
Int. J. Communications, Network and System Sciences, 2012, 5, 272-279 
http://dx.doi.org/10.4236/ijcns.2012.55036 Published Online May 2012 (http://www.SciRP.org/journal/ijcns) 

Link Stress Reduction against Bursty Arrivals of 
Content Requests 

Kenichi Yamashita, Kazumasa Oida 
Department of Computer Science and Engineering, Fukuoka Institute of Technology, 

Fukuoka, Japan 
Email: ykenichi@facebook.com, oida@fit.ac.jp 

 
Received March 5, 2012; revised March 29, 2012; accepted April 16, 2012 

ABSTRACT 

Content delivery networks are designed to extend the end-to-end transport capability of the Internet to cope with in-
creases in video traffic. For further improvement, bursty request arrivals should be efficiently addressed. As opposed to 
previous approaches, in which the best client-server pair is individually selected (individual optimization), this paper 
proposes an algorithm for dealing with simultaneous arrival requests, in which client-server pairs are selected such that 
all requests receive good service (social optimization). The performance of the proposed algorithm is compared with 
that of the closest algorithm, an individual optimization algorithm, under the condition that a large number of requests 
arrive simultaneously. The evaluation criterion is the worst link stress, which is the largest number of streams per link. 
The numerical results show that the proposed algorithm is effective for large-scale networks and that the closest algo-
rithm does not provide near-optimal solutions, especially when all requests arrive in a small part of the network or when 
there are many servers. 
 
Keywords: Social Optimization; Content Delivery; Hypercube Overlay; Server Assignment; Link Stress 

1. Introduction 

Video traffic will be increasingly prevalent on the Inter-
net. According to Cisco’s traffic forecast for 2009-2014, 
global IP traffic is expected to increase by 34% per an-
num, and much of the increase is attributed to the deliv-
ery of video data [1]. Video traffic typically consumes a 
large amount of network bandwidth for a long time. Fur-
thermore, some video content providers such as YouTube 
have begun to provide high-definition video streaming 
services. It is fully anticipated that even more efficient 
and scalable video delivery schemes will be required. 

The video delivery approach based on peer-to-peer (P2P) 
networking is currently popular since this yields several 
advantages such as resource scalability, network path 
redundancy, and self organization [2,3]. A large number 
of P2P-based video delivery techniques are now avail-
able, and some are used for commercial purposes [4,5]. 
Nevertheless, the P2P systems still pose some challenges 
such as resilience, underlay awareness, and security [6,7]. 
Meanwhile, content delivery networks (CDNs) have 
evolved to improve the scalability and reliability of Web 
sites, and their focus has shifted to media delivery. CDNs 
extend the end-to-end transport capability of the Internet 
by employing techniques designed to optimize content 
delivery. Typical techniques are Web caching, server- 

load balancing, and request routing [8]. This paper fo-
cuses on the CDN server assignment scheme that pre-
vents congestion when bursts of requests arrive. 

Most commercial CDN providers, such as Akamai and 
Limelight Networks, follow the overlay approach in 
which servers and caches distributed over the network 
manage content delivery. The underlay network compo-
nents (e.g., routers) play no active role in content deliv-
ery. There are two classes of overlays: unstructured and 
structured [9]. Structured overlays, which are organized 
with specific topologies, are relatively complex, whereas 
routing and searching operations tend to be efficient. 
Some frequently used overlay topologies are trees [10], 
rings [11], meshes [12,13], and hypercubes [14,15]. The 
hypercube overlay considered in this paper has attractive 
topological properties for video delivery: low node de-
gree, small network diameter, recursive construction, and 
independent paths [14]. 

Previous server assignment approaches are classified 
as individual optimization, which selects individually the 
best client-server pair in terms of the number of hops, the 
round-trip time, and/or the server and network loads [16- 
19]. In the case of bursty request arrivals (flash crowd), 
however, individual optimization may not lead to social 
optimization, which provides good service quality for all 
requests. Some queueing models show that they do not 

Copyright © 2012 SciRes.                                                                                IJCNS 



K. YAMASHITA, K. OIDA 273

agree under heavy loads [20-22]. This paper formulates 
an optimization problem and then proposes a social op-
timization algorithm. The numerical results show that the 
proposed algorithm is effective, especially when all re-
quests arrive in a small part of the network or when there 
are many servers. 

