developing an approach to provide an automated tool
support to transform the UML abstract models to Z
specification

For rest of the paper: In Section 2, related work is dis-
cussed. Approach used is presented in Section 3. Integra-
tion of state diagram and Z notation is given in Section 4.
Finally conclusion and future work are discussed in Sec-
tion 5.

2. Related Work

Although there exits a lot of work [6-10] on integration of
approaches but there does not exists much work on linking
UML diagrams with formal approaches. This is because
the hidden semantics under the UML diagrams cannot be
transformed easily into formal notations. It is mentioned
that only closely related work is discussed in this section.
For example, [11] have developed Alloy Constraint Ana-
lyzer tool supporting the description of a system whose
state space involves relational structures which are com-
plex in nature. By the tool it is possible to analyze and
develop a model by investigating the consequences of
given constraints by an incremental approach. An ap-
proach is demonstrated using XML which is in fact a
transformation tool to analyze visualize Timed Commu-
nicating Object Z (TCOZ) models into various UML
diagrams animating specification with a multi-paradigm

programming language as discussed in [12]. It is de-
scribed a way of creating tables and SQL code for Z
specifications according to UML diagrams in [13]. A case
study is discussed by a formal verification method for
Cooperative Composition Modeling Language (CCML)
in [14]. In another work, a relationship is investigated
between Petri-nets and Z notation in [15]. An integration
of B and UML is presented in [16]. It is investigated the
reliability issues using fuzzy logic and petri-nets in [17].
The mathematical induction technique is used to prove
correctness of recursive programs in [18]. Formalization
of the UML is proposed by focusing on basic constructs of
class structures by taking simple case studies in [19]. A
tool is developed in [20] which takes UML class diagram
in the form of petal files, ASCII format files generated by
Rational Rose, and evaluates it automatically and pro-
duces a list of comments. Activity model is proposed by
ontology based formal method in [21]. A comparison of
UML, state-charts, Z, petri nets and fuzzy logic is pre-
sented by taking a simple case study on commerce system
in [22]. Some other work is listed in [23-25].

3. Tools and Methods

An introduction to approaches used in this research is
presented. First merits and demerits of UML are listed.
Then introduction to formal methods is given. The rea-
soning of formalizing UML with Z specification is pro-
vided.

3.1. UML

UML has various benefits for modeling of systems. For
example, UML is a semi-formal language in which each
element of the language is strongly defined [26]. That is
you are confident when modeling a particular facet of a
system, it will not be misleading. UML is a concise and
easy to understand language [27]. The entire language is
made up of simple and straightforward concepts and no-
tations. It is comprehensive language and describes all
important aspect of a system. Although UML is not a
formal language but it has enough expressive power to
handle massive and complex systems [28]. It is the result
of best practices in modeling of systems using object-
oriented concepts and has proved a successful modeling
practice. UML has become a de facto standard for mod-
eling of systems using object oriented technology [29].

Despite the above benefits, UML lacks with some im-
portant concepts and for a moment cannot be used for the
complete design and specification of a system [4]. For
example, UML lacks formal semantics. Meanings are
hidden under diagrams which create ambiguities and
misinterpretations at the implementations level. That is
why integration of UML with formal languages is re-
quired.

Copyright © 2012 SciRes. JSEA

State Based Static and Dynamic Formal Analysis of UML State Diagrams 485

3.2. Formal Approaches

Formal methods are based on mathematical techniques
and notations for specification, development and verifi-
cation of software systems particularly in the area of
software engineering [30]. Use of formal methods for
software design is motivated by the belief that appropriate
mathematical analysis can contribute to the reliability and
robustness of software design [31]. In addition, the use of
formal methods in the development of high integrity
safety or security systems is highly recommended [32].
Formal methods can be used at different levels of mod-
eling and specification [33] as described below.
 At a basic level of applying formal methods, formal

specification may be described and then program can
be developed in an informal way. This is assumed as
most cost-effective option in applications of formal
methods for systems development.

 Formal development and verification may be used to
produce a program in a formal manner. At this level of
applications, proofs of properties from the specifi-
cation to a program may be conducted. This is con-
sidered as most appropriate level of applications in
high integrity systems including safety or security
systems.

 Theorem proving techniques can be used to conduct
proofs which are fully machine checked in a formal
manner. Of course this is expensive way but is only
applied if the cost of failure is high.

