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ABSTRACT 

In this paper, the problem of estimating the direction of arrival of signals of which some may be perfectly correlated is 
considered. This method can be applied in the situation that the non-Gaussian independent and coherent signals coexist 
with unknown Gaussian noise. In this method at first via mappings, the virtual uniform linear array (ULA) and also the 
shifted versions of this virtual ULA by assuming that all the DOAs are located in one section are constructed. In order 
to avoid coloring the noise because of these mappings we use a cumulant matrix instead of a covariance ones. In this 
method since we construct all the subarrays virtually for detection of coherent signals we do not need the array with 
regular configuration. The advantages of this method are: increasing the array aperture, having the ability to find the 
DOAs with fewer sensors and also avoiding the coupling between sensors as much as possible in contrast to conven- 
tional spatial smoothing. 
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1. Introduction 

Direction finding techniques based on the eigendecom- 
position of the covariance matrix of the vector of the sig- 
nals received by an array of sensors, have received con- 
siderable attention in years. The main drawback of these 
techniques like MUSIC [1] is their inability to handle 
perfectly correlated (or highly correlated) signals which 
arise quite often in practice due to multipath propagation. 
This fact has motivated various researchers to look for 
variations of the MUSIC algorithm which do not suffer 
from this problem. Under the certain conditions, spatial 
smoothing technique introduced in [2,3] makes it possible 
to use a MUSIC type algorithm in the presence of arbi- 
trary signal correlation. The most restrictive aspect of the 
spatial smoothing technique as presented in [2] and dis- 
cussed further in [3,4], is that it requires a linear uni- 
formly spaced array and also has a significant loss of 
array aperture. Other techniques, such as the one pre- 
sented in [5], appear to have similar restrictions. Also 
these methods all assume that the additive noise is a 
white Gaussian process or the noise covariance matrix is 
known in advanced. On the contrary, in many practical 
situations, the additive noise is colored Gaussian process 
and a priori estimate of the noise covariance matrix is not 
available therefore these methods will suffer severe per- 
formance degradation. Owing to the attractive property  

of Gauassian processes that all cumulant spectra of order 
greater than two are identical to zero, many effective 
algorithms based on cumulants [6,7] have been proposed. 
An attempt to generalize the spatial smoothing technique 
based on cumulant to arbitrary array geometries (Sparse 
Array) by using the idea of interpolated array [8] is the 
main topic here. In this method we need no extra sensors 
and subarrays so array aperture significantly increased 
means that we need only K + 1 sensors for detection of K 
coherent signals in contrast to conventional spatial smoo-  

thing that needs 2K sensors or FBSS that use 
3

2
K  sen- 

sors [9]. This paper is organized as follows. A definition 
of cumulant and some properties of that is introduced in 
Section 2. Narrowband signal model and also the pro- 
posed method of DOA estimation are then considered 
and analyzed in detail in Sections 3 and 4, respectively. 
The simulation results to validate the effectiveness of our 
method are shown in Section 5 and some concluding 
remarks are given in Section 6. 

2. Cumulant for Array Processing 

Conventional array processing techniques utilize only the 
second order statistics of received signals. Second-order 
statistics are sufficient whenever the signals can be com- 
pletely characterized by knowledge of the first two mo- 
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ments, as in the Gaussian case; however, in real applica- 
tions, practical far field sources often emit non-Gaussian 
signals, e.g., as in a communication scenario. Whenever 
second-order statistics can not completely characterize 
all of the statistical properties of underlying signals, it is 
beneficial to consider information embedded in higher 
than second-order moments. Higher order prove to be re- 
warding alternative to second order statistics, and there 
are many signal processing problems that are not solv- 
able without access to HOS [10]. Particular cases of 
higher order statistics (Cumulant) are the third and fourth 
order statistics. In most of the application that deal with 
cumulant we use fourth order statistic, a logical question 
to ask is “why do we need fourth order cumulant?” If a 
random process is symmetrically distributed like Laplace, 
Uniform, Gaussian, etc. then its third order cumulant 
equals zero. Additionally, some processes have extremely 
small third order cumulants and much larger fourth order 
so for such a process we must use fourth order cumulant. 
We list properties of cumulants that are useful to us in 
the sequel [10]: 