This paper is organized as follows: Section 2 defines 
the routing rules in the hypercube overlays. Section 3 
specifies the content delivery model and then formulates 
the server assignment problem. Section 4 proposes a 
heuristic algorithm for the problem. Section 5 compares 
the performances of the proposed algorithm and an indi-
vidual optimization algorithm under the condition that a 
large number of requests arrive simultaneously. Finally, 
Section 6 presents the conclusions. 

2. Hypercube Routing 

This section defines the routing in the hypercube over-
lays. The K-dimensional hypercube has 2K nodes and 

12KK 

H i  ,

 edges [23]. Each node corresponds to a K-bit 
binary string (node ID), and two nodes are linked with an 
edge if their node IDs differ in precisely one bit. As a 
consequence, each node is adjacent to K other nodes, one 
for each bit position, and the number of hops between 
any two nodes does not exceed K. Figure 1 illustrates a 
three-dimensional hypercube. Another important feature 
of the hypercube is independent routes [24]. Let i and j 
be any two nodes of a K-hypercube. There are K inde-
pendent paths between i and j, and their lengths are less 
than or equal to , where  , 2j  H i j

010 011 
001 011. 

 stands for 
the Hamming distance between nodes i and j. 

Routing on the hypercube is simple and does not require 
routing tables. This is because any two nodes whose 
node IDs differ in one bit are connected. In the case of a 
three-dimensional hypercube, for example, if node 000 
needs to transmit packets to node 011, since nodes 010 
and 001 are directly connected to nodes 000 and 011, 
there are two shortest-hop paths: 00  and 

 To fix a route for each pairing of 
source and destination, we assume that only the first path 
is used. In other words, if the node IDs of the source and 
destination are 

0

1 2

000

Ks s s 1 2 and Kd d d

1 1 1i i i K

, respectively, 
then the source selects node s s d s s    for the 

next hop if i is d =  and j js d  for = 1, , 1j i  . 
 

 

Figure 1. Three-dimensional hypercube and binomial tree 
rooted at node 000. 

If all nodes obey this routing rule, routing paths from a 
source node to the other nodes are deterministically 
given. The binomial tree [25] in Figure 1 represents the 
routing paths from node 000 to all other nodes in the 
three-dimensional hypercube. The figure also shows that 
the number of hops does not exceed three along any path. 
Hereinafter, the term binomial tree refers to the routing 
paths from the root node to all other nodes. The binomial 
tree rooted at node 101 can be derived by XORing every 
node ID in Figure 1 with 101. 

3. Server Assignment 

3.1. Content Delivery Model 

Let us consider a content delivery system consisting of 
origin servers and surrogate servers connected in a hy-
percube overlay. The origin servers have the definitive 
version of the content. The surrogate servers, which are 
located close to users and receive content requests, store 
a copy of the content. Through the interaction among the 
surrogates, one of the surrogates gives content to a user if 
possible; otherwise (i.e., for a cache miss), the requested 
content is delivered from an origin to the user via the 
surrogate that received the request. 

In this model, at any instant in time, any node in the 
hypercube acts as one of the three types of servers: 

1) An origin server, 
2) A surrogate server that is relaying a stream from an 

origin to a user or that has just received a request which 
causes a cache miss, 

3) A surrogate server that does not need to interact 
with origin servers. 

Hereinafter, we refer to a server of the first type as a 
server, a server of the second type as a client, and a user 
request that causes a cache miss as a request (i.e., this 
paper regards a server of the second type as a client that 
is served by a server of the first type). 

Let S and C denote sets of servers and requests, re-
spectively. Simultaneous request arrivals are dealt with 
under the condition that , here > 1N M M S  and =

=N C . The request partitioning problem considered is 
to assign requests to multiple servers in such a way that 
the quality of the assignment is maximized on the basis 
of the following assumptions: 

1) Partitioned sets  G

iG
i  are non-overlapping, where 

 is a request set assigned to server i. 
2) Servers may have different processing capabilities 

(see Subsection 3.3). 
3) For each request, one stream is delivered from a 

server to the user via the client that received the request. 
4) Requests may be preassigned to a server (see Sub-

section 3.3). 