Formal methods may be classified in terms of property
oriented and model oriented methods [34]. Property ori-
ented methods are used to describe software in terms of
properties, constraints and invariants whereas model ori-
ented methods are used to construct a model of a system
[35]. Although there are various tools and techniques
available for formal notations but at the current stage of
their development in formal methods, it needs an integra-
tion of formal techniques and traditional approaches for
the complete design and description of a system.

3.3. Z Notation

Z notation is a model oriented specification language
based on set theory and first order predicate logic used at
an abstract level [36]. In this research, Z is selected to link
with UML because of a natural relationship which exists
between these approaches. The Z is based upon set theory
including standard set operators, comprehensions, Carte-
sian products and power sets. On the other hand, the logic
of Z is formulated using first order predicate calculus. Z
allows organizing a system into smaller components
known as schemas which are helpful at design level for
managing a system. The schema also defines a way in
which the state of a system can be described and hence can
be used for modeling the dynamics of a system as well. A

promising aspect of Z is its stepwise refinement that is
verifiable and can be used from an abstraction into an
executable code.

3.4. Z/Eves Tools

The Z/Eves is used in this research because it is one of the
powerful tools used for the analysis of Z specification [37].
The Z/Eves mathematical toolkit includes the declaration
of all the constants of the standard mathematical toolkit
and provides useful theorems about these constants. The
Z/Eves is used to analyze the system’s schema expansion,
precondition calculation domain checking, syntax and
type checking, and general theorem proving. Any speci-
fication written in a formal notation does not mean that it
is correct, complete and meaningful. It is user responsi-
bility to make an appropriate use of the tools insuring
correctness of the model. The remarkable feature of for-
mal specifications which outclass all other traditional
means of informal specification is that a formal specifi-
cation can be checked and analyzed for the presence of
typographical and syntactical errors. The Z/Eves tool
provides various exploration techniques to prove the
properties of the system.

4. State Based Formal Analysis

In this section, formal analysis of UML state diagram is
presented. At first, approach used in this research is dis-
cussed. Then dynamic behavior is described based on the
static definition of state diagram.

4.1. Proposed Approach

Although formal methods have a well-defined syntax and
semantics but these are at the early stage of development
and, hence, it needs an integrated tool support for the
complete and consistent development of software systems.
UML has become a de facto standard for design of object
oriented systems. Therefore, it needs to define a rela-
tionship between UML diagrams and formal techniques
which is analyzed and established in this research.

Some important fundamentals including use cases,
class diagrams, sequence diagrams, state machine, will
be selected for linking with formal approaches enhancing
the modeling power of complex systems. In this way,
UML will be extended by applying Z notation syntactic-
cally and semantically. A mapping defining relationship
between these approaches will be established to be useful
for correct and complete modeling of systems. The re-
sultant formal models of the approach will be verified
and validated using Z/Eves toolset. The proposed theory
will be applied to some real World problem proving its
effectiveness. The overall process of formalization and
validation is shown in Figure 1.

Copyright © 2012 SciRes. JSEA

http://en.wikipedia.org/wiki/Formal_specification
http://en.wikipedia.org/wiki/Formal_verification
http://en.wikipedia.org/wiki/Formal_verification
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Safety
http://en.wikipedia.org/wiki/Security
http://en.wikipedia.org/wiki/Formal_specification
http://en.wikipedia.org/wiki/Formal_specification
http://en.wikipedia.org/wiki/Formal_development
http://en.wikipedia.org/wiki/Formal_specification
http://en.wikipedia.org/wiki/Formal_specification
http://en.wikipedia.org/wiki/Safety
http://en.wikipedia.org/wiki/Security

State Based Static and Dynamic Formal Analysis of UML State Diagrams 486

Figure 1. Proposed integration of UML and formal meth-
ods.

4.2. Formal Models

A set of definitions used in the formal model is presented
in this section. The state identifier and event are repre-
sented as S and Event respectively both as set types. For
simple specification, the basic set types are used. In the
definition of a transition from one state to another the
guard is defined as a Boolean type. A state can have three
possible values that are active, passive or null represented
as Active, Passive and null respectively. The type of state
can be simple, concurrent, non-concurrent, initial or final.