[CP1]—If 
1i
 are constants and  are ran- 

dom variables, then 
 n

i   1

n

i i
x
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[CP2]—Cumulants are additive in their arguments 
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of the random variables  then    ,
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[CP4]—Cumulant suppress Gaussian noise of arbitrary  

covariance, i.e., if  are Gaussian random variables   1

n

i i
z



independent of  and  we have    1

n

i i
x



, ,x z 

2,n 

 , z 1 1 2 2 1 2, , ,n n ncum x z x cum x x x 
n

  

[CP5]—If a subset of random variables   1i i
x


 are 

independent of the rest, then 

 1 2, , , 0ncum x x x   

[CP6]—The permutation of the random variables does 
not change the value of the cumulant. 

In this paper we use Fourth order Cumulant defined as 
follows: 
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3. Problem Formulation 

Consider an arbitrary array composed of M sensors. Let q 
narrowband and non-Gaussian plane waves with zero 
mean, centered at frequency 0 , impinge on the array 
with M sensors like Figure 1 from directions 

w
 1, , q  . 

Using complex signal representation, the received signals 
at the mth sensor can be expressed as 

       π sin cos

1

m n m n

q
j x y

n n m
n

r t a s t e n t 



      (1) 

where  ns t
a

 is the signal associated with the nth wave- 
front, n  is the complex response of the sensor to the 
nth wavefront,  ,m mx y  are the coordinates of the mth 
sensor measured in half wave-length unites and  mn t  
is an additive noise at the mth sensor. In addition, the 
unknown noise is assumed to be Gaussian with variance 

2 , uncorrelated with the signals and uncorrelated from 
sensor to sensor. Rewriting (1) in a vector notation, as- 
suming for simplicity that the sensors are ominidirec- 
tional with unit gain, i.e., , we obtain: 1na 

       
q

n 1
n na s t



 r t n t          (2) 

where    ,r t n t  are the 1M   vector   

     1 , ,
T

Mt r t r t   r           (3a) 

     1 , ,
T

Mt n t n t   n         (3b) 

And  na   is the steering vector of the array in the 
direction n : 

    1 1π sin cos π sin cos, ,n n M n M n
T

j x y j x y
n e e        a    (4) 

To further simplify the notation, we rewrite (2) as  

       A S t r t n t            (5) 

where S(t) is the 1q  vector as: 

     1 , ,
T

qs t s t   S t          (6) 

and  A   is the M q  matrix 

     1 , , qa a    A          (7) 

also the fourth order cumulant of  can be computed 
as (8). 

 r t
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       (8) 

For 1 , , ,i j k l M .   
The computation of cumulant and some algorithm 

based on are come in [11]. In this paper for solving noise 
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coloring we use cumulant counterpart instead of a co- 
variance. In fact we replace every member of covariance 
matrix with its cumulant counterpart which is computed 
in the sufficient snapshots by (9). 
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   (9). 

