
Journal of Software Engineering and Applications, 2012, 5, 449-458
http://dx.doi.org/10.4236/jsea.2012.57051 Published Online July 2012 (http://www.SciRP.org/journal/jsea)

449

Improving Class Cohesion Measurement: Towards a Novel
Approach Using Hierarchical Clustering

Lazhar Sadaoui, Mourad Badri, Linda Badri

Software Engineering Research Laboratory, Department of Mathematics and Computer Science, University of Quebec, Trois-Rivières,
Canada.
Email: {Lazhar.Sadaoui, Mourad.Badri, Linda.Badri}@uqtr.ca

Received April 26th, 2012; revised May 23rd, 2012; accepted May 31st, 2012

ABSTRACT

Class cohesion is considered as one of the most important object-oriented software attributes. High cohesion is, in fact,
a desirable property of software. Many different metrics have been suggested in the last several years to measure the
cohesion of classes in object-oriented systems. The class of structural object-oriented cohesion metrics is the most in-
vestigated category of cohesion metrics. These metrics measure cohesion on structural information extracted from the
source code. Empirical studies noted that these metrics fail in many situations to properly reflect cohesion of classes.
This paper aims at exploring the use of hierarchical clustering techniques to improve the measurement of cohesion of
classes in object-oriented systems. The proposed approach has been evaluated using three particular case studies. We
also used in our study three well-known structural cohesion metrics. The achieved results show that the new approach
appears to better reflect the cohesion (and structure) of classes than traditional structural cohesion metrics.

Keywords: Object-Oriented; Classes; Cohesion; Similarity; Clustering; Metrics and Empirical Evaluation

1. Introduction

Class cohesion is considered as one of the most impor-
tant object-oriented (OO) software attributes. It is used to
assess the design quality of classes. Class cohesion (more
specifically, functional cohesion) is defined as the degree
of relatedness between members of a class. In OO sys-
tems, a class should represent a single logical concept,
and not to be a collection of miscellaneous features. OO
analysis and design methods promote a modular design
by creating high cohesive classes. However, improper
assignment of responsibilities during the design phase
can produce low cohesive classes with unrelated mem-
bers. The reasoning is that such (poorly designed) classes
will be difficult to understand, to test and to maintain.

Many different metrics have been suggested in the last
several years to measure the cohesion of classes in OO
systems. The class of structural cohesion metrics is the
most investigated category of cohesion metrics. In this
paper, we are focusing on this category of cohesion met-
rics. These metrics measure cohesion on structural in-
formation extracted from the source code. Although there
have been several empirical studies performed on these
metrics, no consensus has yet been reached as to which
of these metrics best measures cohesion [1]. Furthermore,
studies have noted that most of these metrics fail in many
situations to properly reflect cohesion of classes [2-5].
Major existing structural cohesion metrics can give co-

hesion values that do not reflect actually the disparity of
the code of a given class. These metrics, in fact, capture
some links (from a structural point of view) between
parts of code that can be conceptually unrelated. As
stated by Marcus et al. in [5], these metrics give no clues
whether a class is cohesive from a conceptual point of
view (implements one or more concepts, for example).
These weaknesses can lead, indeed, in various situations
to some inconsistencies between the computed values of
cohesion and the intuitively expected ones [3,4]. As a
result, these metrics may not be completely reliable to be
used to detect effectively weaknesses in the design (as-
signment of disparate roles to classes for example), or
identify refactoring opportunities. The debate on cohe-
sion metrics still continues and new definitions are pro-
posed [3,5-14].

Existing cohesion metrics are directly or indirectly
based on observations of the attributes referenced by the
methods. The assessment of cohesion of classes is based
on the notion of similarity between methods. Clustering
(or unsupervised classification) methods are concerned
with grouping objects based on their interrelationships or
similarity [15]. Clustering is a data mining activity that
aims to partition a given set of objects into groups (or
clusters) such that objects within a group would have
high similarity to each other and low similarity to objects
in other groups [16-18]. The inferring process is carried

Copyright © 2012 SciRes. JSEA

Improving Class Cohesion Measurement: Towards a Novel Approach Using Hierarchical Clustering 450

out with respect to a set of relevant characteristics of the
analyzed objects [18]. Clustering techniques have been
widely used to support various software reengineering
activities such as system partitioning [19], architecture
recovery [20] and program restructuring [15,21-25].
Clustering techniques have also been used more recently
in the area of aspect mining [18,26-30].

This paper aims at exploring the use of clustering
techniques to improve the measurement of cohesion of
classes in OO systems. We believe, indeed, that using
clustering will better reflect the structure and the design
quality of classes. Clustering provides, in fact, a natural
way for identifying clusters of related methods based on
their similarity. The paper proposes a new approach to
measure the cohesion of individual classes within an OO
system based on hierarchical clustering. The proposed
approach has been evaluated using three particular case
studies taken from the literature. We also used in our
study three well-known structural cohesion metrics:
LCOM [31], LCOM* [32] and TCC [33]. The achieved
results show that the new approach appears to better re-
flect the cohesion (and structure) of classes than tradi-
tional structural cohesion metrics.

The rest of the paper is organized as follows: Section 2
presents a brief survey on major class cohesion metrics.
Section 3 introduces the new approach we propose for
the measurement of cohesion of classes in OO systems.
Section 4 gives a simple example of application of our
approach. Section 5 presents the case studies we used to
evaluate our approach. Finally, Section 6 presents some
conclusions and future research directions.