[S, Event]
Boolean ::= True False
Status ::= Active Passive Null
Type ::=Simple Concurent Nonconcurent Initial
 Final

In modeling using sets, we do not impose any restric-
tion upon the number of elements and a high level of
abstraction is supposed. Further, we do not insist upon any
effective procedure for deciding whether an arbitrary
element is a member of the given collection or not. As a
consequent, our sets S and Event are sets over which we
cannot define any operation of set theory. For example,
cardinality to know the number of elements in a set cannot
be defined. Similarly, the subset, union, intersection or
complement operations over the sets are not defined.

The state diagram is a collection of states related by
certain types of relations. In the definition of a state, state
identifier, its type, status and set of regions is required.
Region is defined as a power set of sequence of states. The
state is represented by a schema which consists of four

components described above. All these components are
encapsulated and put in the Schema State given below.
The invariants over the schema are defined in the second
part of schema.

È_State______________________
®name: S
®type: Type
®status: Status
®regions: F (seq S)
Ç_______________
®regions = 0 Þ type = Simple
®# regions = 1 Þ type = Nonconcurent
®# regions > 1 Þ type = Concurent
Ð__________________________

Invariants:
 In the state diagram, if there is no region in a state then

it is a simple state.
 If there is exactly one region in a state then it is termed

as non-concurrent composite state.
 If there are two or more regions in a state then it is

concurrent composite state.
The collection of states is represented by the schema

States which consists of four variables. The mapping
substates from State to power set of State describes type
of a state.

È_States______________________
®start: State
®states: F State
®substates: State § F State
®target: State
Ç_______________
®start ä states
®start ë target
®start ä dom substates
®states ë 0
®As: State | s e dom substates ¥ s e states
®As: State | s e states ¥ s ë start ¦ s ë target ¦ s . typ
ë ®Simple Þ s e dom substates
®target ä states
®target ä dom substates
Ð__________________________

Invariants:
 The start state is not in the collection of states.
 The start state is not the target state.
 The start state does not belong to domain of substates

mapping that is it has no sub-state.
 The set of states is non-empty.
 For any state, s, if it is in the states and is not the start

or target state and not the simple state then it belongs
to domain of sub-states.

 The target state does not belong to states.
 The target state of the state diagram does not belong to

domain of the sub-states.
To move from one state to another, a transition must be

Copyright © 2012 SciRes. JSEA

State Based Static and Dynamic Formal Analysis of UML State Diagrams 487

fired. The transition consists of three components that are
event, guard and action. Action is, in fact, a sequence of
events in the definition of the transition. The transition is
defined by a schema Transition in Z notation which con-
sists of three variables which are event, guard and action
as given blow.

È_Transition____________________
®event: Event
®guard: Boolean
®action: seq Event
Ð__________________________

The complete state diagram is represented by the
schema StateDiagram as given below. The schema con-
sists of set of states of all possible events and the transition
function. The transition function takes a state and se-
quence of events and returns a new state.

È_StateDiagram__________________
®States
®events: F Event
®transitions: State x Transition § State
Ç_______________
®As1: State | s1 e states ¦ s1 . type ë Final
® ¥ Es2: State; tran: Transition | (s2, tran) e dom
®transitions ¥ s1 = s2
®As3: State; tran: Transition | (s3, tran) e dom transi-
tions
® ¥ Es4: State | s4 e states ¥ s3 = s4
®Aev: Event | ev e events
® ¥ Es1, s2: State; tran: Transition
® | (s1, tran) e dom transitions
® ¦ s2 e ran transitions ¦ transitions (s1, tran) =
s2
® ¥ ev = tran . event v ev e ran tran . action
®As3, s4: State; tran: Transition
® | (s3, tran) e dom transitions
® ¦ s4 e ran transitions ¦ transitions (s3, tran) =
s4
® ¥ Eev: Event | ev e events ¥ ev = tran . event v ev
e ® ran tran . action
®As5: State; tran: Transition
® | (s5, tran) e dom transitions ¦ s5 . type ë Final
® ¥ Es6: State | s6 e states ¥ transitions (s5, tran)
= s6
Ð__________________________

Invariants:
 For every non final state in the state diagram, there is a

transition which can be fired over it.
 For every state over which a transition is fired, it must

be in the collection of states of the state diagram.
 For every event in the set of possible events, there

must be two states and a transition over these states
such that the event is in the transition and it is included
in the sequence of events called action which must be
executed after the guard condition of the transition is

true.
 For any two states s1 and s2, there exists an event e

such that transitions (s1, e) = s2.
 For every non-final state there is a transition which

acts on it and results a new state, that is, the transition
function is defined over every non-final state.