3.2. Worst Link Stress 

The quality of the assignment is measured using the 

Copyright © 2012 SciRes.                                                                                IJCNS 



K. YAMASHITA, K. OIDA 274 

worst link stress. Assume that 
1i i M 

 is given and 
that all requests in C are receiving delivery service. Then 
the number of streams on each hypercube link can be 
determined. Let  be the number of streams on 
link e that originate from server i for serving all requests 
in i . The link stress (LS) of link e represents the num-
ber of streams on the link and is given by 

 G

 
=1

, = ,
M

i i
i

V e G

 , iV e G

G

  LS e G .               (1) 

The worst link stress (WLS) is the greatest link stress 
of all links in the hypercube. Strictly, WLS is given by 

     = max
e E

WLS G


, ,i iLS e G

 = 000S

           (2) 

where E is the set of all links in the hypercube. 
Let us calculate WLS using the binomial tree in Figure 

1 under the condition that  and two requests 
arrive simultaneously at nodes 101 and 111. In this case, 

= 1M  and . According to Figure 1, there are 
four links used for stream delivery: 

= 2N

       , 110,111

 ,i j
  1100 , = 2G

  1 100,110 ,V G

= 2WLS

= 000,100 , 100,101 , 100,110E , 

where  indicates the link between nodes i and j. 
Since  and 000,V

  
  1

100,101 , = 1

= 110,111 , = 1

V G

V G
 

from (2) we have . The WLS indicates the de-
gree of congestion since congestion typically occurs at 
links where a large number of streams are flowing. In 
order to obtain a small WLS value, traffic concentration 
on any single link must be avoided. Table 1 lists the 
definitions of symbols used frequently in this paper. 
 

Table 1. Symbols used frequently in this paper. 

Symbol Definition 

K Hypercube Dimensionality 

S Set of servers (with =M S ) 

C Set of requests (with =N C ) 

Gk Set of requests assigned to server k (with =k kL G

kG

) 

 Set of requests preassigned to server k 

E Set of all links in a hypercube 

Bk Binomial subtree of order k 

U Set of requests that are not selected 

A Set of selected or preassigned requests 

X Expected number of requests selected in future 

LS Number of streams on a link 

WLS Greatest LS of all links in a hypercube 

Hc Average number of hops per stream 

3.3. Optimization Problem 

The request partitioning problem P is formulated as fol-
lows: 

 

  

=1

Minimize ,

Subject to 0 for = 1,2, , ,

= if ,P

= ,

,

i

i

i j

M

i
i

i i

WLS G

G i M

G G i j

G C

G G





   





 





G

   (3) 

where i  is the set of requests preassigned to server i. 
When C has changed due to bursty arrivals, a new par-

tition  G

c G

i  must be calculated. If server k is providing 
service for request c when a new partition must be calcu-
lated, the partition is obtained under the condition that 

k . The preassignment may also be used for reduc-
ing interdomain traffic. 

Servers may not have the same processing capability. 
Let  be the number of requests assigned to server i 
(i.e., 

iL
=L Gi i ) and let if  be the processing capacity of 

server i. To balance the load among heterogeneous serv-
ers, i  should increase with L if . Therefore,  iL  
should be determined such that  

0max i i i ii i
L Li f f   . 

4. Proposed Algorithm 

Each server k has two sets U and A, which are the set of 
requests not selected and the set of requests either se-
lected by server k or preassigned to server k, respectively. 
Note that A depends on server k but U does not. The al-
gorithm proposed for solving the optimization problem P 
is specified as follows: 

1) At every server k in set S the algorithm starts with 
1

=0
=

K

kk
U C G

  = kG . A and 

2) Each server k in turn selects one request from set U 
in an arbitrary order according to Algorithm 4. If server k 
selects request c, then Algorithm 4 updates U and A  
such that c is removed from U and added to A. 

3) After the selection, server k informs the other serv-
ers about what has been selected so that each uses the 
information to update its own set U. 

4) The algorithm ends at server k if A = kL
=

. At that 
point in time, A kG

= 1

. 
Algorithm 4 is based on the following proposition:  
Proposition 1. The WLS is the LS of a link connecting 

the root to a binomial subtree if M .  
Proof. Assume that the number of streams on link  

in subtree B is greater than the number of streams from 
the root to the subtree. Then, at least one of the streams 
on link  does not stem from the root. This contradicts 





Copyright © 2012 SciRes.                                                                                IJCNS 



K. YAMASHITA, K. OIDA 275

the third assumption in Subsection 3.1.  
Figure 2 shows binomial subtrees 0 1 2 3, ,B B  

kB  (a bi omial subtree of order k) is a k-dimensional 
hypercube rooted at a node that is directly connected to 
the root (node 0000). The proposition suggests that WLS 
be produced by one of the four links connecting the root 
produced by one of the four links connecting the root and 
the subtrees. Therefore, traffic load should be balanced 
among these links. The load balancing, however, is not 
easy since a decision made by one server affects the 
other servers’ decisions. 