2. Object-Oriented Cohesion Metrics

Many metrics have been proposed in order to measure
class cohesion in OO systems. The argument over the
most meaningful of those metrics continues to be debated
[8]. Major of proposed cohesion metrics are based on the
notion of similarity between methods, and usually cap-
ture cohesion in terms of connections between members
of a class. Based on the underlying information used to
measure the cohesion of a class, there exist different
classes of cohesion metrics [5]: structural metrics [31-36],
semantic metrics [5,9,37], information entropy-based
metrics [38], slice-based metrics [11], metrics based on
data mining [39] and metrics for specific types of appli-
cations [40]. The class of structural cohesion metrics is
the most investigated category of cohesion metrics.
Structural cohesion metrics measure cohesion on struc-
tural information extracted from the source code. These
metrics present, however, some differences in the defini-
tion of the relationships between members of a class. A
class is more cohesive when a larger number of its in-
stance variables are referenced by a method (LCOM*

[32], Coh [34]), or a larger number of methods pairs
share instance variables (LCOM1, LCOM2 [31], LCOM3
[36], LCOM4 [35], Co [35], TCC and LCC [33], DCD
and DCI [41]). Several studies using the Principal Com-
ponent Analysis technique have been conducted in order
to understand the underlying orthogonal dimensions cap-
tured by some of these metrics [1,5,34,42]. Briand et al.
[34] developed a unified framework for cohesion meas-
urement in OO systems that classifies and discusses sev-
eral cohesion metrics. Development of metrics for class
cohesion assessment still continues [3,5-14,37].

3. Clustering Based Cohesion Measurement

3.1. Introduction

Clustering aims to differentiate groups inside a given set
of objects. The resulting groups (clusters), distinct and
non-empty, are to be built so that the objects within each
cluster are more closely related to one another than ob-
jects assigned to different clusters. The clustering process
is based on the notion of similarity (or dissimilarity) be-
tween the objects. The similarity between two objects x
and y can be derived from the following measure [43]:

     
   

,
p x p y

sim x y
p x p y





 (1)

where p(x) and p(y) are the properties of the objects x and
y respectively. The distance measure used for discrimi-
nating objects express the dissimilarity between them. A
possible measure of distance can be defined as follows:

  , 1 ,dist x y sim x y   (2)

The generic concept of similarity (and dissimilarity) is
presented in Bunge’s Ontology [44]. These concepts
were first used in the area of OO software measurement
by Chidamber & Kemerer [31]. In this paper, we are fo-
cussing only on hierarchical clustering. The hierarchical
clustering methods represent a major class of clustering
techniques [18]. There are two styles of hierarchical
clustering algorithms: bottom-up and top-down. In our
work, we use as a first attempt the bottom-up approach.
Given a set of n objects, the bottom-up methods begin
with n singletons (sets with one element), merging them
until a single cluster is obtained. At each step, the most
similar two clusters are chosen for merging [18]. The
hierarchical clustering algorithm is implemented in sev-
eral statistical analysis tools. In our case, we used the one
integrated in XLSTAT1, a software for statistical and
data analysis for Microsoft Excel.

3.2. Model Definition

In our approach, the objects to classify are the attributes

1http://www.xlstat.com/

Copyright © 2012 SciRes. JSEA

Improving Class Cohesion Measurement: Towards a Novel Approach Using Hierarchical Clustering 451

and the methods members of the class. We focus, how-
ever, on the connectivity between methods. The resulting
clusters are to be built so that the methods within each
cluster are more closely related to one another than
methods assigned to different clusters. Let C be a class.
Let M = {m1, m2, ···, mn} be the set of methods of the
class and A = {a1, a2, ···, ak} be the set of its attributes.
Let p(mi) be the set of properties of the method mi, which
includes the attributes of the class C referenced by the
method mi and the methods of the class C invoked di-
rectly by the method mi. Let p(ai) be the set of properties
of the attribute ai, which includes the methods of the
class C using directly the attribute ai. The development
of our model includes the following three main steps.

3.2.1. Constructing the Entities-Properties Matrix
Let EP be the entities-properties matrix, which represents
the properties of the entities (attributes and methods) of
the class C. This matrix is a binary square matrix (n +
k)*(n + k), where n is the number of methods and k the
number of attributes of the class C. It models the differ-
ent relationships between the members of the class.
There is a method-attribute relationship between a me-
thod mi and an attribute aj, if the attribute appears in the
body of this method (EP(mi, aj) = 1 and EP(aj, mi) = 1).
There is a method-method relationship between a method
mi and a method mk if the method mk is invoked directly
by the method mi (EP(mi, mk) = 1).

3.2.2. Performing a Hierarchical Clustering Algorithm
The EP matrix is provided as input for the hierarchical
clustering algorithm of the XLSTAT tool in order to ob-
tain multiple nested partitions of the entities of the class
as a hierarchical tree. We used in our approach the Jac-
card coefficient as similarity measure. The Jaccard met-
ric seems to be the most intuitive for software entities.
Moreover, as mentioned above, we used in our approach
the bottom-up hierarchical clustering algorithm of
XLSTAT. Given a set of n entities, the bottom-up algo-
rithm begins with n singletons (sets with one method),
merging them until a single cluster is obtained. At each
step, the most similar two clusters are chosen for merg-
ing.