In the state diagram, it is possible that when a transition
is fired, it may result the same state. The reflexive relation
is satisfied over such states. That means there exists a
collection of states in the state diagram over which the
reflexive relation is required to be defined. Similarly, it is
also possible that when a transition is fired from one state
s1 to another state s2 there exists an inverse transition
which can be fired from s2 to s1 that is there exists a
collection of states over which the symmetric relation is
defined. Finally, when a transition is fired from one state
s1 to another state s2 and then a new transition is fired
from s2 to s3 then a composite transition can be fired from
s1 to s3 that is the transitive relation exits over the state
diagram.

All of these possible relations are defined by a schema
StatesRelations given below. The schema consists of four
components that are state diagram, reflexive, symmetric
and transitive relations. All of these components are put in
the first part and invariants are defined over the relations
in the second part of the schema for the well-defined-ness.

È_StatesRelations________________
®StateDiagram
®reflexive: State j State
®symmetric: State j State
®transitive: State j State
Ç_______________

®As: State | s e states
® ¥ (s, s) e reflexive
® Û (Etran: Transition | (s, tran) e dom transi-
tions
® ¥ transitions (s, tran) = s)
®As1, s2: State | s1 e states ¦ s2 e states
® ¥ (s1, s2) e symmetric
® Û (Etran1, tran2: Transition
® | (s1, tran1) e dom transitions ¦ (s2,
tran2) e ®dom transitions ¥ transitions (s1, tran1)
= s2 ¦ tran ®sitions (s2, tran2) = s1)
®As1, s3: State | s1 e states ¦ s3 e states
® ¥ (s1, s3) e transitiveÛ (Es2: State; tran1, tran2:
®Transition | (s1, tran1) e dom transitions ¦ s2 e
states
® ¦ (s2, tran2) e dom transitions
¥ transitions ®(s1, tran1) = s2 ¦ transitions
(s2, tran2) = s3)
Ð__________________________

Invariants:
 For a state in the collection of states, the relation is

Copyright © 2012 SciRes. JSEA

State Based Static and Dynamic Formal Analysis of UML State Diagrams 488

reflexive over it if there exists a transition which re-
sults the same state after firing the transition.

 Two states are in the collection of symmetric states if
there exists two transitions where each one is an in-
verse of the other.

 A state is in the collection of transitive states if it is one
of the three states over which transitivity is defined to
describe the transitive relations.

To identify and define the loops, sub-states and super-
states a schema ComputingStates is described below. The
schema consists of five components namely state dia-
gram, input state, loops, sub-states and super-states. The
state diagram is given as input in the schema for all the
functions computing loops, sub-states and super-states of
a given state. The loops variable returns all the states
over which transition function returns the same state. The
subs! variable computes all the possible sub-states, if
exist, of a given state. And similarly the sups! variable
evaluates all the possible super-states, if exist, of a given
state.

È_ComputingStates_______________
®StateDiagram
®state?: State
®loops!: F State
®subs!, sups!: F State
Ç_______________

®state? e states
®loops!
® = { s: State; tran: Transition
® | (s, tran) e dom transitions ¦ transitions (s, tran)
= s ¥s}
®subs! = { s: State; tran: Transition
® | (state?, tran) e dom transitions ¦ transitions
®(state?, tran) = s ¥ s }
Ð_________________________

Invariants:
 The input state must belong to collection of all the

states of the state diagram.
 The loops are computed by taking a state and the

transitions which return the same state.
 The sub-states of a given state are calculated by using

the recursive definition of the transition function.
 The super-states of a given state are calculated by

using the recursive definition of the inverse of the
sequence of transition functions by changing the
source and target states with each other.

In this section, a sequence of possible transitions and
events of the state diagram is described when moving
from one state to another of the diagram. The specifica-
tion is given using the schema Protocol which consists of
four components named as state diagram, sequence of
transitions, start state and target state. From start state the
protocol is initiated, at end state it is ended. And the se-

quence of transitions is used to move from start to end
state. The algorithm of moving from start to final state is
given below in addition to few invariants required.