, ,B B  where
n

1

=0
=

K

ii
U U


Algorithm 1. Selecting a request (c) from set 

. 

1. Input:  iU ,  iA , L  k

2. Output:  iU ,  iA , c 

3. For = 0i  to 1K   

4.  1 1

=0

K K

ii i=0
=i k i iX L A U U

  

 

 

5. End for 

6. Find the smallest  1 i iA X  

n

n

n

0,1, ,arg min i Kn 

7. Select request c uniformly from U  

8. Remove request c from U  

9. Add request c to A  

10. Return  iU ,  iA , c 

The following explains Algorithm 4: Let X be the 
number of requests that server k is expected to select in 
future. Tuple   is partitioned into K tuples , ,U A X

= 0,1, , 1K 

1

=0

, = ,
K

i
i

A X X




 , ,U A X ,i i i i , based on where requests 
come from (see Figure 3). Therefore, 

1 1

=0 =0

= , =
K K

i i
i i

U U A
 

             (4) 

where  and =i jU U  =i jA A  i j
 , ,U A X

 if . Note 
that each server has different K tuples . i i i

The expected number iX  is obtained as follows: As-
sume that server k uniformly selects k  requests at 
a time. Then, the number of selected requests from sub-
tree  has a hypergeometric distribution with mean 

L A

iB
 k iL A U iU . We adopt the mean as X ; that is, for 

, = 0,1, , 1i K 

 
=

k i
i

L A U
X

U



nU

 

.                (5) 

To balance the load, Algorithm 4 selects a request 
from  if 

 
1

.n i iA X
0,1, ,

arg mi
i K

n
 




             (6) 

The load balancing means that iA , = 0,1, , 1i K  , 
are almost the same when the algorithm finishes execu-

tion. If (6) holds, the final nA  value is probably small; 
therefore, the server immediately raises nA  before nU  
becomes an empty set. If two or more integers n satisfy 
(6), the smallest integer is used. 

5. Performance Comparisons 

This section compares the performances of three algo-
rithms: the random, closest, and proposed algorithms. In 
all of these algorithms, each server k in set S in turn se-
lects one request in an arbitrary order until the number of 
requests that server k must serve reaches k . In the ran-
dom algorithm, one request is selected uniformly from 
those not selected yet. In the closest algorithm, each 
server selects a request coming from the closest client, 
where the distance between server s and client c is meas-
ured by the number of hops from s to c. If there is more 
than one such request, a request from a client in the low-
est order subtree is selected. 

L

The closest algorithm is an individual optimization al- 
gorithm since it yields the closest client-server pairs one 
by one. In this simultaneous arrival scenario, the term 
closest indicates not only the lowest hop count but also 
the lowest round-trip time, since there are no ongoing 
streams when requests arrive. 

Table 2 lists the default parameter values. For each 3- 
tuple  , ,K N M

= = =

, 10,000 calculations are performed. All 
of the algorithms are impartially evaluated by using the 
same node IDs for the M servers and N clients that re-
ceive user requests. These IDs are uniformly selected 
unless otherwise mentioned. Every server handles the 
same number of requests (i.e., 1 2 ML L L

=kG 
) and 

there are no preassigned requests (i.e.,  for all k). 

 

 

Figure 2. A binomial tree in the four-dimensional hypercube 
includes four binomial subtrees: B0, B1, B2, B3. 
 

 

Figure 3. Tuple (U, A, X) is partitioned into K tuples (Ui, Ai, 
Xi) based on where requests come from. 

Copyright © 2012 SciRes.                                                                                IJCNS 



K. YAMASHITA, K. OIDA 276 

5.1. Dimensionality 

Figure 4 shows the frequency distributions of 10,000 
calculated WLS values and Table 3 lists the means and 
standard deviations of the WLS distributions. These re-
sults demonstrate the effects of the dimensionality on the 
performance of the three algorithms. From Table 2, the 
percentages of the numbers of servers and clients in a 
hypercube are independent of the dimensionality K. 
From the figure, the proposed algorithm outperforms the 
other two algorithms, regardless of K. From Table 3, the 
mean and standard deviation of the random algorithm 
increase with K, while those of the closest algorithm stay 
roughly the same. In contrast, by using the proposed al-
gorithm, the mean and standard deviation decrease with 
K. As a result, the largest WLS of the proposed algorithm 
also decreases with dimensionality K, as shown in Fig-
ure 4. These results indicate that the proposed algorithm 
is effective for large-scale hypercubes. 
 