3.2.3. Determining the Optimal Number of Clusters
Determining the optimal number of clusters is equivalent
to determining the optimal level of truncation of the hi-
erarchical tree. The truncation criterion is often based on
heuristics. There are several methods to determine the
optimal number of clusters. Earlier works in this area
include the rule of Hartigan [45], the indexes of Krza-
nowski and Lai [46] and the silhouette statistic suggested
by Kaufman et al. [47]. More recent works include the
“gap” method proposed by Tibshirani et al. [48] and the

method of resampling based on prediction [49]. The
comparison of these approaches is out of the scope of
this paper. As our work is exploratory by nature, we used
the automatic truncation of the hierarchical tree, inte-
grated in XLSTAT. It determines the optimal number of
clusters of the analyzed class. The approach adopted by
the XLSTAT tool to determine the optimal number of
clusters is based on entropy. Entropy measures how ele-
ments are distributed or assigned in each cluster. Low
entropy corresponds to a better clustering.

3.3. Cohesion Measurement

Let C be a class. Let M = {m1, m2, ···, mn} be the set of its
methods. The number of pairs of methods is: [n·(n −
1)/2]. Consider the undirected graph GC, resulting from
the clustering, where the nodes represent the methods of
the class C. There is an arc between two nodes if the
corresponding methods belong to the same cluster. As
mentioned earlier, from the point of view of clustering,
each cluster contains only related methods. Therefore, all
the pairs of methods within a cluster are related. Let EC

be the set of connected components of the graph GC. It
represents, in fact, the set of clusters. Let EA be the set of
arcs in the graph GC. The approach we propose allows
the calculation of two metrics:
 COHCL = |EA|/[n·(n – 1)/2] Є [0, 1]. It gives the per-

centage of pairs of methods that are related.
 NCL = |EC|. It gives the number of clusters in the class.

The NCL metric takes values greater than or equal to 1.

3.4. Interpretation

The COHCL metric gives, in fact, the degree of related-
ness between the methods of the class. A low value of
COHCL indicates that the methods of the class are poorly
related, in spite of the fact that they may constitute a sin-
gle group of related members. However, it may also in-
dicate (in an implicit way) the existence of several (two
or more) groups of connected methods. In fact, these
different groups may reflect, in some cases, the dispa-
rateness of the roles (more than one concept) assigned to
a class. In this case, we will be able to determine it only
by reviewing the code. A low value of COHCL may be
interpreted in different ways and reveals, in fact, various
situations: 1) the methods of the class constitute a single
group of connected methods but are however weakly
related; 2) the roles assigned to the class are disparate;
and 3) possibly both.

In practice, we may have two classes with comparable
values of cohesion (let us assume 0.50): In the case of the
first class, the methods are weakly related but constitute
a single group of connected methods, and in the case of
the second class the roles assigned to the class are unre-
lated which will be reflected in its implementation.

Copyright © 2012 SciRes. JSEA

Improving Class Cohesion Measurement: Towards a Novel Approach Using Hierarchical Clustering 452

Without the NCL metric, it’s only by reviewing the code
that we will be able to determine it. The metric NCL (as
an indicator of the disparity of the concepts implemented
by the class) reveals in an explicit way this problem. To-
gether, the two metrics reflect in several situations some
design problems (weaknesses in the design). The case
studies presented in Section 5 illustrate this dimension.
The COHCL metric indicates the cohesion degree of the
class. The NCL (taken with COHCL) helps in interpreting
the results.

4. A Simple Example of Application

In order to better understand our approach, we present in
this section a simple example of application. Consider
the class C with: M(C) = {m1, m2, m3, m4, m5, m6, m7} the
set of its methods and A(C) = {i1, i2, i3, i4, i5} the set of its
attributes (instance variables). Let Uj be the set of attrib-
utes and methods used by the method mj. Suppose that
the values of these sets in our example are: U1 = {i1, i2, i3,
m3}, U2 = {i1, i2, m3}, U3 = {i1, i2}, U4 = {i1}, U5 = {i1, i4,
i5}, U6 = {i4, i5}, and U7 = {i4}.

By applying the hierarchical clustering algorithm of
XLSTAT, we obtain the dendrogram (hierarchical tree)
given in Figure 1. We obtain two distinct clusters of
methods (Figure 1): {m1, m2, m3, m4} and {m5, m6, m7}.
All methods belonging to the same cluster are related.
The graph GC modeling the connections between the
methods of the class C resulting from the clustering is
given in Figure 2. From the graph GC of Figure 2, we
obtain: COHCL = 9/21 = 0.43 and NCL = 2.

5. Empirical Evaluation

In order to evaluate our approach, we consider as case
studies three particular examples of classes (in Java)
discussed in the literature in the area of maintenance,
restructuring and aspect mining [50-52]. To facilitate
comparison with our class cohesion measurement ap-
proach, we chose in our study three well-known struc-
tural cohesion metrics: LCOM [31], LCOM* [32] and
TCC [33]. LCOM (Lack of COhesion in Methods) is
defined as the number of pairs of methods in a class,
having no common attributes, minus the number of pairs
of methods having at least one common attribute. LCOM
is set to zero when the value is negative. LCOM* is
somewhat different from the LCOM metric. LCOM* is
different also from the other versions of the LCOM met-
ric proposed by Li et al. [36] and Hitz et al. [35]. It con-
siders that cohesion is directly proportional to the num-
ber of instance variables that are referenced by the
methods of a class. TCC (Tight Class Cohesion) is de-
fined as the percentage of methods pairs, which are di-
rectly related. Two methods are directly related if they

Figure 1. The dendrogram (hierarchical tree) of the class C.