È_Protocol___________________
®StateDiagram
®protocol: seq Transition
®start: State
®target: State
Ç_______________

®start e states ¦ target e states ¦ 1 ø # protocol
®Es: State; tran: Transition; evts: seq Event
® | (start, tran) e dom transitions
® ¦ transitions (start, tran) = s ¦ tran . guard = True
® ¦ start . status = Active ¦ s . status = Passive
® ¦ 1 ø # evts ¦ tran . event = evts 1
® ¦ (Ai: N | i e 1 .. # evts - 1 ¦ i + 1 ø # evts
® ¥ ((tran . action, i) e applies$to
® ¦ evts (i + 1) = tran . action i)) ¥ protocol 1 =
tran
®Ai: N | i e dom protocol ¦ 2 ø i ¦ i ø # protocol - 1
® ¥ Es1, s2: State; tran: Transition; evts: seq Event
® |(s1, tran) e dom transitions ¦ transitions (s1,
tran) = s2
® ¦ tran . guard = True ¦ 1 ø # evts¦ tran . event = evts 1
® ¦ (Ai: N | i e 1 .. # evts - 1 ¦ i + 1 ø # evts
® ¥ ((tran . action, i) e applies$to
® ¦ evts (i + 1) = tran . action i)) ¥ protocol i = tran
®Es: State; tran: Transition; evts: seq Event
® |(s, tran) e dom transitions¦ transitions (s, tran) =
target
® ¦ tran . guard = True ¦ s . status = Active
® ¦ target . status = Passive ¦ 1 ø # evts
® ¦ tran . event = evts 1 ¦ (Ai: N | i e 1 .. # evts - 1 ¦ i
®+ 1 ø # evts ¥ ((tran . action, i) e applies$to
®¦ evts (i+1)= tran .action i)) ¥protocol (# protocol) =
tran
Ð_________________________

Invariants:
 The start state is in collection of states of the dia-

gram.
 The target state belongs to the collection of the

states.
 There exists a transition which takes start state and a

sequence of events and returns the next possible state.
 There exists a sequence of transition(s) possibly

single transition which takes state next to start state and
traverses to reach the state previous to the target state.
 There exists a transition which takes the state pre-

vious to target and returns the target state.
As there may exist many ways of reaching from start

to target state depending upon the input of events. It
means, it needs to describe all the possible ways in mov-
ing from start to target state. For this purpose a new

Copyright © 2012 SciRes. JSEA

State Based Static and Dynamic Formal Analysis of UML State Diagrams 489

schema Protocols of type power set of Protocol is de-
fined. The schema describes the possible ways by using a
recursive definition of the Protocol schema as given be-
low.

È_Protocols____________________
®protocols: F Protocol
Ç_______________
®Apr: Protocol | pr e protocols ¦ pr . protocol
® e F (Z x :action: P (Z x Event); event: Event;
guard: ®Booleanò) ¥ pr . start e pr . states ¦ pr . tar-
get e pr . ®states ¦ 1 ø # pr . protocol
®Apr: Protocol | pr e protocols ¦ pr . protocol
® e F (Z x :action: P (Z x Event); event: Event;
guard: ®Booleanò) ¥ Es: State; tran: Transition; evts:
seq Event
® | (pr . start, tran) e dom pr . transitions
® ¦ (pr . transitions, (pr . start, tran)) e applies$to
® ¦ pr . transitions (pr . start, tran) = s
® ¦ tran . guard = True ¦ pr . start . status = Active
® ¦ s . status = Passive ¦ 1 ø # evts ¦ tran . event = evts 1
® ¦ (Ai: N | i e 1 .. # evts - 1 ¦ i + 1 ø # evts
® ¥ ((tran . action, i) e applies$to
® ¦ evts (i + 1) = tran . action i)) ¥ pr . protocol 1 =
tran
®Apr: Protocol | pr e protocols ¦ pr . protocol
® e F (Z x :action: P (Z x Event); event: Event; guard:
®Booleanò)
® ¥ Ai: N | i e dom pr . protocol ¦ 2 ø i ¦ i ø # pr .
®protocol - 1 ¥Es1,s2:State;tran:Transition; evts: seq Event
® | (s1, tran) e dom pr . transitions
® ¦ pr . transitions (s1, tran) = s2 ¦ tran . guard =
True
® ¦ 1 ø # evts ¦ tran . event = evts 1
® ¦ (Ai: N | i e 1 .. # evts - 1 ¦ i + 1 ø # evts
® ¥ ((tran . action, i) e applies$to
® ¦ evts (i + 1) = tran . action i)) ¥ pr . protocol i =
tran
Ð__________________________

Invariants:
 For a protocol, there exists a transition and sequence of

events which take start to the next possible state.
 There exists a sequence of transition(s) and sequence

of sequence of events which traverses all the possible
states except the start and target states.