Table 2. Default parameter values used in calculations. 

 K = 12 K = 13 K = 14 

Number of requests N 1024 2048 4096 

Number of servers M 32 64 128 

 

 
(a) 

 
(b) 

Figure 4. WLS distributions for three algorithms when (a) 
K = 12 or (b) K = 14. 

Table 3. Means and standard deviations of WLS distribu-
tions. 

Mean (standard deviation) 
 

K = 12 K = 13 K = 14 

Random 23.02 (3.83) 24.71 (4.55) 26.90 (5.21) 

Closest 14.15 (1.65) 14.10 (1.42) 14.14 (1.25) 

Proposed 8.36 (1.74) 7.82 (1.34) 7.39 (0.99) 

 

 
(a) 

 
(b) 

Figure 5. WLS distributions for three algorithms when K = 
12 and the request set is (a) C1 or (b) C3. 

5.2. Client Distribution 

Let 0,h c 00 0

1C 2C C

 be the number of hops from node  
to the client that receives request c. Let us consider three 
request sets , , and 3  that satisfy 

1 2= = =C C C N3  and the following conditions: 
  0, 10h c   if 1c C .  
  0, 7h c   if 2c C .  
  0, 5h c   if c C3 .  

All requests in 3  arrive at clients that are located 
close to node . 

C
00 0

Figure 5 shows the WLS distributions and Table 4 
lists their means and standard deviations for the three sets. 
From the table, the proposed algorithm yields the small-

Copyright © 2012 SciRes.                                                                                IJCNS 



K. YAMASHITA, K. OIDA 277

est means and standard deviations for all request sets. By 
contrast, the WLS of the closest algorithm is highly sen-
sitive to the request set. As shown in Table 5, when set 

3  is used, the means for the random and closest algo-
rithms are very similar. Furthermore, as shown in Figure 
5(b), the largest WLS of the closest algorithm is greater 
than that of the random algorithm. This result suggests 
that individual optimization strategies are vulnerable to 
spatially irregular arrivals. 

C

= 1

5.3. Number of Servers 

Figure 6 and Table 5 show the results when the number 
of servers M is varied. The results demonstrate that as M 
increases, the proposed algorithm becomes more useful 
than the closest algorithm. Note that all three algorithms 
are identical when M . As M increases, the number 
of candidates of solution to problem P increases. The 
closest algorithm does not provide a near-optimal solu-
tion when a large number of candidates exist. 

5.4. Resource Utilization 

For efficient link resource utilization, the number of hops 
per stream should be as small as possible. We evaluate 
the three algorithms based on the average number of 
hops per stream ( cH ), which is given by 

    = , ,
i S j Gi

1
c iH G

N
h i j

 


 ,h i j

          (7) 

where  denotes the number of hops from server i 
to the client that receives request j. Table 6 lists the av-
erages of 100 values of cH . For all three algorithms, the 
same server and request sets  1 100

,
i

S C
 

c

i i  are used to 
obtain the average hop count H . 
 
Table 4. Means and standard deviations of WLS distribu-
tions when K = 12. 

 Mean (standard deviation) 

 C1 C2 C3 

Random 23.08 (4.03) 24.00 (3.63) 26.22 (2.99) 

Closest 14.94 (1.72) 18.11 (2.80) 24.59 (3.17) 

Proposed 9.01 (1.88) 10.99 (2.20) 15.33 (2.54) 

 
Table 5. Means and standard deviations of WLS distribu-
tions when K = 12. 

 Mean (standard deviation) 

 M = 16 M = 32 M = 64 

Random 39.75 (4.80) 23.02 (3.83) 14.20 (2.58)

Closest 26.72 (3.32) 14.15 (1.65) 7.89 (0.93) 

Proposed 20.92 (2.40) 8.36 (1.74) 4.69 (0.71) 

 
(a) 

 
(b) 

Figure 6. WLS distributions for three algorithms when K = 
12 and (a) M = 16 or (b) M = 64. 
 

Table 6. Averages of 100 values of Hc when K = 12. 