4. Proposed DOA Estimation 

4.1. Spatial Smoothing 

Communication systems operating in a mobile commu- 
nication environment may encounter multipath propaga- 
tion caused by various reflected surfaces (e.g., buildings, 
hills, cars, etc.). When a signal wavefront reflects off of a 
surface, the original wavefront and the reflected wave- 
front will both impinge on the receiving array of sensors, 
although from different directions. Since the original 
signal and reflected signal come from the same radiating 
source, if the delay difference between the two paths is 
sufficiently small, then the signals are coherent (i.e., fully 
correlated) and their covariance matrix or cumulant ma- 
trix is singular. As was pointed out in the previous sec- 
tion, the nonsingularity of the signal covariance matrix or 
cumulant matrix is the key to successful application of 
eigenstructure techniques. Many effective decorrelated 
methods are then proposed to overcome this problem. 
Among these methods, the spatial smoothing techniques 
are relatively more effective, which are first introduced 
in [2] and extensively studied by Shan et al. [3] and Pillai 
and Kwon [9]. Their solutions are based on a preproc- 
essing scheme that divides the original array into number 
of subarrays. Then the average of the subarray covari- 
ance matrices is computed and in conjunction with the 
high-resolution methods to resolve the signals. Examina- 
tion of the smoothing technique described in [13,14] 
reveals that it is not limited to uniform linear arrays. The 
forward and also forward-backward spatial smoothing 
can be performed on any array which can be subdivided 
into subarrays which all have the same configuration, but 
are shifted with respect to each other like Figure 2. But 

when it is urgent to use Sparse array or any array that has 
not a suitable construction for using spatial smoothing 
like Figure 1 what should we do for the detection of the 
K coherent signals?  

4.2. Array Interpolation  

1) The first step in designing an interpolated array is to 
divide the field of view of the real arbitrary array into 
sectors. 

2) For each sector we define a set of angles like  
       1 1 1 2, , 2 , ,l l l l l              where 

   2 1
l l

n

 



  . These angles are used only in the design 

of the interpolation matrix. 
3) Compute the steering vectors associated with the 

set  l  for the given real array and arrange them in a 
matrix as follows: 

       1 , ,r l l lA a a   2          (10) 

 

θn 

n-th wavefront 
Y

Sensor1 

SensorM 
dmn 

X  

Figure 1. An arbitrary geometry. 
 
 

1 
2 

K

k 

 

Figure 2. Subarray with the same configuration [14]. 
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Next we decide where we want to place the virtual 
elements of the interpolated array, having decided on 
their locations we can compute the array manifold of the 
interpolated array. We denote by lA  the section of this 
array manifold computed for the angles l  also as fol- 
lows: 

       1 , ,l l lA a a      2         (11) 

In other words  r lA  ,  lA   are the responses of 
the real and virtual arrays to the signals arriving from the 
set l  respectively. In this paper we try to create virtual 
subarrays having a suitable geometry for the application 
of the spatial smoothing technique. The idea in this paper 
is to select the uniform linear arrays as the virtual subar- 
rays all having the same number of sensors as the origin- 
nal real array but are shifted versions of each other like 
Figure 3. The displacement vector of these virtual su- 

barrays and also between their sensors is equal to 
2


. 

4) The basic assumption is that the array manifold of 
the virtual array can be obtained by linear interpolation 
of the array manifold of the real array, within each sec- 
tor. In other words, we assume that there exist a constant 
M M  matrix lB  such that 

 ( )l r l lAA  B           (12a) 

Of course, the interpolation is not exact and therefore 
the equality above does not really hold. The “best” in- 
terpolation matrix lB  is the one which will give the 
best fit between the interpolated response  l lA B and 
the desired response  lA  . 

In this paper we assume that all the coherent DOAs are 
located in one section like  1 2,  , this section is di- 
vided with the calibration angles .  

 1 1 1 2

2 1

, , , ,

where , 1, ,

i

i n
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where n is the division index,    ,vk r
A A   are the 

manifold matrixes for the kth desired virtual subarray and 
real array respectively constructed from these calibration  
 

V-Subarray1 

V-subarray2 

V-subarray K 

1 2 M-1 M 

2
d


  

 

Figure 3. Virtual subarrays. 

angles  . Because every virtual subarray is the shifted 
version of the first virtual subarray. So: 

     1
1

k
vk v k rA D B 

  A A      (12b) 

where  denotes the kth power of the  diagnal 
matrix D as follows: 

kD n n

   0 0 0
1 1sin sin sin sin sin

diag , , , ,
jw d jw d jw d

c c ce e e
      2    

  