 For each protocol, there exists a transition and se-
quence of events which reaches to the target state
based on the above recursive definition of protocol.

5. Conclusion and Future Work

Unified Modeling Language (UML) is used at initial
phases because of having much support of diagrams
whereas formal methods are useful at the later stages of
software development because of having rigorous mathe-
matical and computer tools support. In this way, UML and

Formal Methods are both useful for design and specifica-
tion of software systems therefore integration of these
approaches was required for a systematic development.
To facilitate the software development process an auto-
matic generation of specification from diagrams will be
much useful to capture the hidden semantics under the
UML diagrams. In this research, UML state diagram is
linked and formalized using Z achieving above objective.
The most relevant work [38-40] was considered as start-
ing point for this research. In addition to above following
benefits are observed: 1) An approach is developed by
linking UML to Z notation by defining a relationship
among fundamentals of these semi-formal and formal
techniques; 2) The reusability issue is addressed by de-
fining the components and developing recursive approach
to be useful easing the development process; 3) The re-
sultant approach will be useful in the systems develop-
ment and construction of automated tools for generating
specification from the UML state diagram; 4) Mostly,
students use UML for designing the projects, this new
approach will facilitate them to improve the design at
initial stages of their project development.

The research work on formalization of some other
important diagrams, using Z notation, of UML including
use case and sequence diagrams is in process and will
appear soon.

6. Acknowledgements

I would like to acknowledge Software Engineering Re-
search Group at the Department of Computer Science,
King Faisal University, for their valuable comments.

REFERENCES
[1] B. Akbarpour, S. Tahar and A. Dekdouk, “Formalization

of Cadence SPW Fixed-Point Arithmetic in HOL,”
Formal Methods in System Design, Vol. 27, 2005, pp.
173-200. doi:10.1007/s10703-005-2256-8

[2] N. H. Ali, Z. Shukur and S. Idris, “A Design of an
Assessment System for UML Class Diagram,” Inter-
national Conference on Computational Science and App-
lications, Kuala Lumpur, 26-29 August 2007, pp. 539-
546.

[3] K. Araki, A. Galloway and K. Taguchi, “Using a Process
Algebra to Control B Operations,” Proceedings of 1st
International Conference on Integrated Formal Methods,
Springer-Verlag, London, 1999, pp. 437-456.

[4] H. Beek, A. Fantechi, S. Gnesi and F. Mazzanti, “State/
Event-Based Software Model Checking,” Proceedings of
4th International Conference on Integrated Formal Me-
thods, Springer, Canterbury, Vol. 2999, 2004, pp. 128-
147.

[5] M. Bo, W. Huang and J. Qin, “Automatic Verification of
Security Properties of Remote Internet Voting Protocol in
Symbolic Model,” Information Technology Journal, Vol.

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1007/s10703-005-2256-8

State Based Static and Dynamic Formal Analysis of UML State Diagrams 490

9, No. 8, 2010, pp. 1521-1556.
doi:10.3923/itj.2010.1521.1556

[6] R. Borges and A. Mota, “Integrating UML and Formal
Methods,” Electronic Notes in Theoretical Computer
Science, Vol. 84, 2003, pp. 97-112.

[7] M. Brendan and J. S. Dong, “Blending Object-Z and
Timed CSP: An Introduction to TCOZ,” Proceedings of
International Conference on Software Engineering, Kyoto,
19-25 April 1998, pp. 95-104.

[8] W. S. Changchien, J. J. Shen and T. Y. Lin, “A Preli-
minary Correctness Evaluation Model of Object-Oriented
Software Based on UML,” Journal of Applied Sciences,
Vol. 2, No. 3, 2002, pp. 356-365.
doi:10.3923/jas.2002.356.365

[9] A. Dennis, B. H. Wixom and D. Tegarden, “Systems
Analysis and Design with UML,” 3rd Edition, Wiley,
New York, 2005, 576 p.