Figure 2. The graph GC corresponding to the class C.

both use either directly or indirectly a common instance
variable. We used the Borland Together2 tool to compute
the metrics LCOM, LCOM* and TCC. Moreover, we
used the XLSTAT tool to perform clustering.

5.1. Observer Design Pattern

The Observer design pattern defines a “one to many”
dependency between a subject and several observers [51].
When the subject object changes its state, all observers
objects will automatically be notified and updated ac-
cordingly [53]. Figure 3 gives an OO implementation of
this pattern [54]. It models a simple system of graphic
figures elements in which a class Point share the same
interface FigureElement with other classes. If a call to
any of the methods prefixed by “set” on an object of type
FigureElement is triggered, the observer object must be
alerted in order to reflect the changes at the graphical
representation. According to the object approach [53],
the implementation usually requires that the subject (the
observed object) must define a field (list) to provide me-
chanical registration and deregistration of interested ob-
servers (i.e. methods: attachObserver() and detachOb-
server()) and a notification method (i.e. informObserver
()).

From Figure 3 we can clearly see the limits of the ob-
ject paradigm due to the duplication and tangling of code
that were inevitable. Indeed, the class Point (and other
classes not mentioned here) must integrate all the code
fragment relating to the maintenance and reporting of
observed objects in their implementations (pieces of code 2http://www.borland.com/

Copyright © 2012 SciRes. JSEA

Improving Class Cohesion Measurement: Towards a Novel Approach Using Hierarchical Clustering 453

Figure 3. An example of a partial implementation of the
observer design pattern [54].

labelled C and D in Figure 3). Furthermore, we note the
duplication resulting from calling the method informOb-
servers() in order to report the change in an attribute to
the observer object (piece of code labelled B). Moreover,
we note the tangling of code in the same class (Point),
between its main functionality (labelled A) mixed with
the code for the notification mechanism of the observer
we have described above (statements labelled B, C, D).
This means that the class Point has been assigned more
than one role [54]. Table 1 gives the values of the se-
lected structural cohesion metrics. According to these
values, the class is not cohesive.

By applying our approach, we obtain the dendrogram
given in Figure 4. We obtain the following two clusters
of methods: K1 = {setY(), setX, setXY()} and K2 = {in-
formObserver(), attachObserver(), detachObserver()}.
The three methods informObserver(), attachObserver()
and detachObserver() are grouped in one cluster (K2),
and the other methods i.e. setY(), setXY() and setX() are
grouped in the other cluster (K1).

The graph of connections between methods, obtained
after clustering, is given in Figure 5. As mentioned
above, two methods classified in the same cluster are
similar and therefore related. We obtain, therefore:

NCL = 2 and COHCL = 0.4.
The value of COHCL indicates that the methods of the

class are weakly related. As the value of the metric NCL
is equal to 2, this means that the class contains two dis-

Table 1. Values of selected structural cohesion metrics for
the class Point.

Metrics LCOM LCOM* TCC

Values 5 0.73 0.33

Figure 4. Dendrogram corresponding to the class Point.

Figure 5. The graph GC corresponding to the class Point.

joint groups of connected methods (the two clusters k1
and k2). These results (COHCL and NCL) adequately re-
flect the structure (code) of the class given in Figure 3:
two disparate roles, i.e. its primary role as point and a
secondary role related to the management of the notifica-
tion mechanism for observers objects. Despite the entan-
glement of the code on these two roles, the new approach
was able to capture and isolate the related elements
properly. Moreover, we note by the decomposition of
clusters K1 and K2 that each cluster contains only meth-
ods concerning the same responsibility (concept). The
cluster K1 includes elements of code A, while the cluster
K2 includes elements of code B and C (Figure 3). The
values of the metrics NCL and COHCL reflect properly the
structure of the class than the structural cohesion metrics.

5.2. The Tangled Stack Class

This example is taken from [52]. It presents a class that
defines the basic operations managing a stack (push, pop,
check if the stack is empty or full) in addition to those
related to a second functionality (display of its contents
in a text field of a frame). The code of the class is shown
in Figure 6. The parts of the code labelled (B, C and D)

Copyright © 2012 SciRes. JSEA

Improving Class Cohesion Measurement: Towards a Novel Approach Using Hierarchical Clustering 454

are related to the second functionality assigned to the
class. Table 2 gives the values of the selected structural
cohesion metrics. Metrics LCOM and TCC indicate a
perfect cohesion. In contrary, the metric LCOM* indi-
cates that the class presents a lack of cohesion (which is
important according to LCOM*).

By applying our approach, we obtain the dendrogram
given in Figure 7. We obtain the following two clusters
of methods: K1 = {isEmpty(), isFull(), pop(), push(), top(),
toString()} and K2 = {display()}. The graph of connec-
tions between methods, obtained after clustering, is given
in Figure 8. We obtain the following values of cohesion:
NCL = 2 and COHCL = 0.71. The value of the metric
COHCL (0.71) indicates a relatively good cohesion. This
is not the case for metrics TCC and LCOM, which indi-
cate a perfect cohesion. According to the metric NCL
(whose value is equal to 2), we have two disjoint groups
of methods (k1 and k2).