 
D



0f

 

0 2πw                 (13) 

In (13) parameter c is the speed of light and d is the 
distance between adjacent sensors of virtual ULA that for 
avoiding grating lobe it must be equal to half a wave- 

length 
2

d



 

 
 . By the idea of interpolation as de- 

scribed in 4.2 we can relate every virtual subarray to the 
real ones by solving a following linear equation: 

  vk k rBA A              (14) 

In following we use the cumulant’s properties in the 
direction finding. Since the Cumulant or Fourth order 
moment is blind to additive Gaussian noise (color or 
white) as shown in (CP4) the Fourth order Cumulant ma- 
trix counterpart of the real array is obtained as follows: 

     H

r c rC A A  S           (15a) 

where cS  is the q q  Cumulant matrix of signals that 
impinge on the real array. After obtaining interpolation 
matrix kB  for every virtual subarray now we can com- 
pute the cumulant of these subarrays as follows: 

H
k k kC CB B             (15b) 

Now the spatially smoothed cumulant matrix is de- 
fined as the sample means of the virtual subarrays cumu- 
lants: 

1

1 K

k
k

C
K 

 C               (16) 

where K is the number of virtual subarrays that for non- 
singularity of C it should be larger than the number of 
coherent signals. If mapping matrices   best se- 
lected then 

k
B

C  becomes: 

        †1 1
1 1

1

1 K

H
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V c
k

C A S AE E
K

  



 
  

 
 v   (17) 

And KE  is the kth power of E. 

0 0 0
1 2sin sin sin

0 0

diag , , ,

2π
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2

q
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w d f
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From (17) we can define cS  as follows: 
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Which can be further simplified to: 
H

cS G G              (19) 

where  is the  block matrix: G q Kq

    1k
C E C E C

   G         (20) 

In which C  denoting the Hermitian square root of  
1

cS
K

. It is clear that the rank of C  is equal to the rank  

of cS . Thus our task is to prove that G has rank q even 
when this q signals are coherent. Recalling that the rank 
of a matrix is unchanged by a permutation of its columns, 
it can be easily verified that G can be written in the form 
of (21). 

11 1 12 1 1 1

1 2

q

q q q q qq q

c b c b c b

c b c b c b


 



   


G






q



      (21) 

where  is the ijth element of the matrix C  and 
 is the  column vector: 

ijc
1, ,i  i b 1K 

0 0 0sin 2 sin sin1 i i i
Tjw jw Kjw

i e e e    b     (22) 

To show that the matrix  is of rank q, it suffices to 
show that each row of the matrix S has at least one non- 
zero element and that all the vectors i  are linearly in- 
dependent. The first fact follows by contradiction. As- 
sume that a row of , say the kth, is composed of all 
zeros this implies that the kth signal has zero cumulant, 
in contradiction to the definition of  as the cumulant 
matrix of nonvanishing non-Gaussian signals. The linear 
independence of the vectors ib  follows by observing 
that these vectors can be embedded in a vandermonde 
matrix. Since rank of 

G

b

C

C

cS  is equal to the rank of  and 
rank of  is  so the rank of 

G
G q C  is . At the end 

we apply one of the subspace methods to 
q
C . 

5. Simulation and Experimental Results 

In this section, we illustrate the performance of our me- 
thod through simulations. We select conventional spatial 
smoothing in the presence of white noise with variance 

2
n  as a comparative method. In the first simulation, we 

consider three non-Gaussian coherent signals received by 
two arrays, ULA for the Conventional Spatial Smoothing 

and the known arbitrary one for our Cumlant Spatial 
Smoothing each with 7 sensors. The amplitudes and 
phases of the complex fading coefficient of coherent sig- 
nals are  and [1,0.7,0.6] 7 ,12 , 22    