[10] Z. Derakhshandeh, B. T. Ladani and N. Nematbakhsh,
“Modeling and Combining Access Control Policies Using
Constrained Policy Graph,” Journal of Applied Sciences,
Vol. 8, 2008, pp. 3561-3571.
doi:10.3923/jas.2008.3561.3571

[11] J. Derrick and G. Smith, “Structural Refinement of
Object-Z/CSP Specification,” Proceedings of 2nd Inter-
national Conference on Integrated Formal Methods, Spr-
inger-Verlag, London, Vol. 1945, 2000, pp. 194-213.

[12] S. A. Ehikioya and B. Ola, “A Comparison of Formalisms
for Electronic Commerce Systems,” Proceedings of In-
ternational Conference on Computational Cybernetics,
Vienna, 30 August-1 September 2004, pp. 253-258.

[13] F. Gervais, M. Frappier and R. Laleau, “Synthesizing B
Specifications from EB3 Attribute Definitions,” Pro-
ceedings of 5th International Conference on Integrated
Formal Methods, Springer, Berlin, Vol. 3771, 2005, pp.
207-226.

[14] A. Hall, “Correctness by Construction: Integrating For-
mality into a Commercial Development Process,” Pro-
ceedings of International Symposium of Formal Methods
Europe, Vol. 2391, 2002, pp. 139-157.

[15] K. E. Hamdy, M. A. Elsoud and A. M. El-Halawany,
“UML-Based Web Engineering Framework for Modeling
Web Application,” Journal of Software Engineering, Vol.
5, No. 2, 2011, pp. 49-63. doi:10.3923/jse.2011.49.63

[16] O. Hasan and S. Tahar, “Verification of Probabilistic
Properties in the HOL Theorem Prover,” Proceedings of
the Integrated Formal Methods, Vol. 4591, 2007, pp
333-352. doi:10.1007/978-3-540-73210-5_18

[17] X. He, “Formalizing UML Class Diagrams: A Hiera-
rchical Predicate Transition Net Approach,” Procee-
dings of 24th Annual International Computer Software
and Applications Conference, Taipei, 25-28 October 2000,
pp. 217-222.

[18] M. Heiner and M. Heisel, “Modeling Safety Critical
Systems with Z and Petri-Nets,” Proceedings of Inter-
national Conference on Computer Safety, Reliability and
Security, Springer-Verlag, London, 26-28 October 1999,
pp. 361-374. doi:10.1007/3-540-48249-0_31

[19] D. Jackson, I. Schechter and I. Shlyakhter, “Alcoa: The
Alloy Constraint Analyzer,” Proceedings of International
Conference on Software Engineering, Limerick, 4-11
June 2000, pp. 730-733.

[20] H. Leading and J. Souquieres, “Integration of UML and B
Specification Techniques: Systematic Transformation from
OCL Expressions into B,” Proceedings of 9th Asia-
Pacific Software Engineering Conference, Gold Coast,
4-6 December 2002, p. 495.
doi:10.1109/APSEC.2002.1183053

[21] Liu and C. Chen, “An Improved Quasi-Static Scheduling
Algorithm for Mixed Data-Control Embedded Software,”
Journal of Applied Sciences, Vol. 6, No. 7, 2006, pp.
1571-1575. doi:10.3923/jas.2006.1571.1575

[22] Z. M. Ma, “Fuzzy Conceptual Information Modeling in
UML Data Model,” International Symposium on Com-
puter Science and Computational Technology, Shanghai,
20-22 December 2008, pp. 331-334.
doi:10.1109/ISCSCT.2008.353

[23] R. Miles and K. Hamilton, “Learning UML 2.0,” 1st
Edition, O’Reilly Media, Sebastopol, 2006, 288 p.

[24] A. Moeini and R. O. Mesbah, “Specification and Deve-
lopment of Database Applications Based on Z and SQL,”
Proceedings of International Conference on Information
Management and Engineering, Kuala Lumpur, 3-5 April
2009, pp. 399-405.

[25] A. M. Mostafa, A. I. Manal, E. B. Hatem and E. M. Saad,
“Toward a Formalization of UML2.0 Meta-Model Using
Z Specifications,” Proceedings of 8th ACIS International
Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing, Qingdao,
Vol. 3, 2007, pp. 694-701. doi:10.1109/SNPD.2007.508

[26] H. Podeswa, “UML for IT Business Analyst,” 2nd Edi-
tion, Course Technology, 2009, 372 p.

[27] T. B. Raymond, “Integrating Formal Methods by Uni-
fying Abstractions,” Springer, Berlin, Vol. 2999, 2004, pp.
441-460.