Indeed, the class TangledStack as mentioned above
has two distinct roles: its primary role as a stack and a
secondary role related to the display mechanism in a GUI.

Figure 6. Code of the class TangledStack.

Table 2. Values of selected structural cohesion metrics for
the class TangledStack.

Metrics LCOM LCOM* TCC

Values 0 0.7 1

Figure 7. Dendrogram of the class TangledStack.

Figure 8. The graph GC corresponding to the class Tangled-
Stack.

The new approach effectively isolated the methods re-
lated to each role. Indeed, we note according to the de-
composition of k1 and k2 that each cluster contains only
methods relating to the same responsibility. Cluster k2
includes elements of code B (Figure 6), while cluster k1
includes the items of base code A of the standard class
“Stack”. The values of the two metrics (COHCL and NCL),
taken together, better illustrate the structure of the class.
This is not the case with the other metrics. In the case of
this example, it is also a crosscutting concern that over-
laps with the main concern of the class Stack. An as-
pect-oriented solution was proposed by Monteiro in [52].

5.3. Chain of Responsibility Design Pattern

This example is taken from [50]. It was also discussed by
Monteiro in [52]. Ideally, each class must provide a sin-
gle role (contain a coherent set of responsibilities). Un-
fortunately, this is not always the case. It is also the case
of superimposed roles as outlined by Hannemann and
Kiczales in [51]. One symptom that can help to detect
Double Personality in Java source code is implementa-
tion of interfaces [52]. Interfaces are a popular way to
model roles in Java. When a class implements an inter-
face modeling a role that does not relate to the class’
primary concern, the class smells of Double Personality
[52].

The design pattern “Chain of Responsibility” allows to
any number of classes to try to answer a query without

Copyright © 2012 SciRes. JSEA

Improving Class Cohesion Measurement: Towards a Novel Approach Using Hierarchical Clustering 455

knowing the capabilities of other classes on this query.
Each time an object receives a message it can’t deal with,
it delegates it to the next object in the chain. The purpose
of this pattern is to create a process chain, encapsulated
in objects, and to allow to propagate the call to this proc-
ess in the chain, leaving to the object/process to decide
whether the context is of its concern or not. Figure 9
shows a possible implementation of the Chain of Re-
sponsibility pattern by a class ColorImage.

The secondary role is modeled by the interface Chain,
that all participant objects must implement (the related
code of this role is shaded and referenced by labels B and
C). The method addChain() adds another class to the
chain of classes. The method getChain() returns the cur-
rent object to which messages are sent. These two meth-
ods allow to modify the chain dynamically and to add
additional classes in the middle of an existing chain [50].
The method sendToChain() sends a message to the next
object in the chain.

This implementation causes a code tangling because
the class has been assigned a second responsibility (han-
dling of received messages and giving them to the fol-
lowing participant objects in the chain in case the current
object could not handle the message). Otherwise, the
class would be reduced to a very simple code just for the
handling of color. Table 3 gives the values of the se-
lected structural cohesion metrics. Metrics LCOM* and
TCC indicate (is the case of this example also) a perfect

Figure 9. Example of implementation of the design pattern
chain of responsibility (class ColorImage).

cohesion. In contrary, the metric LCOM indicates that
the class presents a lack of cohesion.

By applying our approach, we obtain the dendrogram
given in Figure 10. We obtain the following two clusters
of methods: K1 = {getColor()} and K2 = {addChain(),
getChain(), sendToChain()}. The class ColorImage has
two connected components. The graph of connections,
obtained after clustering, is given in Figure 11. We ob-
tain the following values of cohesion: NCL = 2 and
COHCL = 0.5. This reveals a low cohesion in the class.
Indeed, a simple inspection of the code will indicate that
the class has two different roles.

Moreover, we can see by the decomposition of clusters
k1 and k2 that each cluster contains only methods related
to the same role. Cluster k2 includes elements of code B
(Figure 11), while cluster k1 contains only elements of
base code of the class ColorImage, which is the method
getColor() (it means that there is no tangling of code in
the same cluster). Once again, the values of the two met-
rics COHCL and NCL, taken together, better illustrate the
structure of the class.

6. Conclusion and Future Work

This paper investigates the use of hierarchical clustering
techniques to improve the measurement of cohesion of

Table 3. Values of selected structural cohesion metrics for
the class ColorImage.

Metrics LCOM LCOM* TCC

Values 4 0 1

Figure 10. Dendrogram of the class ColorImage.

Figure 11. The graph GC corresponding to the class Col-
orImage.

Copyright © 2012 SciRes. JSEA

Improving Class Cohesion Measurement: Towards a Novel Approach Using Hierarchical Clustering 456

classes in OO systems. Existing cohesion metrics are
directly or indirectly based on observations of the attrib-
utes referenced by the methods. The measurement of
cohesion of classes is based on the similarity between
their methods. So, we used clustering to better identify
clusters of related methods.

The proposed approach has been evaluated using three
particular case studies taken from (maintenance, restruc-
turing and aspect mining) literature. The achieved results
show clearly that the new approach better reflects the
structure and quality of the design of the evaluated
classes than the selected traditional structural cohesion
metrics. The approach was effectively able to detect the
disparity between the roles implemented by the evaluated
classes. It allows, in fact, better differentiating and clas-
sifying methods of a class into groups of related and co-
hesive methods. This capacity is mainly due to the poten-
tial of separation into cohesive groups offered by clus-
tering techniques. According to the evaluated case stud-
ies and the obtained results, the new approach appears to
better detect design problems, such as assigning disparate
roles to a class, than traditional structural cohesion met-
rics.