2
n

 respectively. The 
unknown colored Gaussian additive noises are generated 
by passing the complex white Gaussian random proc- 
esses with zero mean and   variance through a spatial 
moving average (MA) filter of order 2 with coefficients 
 0 1, ,a a 2a , where  0 1 2  are selected to be , , aa a
 1,0.8,0.6



 in the simulations. The input SNR is defined  

as 
2
s

10 2 2
0 1

g
a a a


22

2 n

10lo


 


 


 

  
. Note that the noise co- 

variance matrices for colored and white noises have the 
same trace, i.e. total noise power introduced to these me- 
thods have the same power. 200 Monte Carlo trials were 
performed for each experiment, and the root mean square 
error (RMSE) of the DOA estimates is used as the per- 
formance index: 

 200

1 1 2 0

ˆ

0

q

n k sN

n

 




2

k k
RMSE 

 
where  k̂ n  is an estimate of k  for the nth Monte 
Carlo trial, and  is the number of all the independent 
or coherent signals. In Figure 4 the RMSE of the DOA 
estimates against input SNR is shown with the Ns = 500 
and 1000 snapshots for the two methods. Also the RMSE 
of the DOA estimate of two methods versus the number 
of snapshots with input SNR equaling to zero is shown in 
Figure 5. In these two simulations we assume that the 
division index is n = 50 for our method. As it is clearly 
seen, the performance of our method (Cumulant Spatial 
Smoothing) is better than Conventional spatial smoothing 

q

 

 

Figure 4. RMSE of the DOA estimates against input SNR 
for coherent signal. 
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Figure 5. RMSE of the DOA estimates against number of 
snapshot. 
 
specially in low SNR but against the increasing of snap- 
shots. In the third simulation we show the performance 
of our method versus division index n in the presence of 
three predefined coherent signals. As it is obvious in 
Figures 6(a)-(c), by choosing n as large as possible we 
can get a better resolution (targets are distinguished 
clearly). To investigate the performance of our cumulant 
based method, we performed additional experiments by 
changing both the SNR and the data length. Each mean 
and standard deviation pair in each table are obtained 
from 100 independent realizations. Table 1(a) reports the 
results of Spatial Smoothing for 200 snapshots with dif- 
ferent SNRs in which the conventional spatial smoothing 
based on sample covariance means is selected as a direc- 
tion finder method. Table 1(b) also shows the perform- 
ance of conventional spatial smoothing versus two dif- 
ferent snapshots with SNR equaling to zero. 

From Tables 1(a), (b) it is obvious that the conven- 
tional spatial smoothing is more dependent on SNR than 
snapshot and can estimate DOAs with fewer snapshots 
by increasing the SNR accurately. Also we repeat the 
experiment again for our method based on the sample 
cumulant means with division index n = 50, as it is seen 
in Table 2(a) we can obtain better estimations in the low 
SNR by increasing the number of snapshots or data 
lengths. Table 2(b) also shows the performance of our 
method versus two different SNRs with a number of 
snapshots equaling to 200. 

As shown in Table 2(b) our cumulant spatial smooth- 
ing fails in general in a few snapshots, it means that the 
effect of snapshots in our method is more than the SNR 
in contrast to conventional spatial smoothing. In the latter 
simulation we do the detection probability for these two  

 

Figure 6. (a)-(c) Effect of division index (n) for a narrow 
sector on the resolution of our cumulant spatial smoothing. 
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Table 1. (a) (b), DOA estimation with conventional spatial 
smoothing with 7 sensor versus SNR and snapshot. 