[28] S. Sengupta and S. Bhattacharya, “Formalization of UML
Diagrams and Consistency Verification: A Z Notation
Based Approach,” Proceedings of India Software Engi-
neering Conference, Hyderabad, 19-22 February 2008, pp.
151-152. doi:10.1145/1342211.1342248

[29] Z. Shi, “Intelligent Target Fusion Recognition Based on
Fuzzy Petri Nets,” Information Technology Journal, Vol.
11, No. 4, 2012, pp. 500-503.
doi:10.3923/itj.2012.500.503

[30] M. Shroff and R. B. France, “Towards Formalization of
UML Class Structures in Z,” 21st International Con-
ference on Computer Software and Applications, Wash-
ington, 11-15 August 1997, pp. 646-651.

[31] J. M. Spivey, “The Z Notation: A Reference Manual,”
Prentice-Hall, Englewood Cliffs, 1989.

[32] J. Sun, J. S. Dong, J. Liu and H. Wang, “A XML/XSL
Approach to Visualize and Animate TCOZ,” Proceedings
of 8th Asia-Pacific Software Engineering Conference,
Macao, 4-7 December 2001, pp. 453-460.

[33] X. Than, H. Miao and L. Liu, “Formalizing Semantics of
UML Statecharts with Z,” Proceedings of 4th Inter-

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.3923/jas.2002.356.365
http://dx.doi.org/10.3923/jas.2008.3561.3571
http://dx.doi.org/10.3923/jse.2011.49.63
http://dx.doi.org/10.1007/978-3-540-73210-5_18
http://dx.doi.org/10.1007/3-540-48249-0_31
http://dx.doi.org/10.1109/APSEC.2002.1183053
http://dx.doi.org/10.3923/jas.2006.1571.1575
http://dx.doi.org/10.1109/ISCSCT.2008.353
http://dx.doi.org/10.1109/SNPD.2007.508
http://dx.doi.org/10.1145/1342211.1342248
http://dx.doi.org/10.3923/itj.2012.500.503

State Based Static and Dynamic Formal Analysis of UML State Diagrams

Copyright © 2012 SciRes. JSEA

491

national Conference on Computer & Information Tech-
nology, Wuhan, 14-16 September 2004, pp. 1116-1121.

[34] J. M. Wing, “A Specifier, Introduction to Formal Me-
thods,” Computer Journal, Vol. 23, No. 9, 1990, pp. 8-24.
doi:10.1109/2.58215

[35] Z. Xiuguo and H. Liu, “Formal Verification for CCML
Based Web Service Composition,” Information Tech-
nology Journal, Vol. 10, No. 9, 2011, pp. 1692-1700.

[36] C. Yong, “Application of Wu’s Method to Proving Total
Correctness of Recursive Program,” Information Tech-
nology Journal, Vol. 9, No. 7, 2010, pp. 1431-1439.
doi:10.3923/itj.2010.1431.1439

[37] N. A. Zafar and F. Alhumaidan, “Transformation of Class
Diagrams into Formal Specification,” International Jour-
nal Computer Science and Network Security, Vol. 11, No.

5, 2011, pp. 289-295.

[38] S. Zarina, N. Alias, M. M. Halip and B. Idrus, “Formal
Specification and Validation of Selective Acknowledge-
ment Protocol using Z/EVES Theorem Prover,” Journal
of Applied Sciences, Vol. 6, No. 8, 2006, pp. 1712-1719.
doi:10.3923/jas.2006.1712.1719

[39] Z. X. Wu, H. He, L. Chen and Y. Zhang, “Ontology
Based Semantics Checking for UML Activity Model,”
Information Technology Journal, Vol. 11, No. 3, 2012, pp.
301-306. doi:10.3923/itj.2012.301.306

[40] N. A. Zafar, “Event-Action Based Model for Identifica-
tion and Formalization of Relations in UML State Dia-
grams,” Archive De Science Journal, Vol. 65, No. 4, 2012,
pp. 17-30.

http://dx.doi.org/10.1109/2.58215
http://dx.doi.org/10.3923/itj.2010.1431.1439
http://dx.doi.org/10.3923/jas.2006.1712.1719
http://dx.doi.org/10.3923/itj.2012.301.306

	3.1. UML
	3.2. Formal Approaches
	3.3. Z Notation
	3.4. Z/Eves Tools
	4.1. Proposed Approach
	4.2. Formal Models