The study performed in this paper should, however, be
replicated using a large number of OO systems in order
to draw more general conclusions. Indeed, the findings in
this paper should be viewed as exploratory and indicative
rather than conclusive. As future work, we plan to: ex-
tend the study by introducing other OO cohesion metrics,
explore the use of the approach to support aspect-mining
activities and finally replicate the study on data collected
from a large number of OO software systems to be able
to give generalized results.

7. Acknowledgements

The authors would like to acknowledge the support of
this work by NSERC (National Sciences and Engineering
Research Council of Canada) Grant.

REFERENCES
[1] L. H. Etzkorn, S. E. Gholston, J. L. Fortune, C. E. Stein,

D. Utley, P. A. Farrington and G. W. Cox, “A Compari-
son of Cohesion Metrics for Object-Oriented Systems,”
Information and Software Technology, Vol. 46, No. 10,
2004, pp. 677-687. doi:10.1016/j.infsof.2003.12.002

[2] H. Aman, K. Yamasaki, H. Yamada and M. T. Noda, “A
Proposal of Class Cohesion Metrics Using Sizes of Cohe-
sive Parts,” In: T. Welzer, et al., Eds., Knowledge-Based
Software Engineering, IOS Press, Amsterdam, 2002, pp.
102-107.

[3] H. S. Chae, Y. R. Kwon and D. H. Bae, “Improving Co-
hesion Metrics for Classes by Considering Dependent In-
stance Variables,” IEEE Transactions on Software Engi-
neering, Vol. 30, No. 11, 2004, pp. 826-832.

doi:10.1109/TSE.2004.88

[4] H. Kabaili, R. K. Keller and F. Lustman, “Cohesion as
Changeability Indicator in Object-Oriented Systems,”
Proceedings of the 5th European Conference on Software
Maintenance and Reengineering, Lisbon, 14-16 March
2001. doi:10.1109/CSMR.2001.914966

[5] A. Marcus and D. Poshyvanyk, “The Conceptual Cohe-
sion of Classes,” Proceedings of the 21st International
Conference on Software Maintenance, Budapest, 25-30
September 2005, pp. 133-142.

[6] L. Badri, M. Badri and G. A. Badara, “Revisiting Class
Cohesion: An Empirical Investigation on Several Sys-
tems,” Journal of Object Technology, Vol. 7, No. 6, 2008,
pp. 55-75. doi:10.5381/jot.2008.7.6.a1

[7] Z. Chen, Y. Zhou, B. Xu, J. Zhao and H. Yang, “A Novel
Approach to Measuring Class Cohesion Based on De-
pendence Analysis,” Proceedings of the 18th Interna-
tional Conference on Software Maintenance, Timisoara,
12-18 September 2002.

[8] S. Counsell and S. Swift, “The Interpretation and Utility
of Three Cohesion Metrics for Object-Oriented Design,”
ACM Transactions on Software Engineering and Meth-
odology, Vol. 15, No. 2, 2006, pp. 123-149.
doi:10.1145/1131421.1131422

[9] A. De Lucia, R. Oliveto and L. Vorraro, “Using Structural
and Semantic Metrics to Improve Class Cohesion,” Pro-
ceedings of the International Conference on Software
Maintenance, Beijing, 28 September-4 October 2008.

[10] A. Marcus, D. Poshyvanyk and R. Ferenc, “Using the
Conceptual Cohesion of Classes for Fault Prediction in
Object-Oriented Systems,” IEEE Transactions on Soft-
ware Engineering, Vol. 34, No. 2, 2008, pp. 287-300.

[11] T. M. Meyers and D. Binkley, “Slice-Based Cohesion
Metrics and Software Intervention,” Proceedings of the
11th Working Conference on Reverse Engineering, Delft,
8-12 November 2004, pp. 256-265.
doi:10.1109/WCRE.2004.34

[12] G. Woo, H. S. Chae, J. F. Cui and J. H. Ji, “Revising
Cohesion Measures by Considering the Impact of Write
Interactions between Class Members,” Information and
Software Technology, Vol. 51, No. 2, 2009, pp. 405-417.

[13] Y. Zhou, B. Xu, J. Zhao and H. Yang, “ICBMC: An Im-
proved Cohesion Measure for Classes,” Proceedings of
the International Conference on Software Maintenance,
Montréal, 3-6 October 2002.

[14] Y. Zhou, L. Wen, J. Wang, Y. Chen, H. Lu and B. Xu,
“DRC: Dependence-Relationships-Based Cohesion Meas-
ure for Classes,” Proceedings of the 10th APSEC, Chiang
Mai, 10-12 December 2003.

[15] T. A. Wiggerts, “Using Clustering Algorithms in Legacy
Systems Remodularization,” Proceedings of the 4th Work-
ing Conference on Reverse Engineering, Washington, 6-8
October 1997. doi:10.1109/WCRE.1997.624574

[16] I. G. Czibula, G. Czibula and G. S. Cojocar, “Hierarchical
Clustering for Identifying Crosscutting Concerns in Ob-
ject-Oriented Software Systems,” Proceedings of the 4th
Balkan Conference in Informatics, Thessaloniki, 17-19
September 2009.