(a) 

DOA 7˚ 13˚ 22˚ 

SNR = –5 dB 
Snapshot = 200 

Mean = 10.8546 
Std = 2.2275 

Mean = 16.3767 
Std = 2.3773 

Mean = 25.0914
Std = 2.2781 

SNR = 0 dB 
Snapshot = 200 

Mean = 8.3541 
Std = 1.1636 

Mean = 14.3715 
Std = 1.0297 

Mean = 23.6741
Std = 1.1233 

SNR = 5 dB 
Snapshot = 200 

Mean = 7.2890 
Std = 0.2917 

Mean = 13.5066 
Std = 0.2954 

Mean = 22.44
Std = 0.2840 

SNR = 10 dB 
Snapshot = 200 

Mean = 7.0053 
Std = 0.1669 

Mean = 13.1017 
Std = 0.2909 

Mean = 22.1270
Std = 0.2812 

(b) 

SNR = 0, 
Snapshot = 500 

Mean = 8.3133 
Std = 1.1587 

Mean = 14.1541 
Std = 1.0133 

Mean = 23.2541
Std = 1.1011 

SNR = 0 
Snapshot = 1000 

Mean = 8.2522 
Std = 1.0539 

Mean = 14.1071 
Std = 1.0117 

Mean = 23.0990
Std = 1.0036 

 
Table 2. (a) (b), DOA estimation with our cumulant method 
with 7 sensors versus SNR and snapshots. 

(a) 

DOA 7˚ 13˚ 22˚ 

SNR = 0 dB 
Snapshot = 200 

Mean = 9.9831 
Std = 1.7519 

Mean = 14.5400 
Std = 1.6910 

Mean = 24.6120
Std = 1.7063 

SNR = 0 dB 
Snapshot = 1000 

Mean = 8.1503 
Std = 1.1636 

Mean = 14.1648 
Std = 1.1600 

Mean = 23.6741
Std = 1.1215 

SNR = 0 dB 
Snapshot = 1500 

Mean = 7.6748 
Std = 0.3010 

Mean = 13.7687 
Std = 0.3943 

Mean = 22.9125
Std = 0.4016 

SNR = 0 dB 
Snapshot = 2000 

Mean = 7.2568 
Std = 0.2961 

Mean = 13.4101 
Std = 0.2655 

Mean = 22.1988
Std = 0.2531 

(b) 

SNR = 0, 
Snapshot = 500 

Mean = 8.4111 
Std = 1.2683 

Mean = 14.6851 
Std = 1.1725 

Mean = 23.5630
Std = 1.2031 

SNR = 5, 
Snapshot = 500 

Mean = 8.0961 
Std = 1.1700 

Mean = 13.9589 
Std = 1.0027 

Mean = 23.1065
Std = 1.0260 

 
methods (Cumulant and conventional spatial smoothing). 
This detection is computed over 250 independent trails 
by detecting the source(s) at  within an in- 
terval of  around this actual DOA. Figure 7 shows 
this detection probability for our cumulant spatial smooth- 
ing with three different ns and also conventional spatial 
smoothing versus SNR. As it is clearly seen by increas- 
ing the n we can get better detection probability. As the 
explanation of Figure 7 we must say that the detection 
probability of our method is more depend on mapping 
matrix k

DOA 22
0.1

B  obtained from solving Equation (14). We see 
that by selecting n as large as possible we can obtain the 
best mapping matrix as in [15-17] has been said. 

6. Conclusion 

In this paper, DOA estimation method in multipath envi- 
ronment with fewer sensors has been presented. We have 
taken the effects of cumulant and interpolated array into  

 

Figure 7. Probability of detection versus SNR and n. 
 
account in spatial smoothing. In this paper, by the use of 
mapping and interpolation techniques in an arbitrary ar- 
ray geometry we tried to approach to the ULA and also 
shifted versions of this ULA so that the spatial smoothing 
can be performed on it, therefore the need for extra real 
subarrays has been removed. Because this mapping can 
color the white noise and also in practical situation we 
don’t have any knowledge of Gaussian noise, we use 
cumulant instead of the covariance of data. The simula- 
tion results presented illustration of the performance of 
our method against n, SNR and the number of snapshots. 
We see by increasing these parameter the resolution and 
the probability of detection of our method will be better. 
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