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1016/j.infsof.2003.12.002
http://dx.doi.org/10.1109/TSE.2004.88
http://dx.doi.org/10.1109/CSMR.2001.914966
http://dx.doi.org/10.5381/jot.2008.7.6.a1
http://dx.doi.org/10.1145/1131421.1131422
http://dx.doi.org/10.1109/WCRE.2004.34
http://dx.doi.org/10.1109/WCRE.1997.624574

Improving Class Cohesion Measurement: Towards a Novel Approach Using Hierarchical Clustering 457

[17] J. Han and M. Kamber, “Data Mining: Concepts and
Techniques,” Morgan Kaufmann Publishers, Waltham,
2001.

[18] G. S. Moldovan and G. Serban, “Aspect Mining Using a
Vector Space Model Based Clustering Approach,” Pro-
ceedings of Linking Aspect Technology and Evolution
Workshop, Bonn, 20 March 2006, pp. 36-40.

[19] N. Anquetil, C. Fourrier and T. Lethbridge, “Experiments
with Hierarchical Clustering Algorithms as Software
Remodularization Methods,” Proceedings of the Working
Conference on Reverse Engineering, Benevento, 23-27
October 1999.

[20] C.-H. Lung, “Software Architecture Recovery and Re-
structuring through Clustering Techniques,” Proceedings
of the 3rd International Software Architecture Workshop,
Orlando, 1-5 November 1998, pp. 101-104.

[21] I. G. Czibula and G. Czibula, “A Partitional Clustering
Algorithm for Improving the Structure of Object-Oriented
Software Systems,” Studia Universitatis Babes-Bolyai,
Series Informatica, Vol. 3, No. 2, 2008.

[22] C. Lung, M. Zaman and A. Nandi, “Applications of Clus-
tering Techniques to Software Partitioning, Recovery and
Restructuring,” Journal of Systems and Software, Vol. 73,
No. 2, 2004, pp. 227-244.
doi:10.1016/S0164-1212(03)00234-6

[23] C.-H. Lung and M. Zaman, “Using Clustering Technique
to Restructure Programs,” Proceedings of the Interna-
tional Conference on Software Engineering Research and
Practice, Las Vegas, 21-24 June 2004, pp. 853-860.

[24] G. Serban and I. G. Czibula, “Restructuring Software
Systems Using Clustering,” Proceedings of the 22nd In-
ternational Symposium on Computer and Information
Sciences, Ankara, 7-9 November 2007.
doi:10.1109/ISCIS.2007.4456872

[25] G. Snelting, “Software Reengineering Based on Concept
Analysis,” Proceedings of the European Conference on
Software Maintenance and Reengineering, Zurich, 29
February-3 March 2000, pp. 1-8.

[26] G. S. Cojocar, G. Czibula and I. G. Czibula, “A Com-
parative Analysis of Clustering Algorithms in Aspect
Mining,” Studia Universitatis Babes-Bolyai, Series In-
formatica, Vol. 4, No. 1, 2009.

[27] L. He and H. Bai, “Aspect Mining Using Clustering and
Association Rule Method,” International Journal of Com-
puter Science and Network Security, Vol. 6, No. 2A, 2006,
pp. 247-251.

[28] G. Serban and G. S. Moldovan, “A New k-Means Based
Clustering Algorithm in Aspect Mining,” Proceedings of
8th International Symposium on Symbolic and Numeric
Algorithms for Scientific Computing, Timisoara, 26-29
September 2006, pp. 69-74.
doi:10.1109/SYNASC.2006.5

[29] D. Shepherd and L. Pollock, “Interfaces, Aspects, and
Views,” Proceedings of Linking Aspect Technology and
Evolution Workshop, Chicago, 15 March 2005.

[30] D. Zhang, Y. Guo and X. Chen, “Automated Aspect Rec-
ommendation through Clustering-Based Fan-In Analy-
sis,” Proceedings of the 23rd IEEE/ACM International

Conference on Automated Software Engineering, l’Aquila,
15-19 September 2008, pp. 278-287.

[31] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for
Object Oriented Design,” IEEE Transactions on Software
Engineering, Vol. 20, No. 6, 1994, pp. 476-493.
doi:10.1109/32.295895

[32] B. Henderson-Sellers, “Software Metrics,” Prentice Hall,
Upper Saddle River, 1996.

[33] J. M. Bieman and B. K. Kang, “Cohesion and Reuse in an
Object-Oriented System,” Proceedings of the Symposium
on Software Reusability, Seattle, 23-30 April 1995, pp.
259-262. doi:10.1145/211782.211856

[34] L. C. Briand, J. Daly and J. Wusr, “A Unified Framework
for Cohesion Measurement in Object-Oriented Systems,”
Empirical Software Engineering, Vol. 3, No. 1, 1998, pp.
67-117. doi:10.1023/A:1009783721306

[35] M. Hitz and B. Montazeri, “Measuring Coupling and
Cohesion in Object-Oriented Systems,” Proceeding of the
International Symposium on applied Corporate Comput-
ing, Monterrey, 25-27 October 1995, pp. 25-27.

[36] W. Li and S. Henry, “Object-Oriented Metrics That Pre-
dict Maintainability,” Journal of Systems and Software,
Vol. 23, No. 2, 1993, pp. 111-122.
doi:10.1016/0164-1212(93)90077-B

[37] L. Etzkorn and H. Delugach, “Towards a Semantic Met-
rics Suite for Object-Oriented Design,” Proceedings of
the 34th International Conference on Technology of Ob-
ject-Oriented Languages and Systems, Xi’an, 30 October-
4 November 2000, pp. 7-80.

[38] E. B. Allen, T. M. Khoshgoftaar and Y. Chen, “Measur-
ing Coupling and Cohesion of Software Modules: An In-
formation-Theory Approach,” Proceedings of 7th Inter-
national Software Metrics Symposium, London, 4-6 April
2001, pp. 124-134.

[39] C. Montes de Oca and D. L. Carver, “Identification of
Data Cohesive Subsystems Using Data Mining Tech-
niques,” Proceedings of International Conference on
Software Maintenance, Bethesda, 16-19 November 1998,
pp. 16-23.

[40] E. S. Cho, C. J. Kim, D. D. Kim and S. Y. Rhew, “Static
and Dynamic Metrics for Effective Object Clustering,”
Proceedings of Asia Pacific International Conference on
Software Engineering, IEEE Computer Society, Wash-
ington, 1998, pp. 78-85.

[41] L. Badri and M. Badri, “A Proposal of a New Class Co-
hesion Criterion: An Empirical Study,” Journal of Object
Technology, Vol. 3, No. 4, 2004, pp. 145-159.
doi:10.5381/jot.2004.3.4.a8

[42] H. S. Chae, Y. R. Kwon and D. H. Bae, “A Cohesion
Measure for Object-Oriented Classes,” Software Practice
and Experience, Vol. 30, No. 12, 2000, pp. 1405-1431.
doi:10.1002/1097-024X(200010)30:12<1405::AID-SPE3
30>3.0.CO;2-3

[43] F. Simon, S. Löffler and C. Lewerentz, “Distance Based
Cohesion Measuring,” Proceedings of the 2nd European
Software Measurement Conference, Amsterdam, 4-8 Oc-
tober 1999.

Copyright © 2012 SciRes. JSEA

http://dx.doi.org/10.1016/S0164-1212(03)00234-6
http://dx.doi.org/10.1109/ISCIS.2007.4456872
http://dx.doi.org/10.1109/SYNASC.2006.5
http://dx.doi.org/10.1109/32.295895
http://dx.doi.org/10.1145/211782.211856
http://dx.doi.org/10.1023/A:1009783721306
http://dx.doi.org/10.1016/0164-1212(93)90077-B
http://dx.doi.org/10.5381/jot.2004.3.4.a8
http://dx.doi.org/10.1002/1097-024X(200010)30:12%3C1405::AID-SPE330%3E3.0.CO;2-3
http://dx.doi.org/10.1002/1097-024X(200010)30:12%3C1405::AID-SPE330%3E3.0.CO;2-3

Improving Class Cohesion Measurement: Towards a Novel Approach Using Hierarchical Clustering

Copyright © 2012 SciRes. JSEA

458

[44] M. Bunge, “Ontology I: The Furniture of the World,”
Treatise on Basic Philosophy, Vol. 3, D. Reidel Publish-
ing Company, Dordrecht, 1977.

[45] J. Hartigan, “Clustering Algorithms,” Wiley, New York,
1975.

[46] W. J. Krzanowski and Y. T. Lai, “A Criterion for Deter-
mining the Number of Groups in a Data Set Using Sum of
Squares Clustering,” Biometrics, Vol. 44, 1988, pp. 23-
34. doi:10.2307/2531893

[47] L. Kaufman and P. J. Rousseuw, “Finding Groups in Data:
An Introduction to Cluster Analysis,” Wiley-Interscience,
New York, 1990. doi:10.1002/9780470316801

[48] R. Tibshirani, G. Walther and T. Hastie, “Estimating the
Number of Data Clusters via the Gap Statistic,” Journal
of the Royal Statistical Society B, Vol. 63, No. 2, 2001, pp.
411-423.

[49] S. Dudoit and J. Fridlyand, “A Prediction-Based Resam-
pling Method for Estimating the Number of Clusters in a

Dataset,” Genome Biology, Vol. 3, No. 7, 2002, Research
0036.1-0036.21.

[50] J. Cooper, “Java Design Patterns: A Tutorial,” Addi-
son-Wesley, New York, 2000.

[51] J. Hannemann and G. Kiczales, “Design Pattern Imple-
mentation in Java and AspectJ,” Proceedings of the 17th
Annual Conference on Object-oriented Programming Sys-
tems, Languages and Applications, Seattle, 4-8 November
2002, pp. 161-173.

[52] M. J. T. Monteiro, “Refactorings to Evolve Object-Ori-
ented Systems with Aspect-Oriented Concepts,” Ph.D.
Thesis, Universidade do Minho, Minho, 2005.

[53] E. Gamma, et al., “Design Patterns—Elements of Reus-
able Object-Oriented Software,” Addison-Wesley, New
York, 1994

[54] St. Hanenberg and R. Unland, “A Proposal for Classify-
ing Tangled Code,” 2nd AOSD-GI Workshop, Bonn, 21-
22 February 2002.

http://dx.doi.org/10.2307/2531893
http://dx.doi.org/10.1002/9780470316801

	3.2.1. Constructing the Entities-Properties Matrix
	3.2.2. Performing a Hierarchical Clustering Algorithm
	3.2.3. Determining the Optimal Number of Clusters