 Random Closest Proposed 

Average 6.00 2.59 4.72 

 
The hop count cH  for the closest algorithm indicates 

the lower bound. From the table, the average hop counts 
of the proposed and random algorithms are greater than 
that of the closest algorithm by 2.12 and 3.41 hops, re-
spectively. In other words, the number of resources used 
by the proposed or random algorithm is 1.82 or 2.32 
times larger, respectively, than that used by the closest 
algorithm. 

Figure 7 shows the histogram of the average of 100 
link stresses. Figure 7 and Table 6 are obtained under 
the same conditions; i.e., the same server and request sets 
 ,S C

4LS

1 100i i i 
 are used. From the figure, the essential 

difference between the proposed and closest algorithms 
is that the number of low-stress links (e.g.,  ) of 
the closest algorithm is significantly smaller than that of 
the proposed algorithm. This result indicates not only 
how the closest algorithm achieves the low average hop 
count cH  but also that the algorithm does not make 
good use of a large number of low-stress links. 

Copyright © 2012 SciRes.                                                                                IJCNS 



K. YAMASHITA, K. OIDA 278 

 

Figure 7. A histogram of the average link stress. 
 

6. Conclusions 

Video traffic on the Internet is expected to continue to 
grow in the near future, making the development of more 
scalable video delivery schemes indispensable. In par-
ticular, bursty request arrivals should be efficiently ad-
dressed. Previous server assignment approaches in the 
content delivery networks can be classified as individual 
optimization; i.e., the best client-server pair is individu-
ally selected. This paper considered the assignment 
problem with hypercube overlays from the viewpoint of 
social optimization, which provides good service quality 
for all simultaneous arrival requests. We first formulated 
an optimization problem and then derived a heuristic 
algorithm for the problem. 

We compared the performances of three algorithms 
(the proposed, closest, and random algorithms) based on 
the worst link stress (WLS), which indicates the degree 
of network congestion. To clarify the advantages of the 
social optimization approach, we considered the case in 
which a large number of requests arrive simultaneously. 
In this arrival scenario, the closest algorithm is an indi-
vidual optimization algorithm in terms of not only the 
hop count but also the round-trip time. The following 
results were obtained through evaluations: 
 The proposed algorithm was effective for large-scale 

networks because both the mean and standard devia-
tion of the WLS distribution decreased as the hyper-
cube dimensionality increased. 

 The closest algorithm did not provide near-optimal 
solutions when all requests arrived in a small part of 
the network or when there were many servers. 

 The number of low-stress links of the closest algo-
rithm was significantly less than that of the proposed 
algorithm. This result indicates that the algorithm 
does not make good use of a large number of low- 
stress links. 

REFERENCES 
[1] “Cisco Visual Networking Index: Forecast and Method-

ology, 2009-2014,” 2012.  
http://www.slideshare.net/jimkaskade/cisco-visual-networ
king-index-forecast-and-methodology-200914 

[2] N. Ramzan, E. Quacchio, T. Zgaljic and F. Rovati, 
“Peer-to-Peer Streaming of Scalable Video in Future 
Internet Applications,” IEEE Communications Magazine, 
Vol. 49, No. 1, 2011, pp. 128-135.  
doi:10.1109/MCOM.2011.5723810 

[3] K. Pussep, S. Oechsner, O. Abboud, M. Kantor and B. 
Stiller, “Impact of Self-Organization in Peer-to-Peer Over- 
lays on Underlay Utilization,” 4th International Confer- 
ence on Internet and Web Applications and Services, 
Venice, 24-28 May 2009, pp. 84-89.  
doi:10.1109/ICIW.2009.20 

[4] PPlive Website, 2011. http://www.pplive.com/  

[5] Zattoo Website, 2011. http://www.zattoo.com/  

[6] O. Abboud, K. Pussep, K. Mohr, A. Kovacevic, S. Kaune 
and R. Steinmetz, “Enabling Resilient P2P Video Stream-
ing: Survey and Analysis,” Multimedia Systems, Vol. 17, 
No. 3, 2011, pp. 177-197.  
doi:10.1007/s00530-011-0229-x 

[7] S. Tonnies, B. Kohncke, P. Hennig, I. Brunkhorst and 
W.-T. Balke, “A Service Oriented Architecture for Per- 
sonalized Universal Media Access,” Future Internet, Vol. 
3, No. 2, 2011, pp. 87-116. doi:10.3390/fi3020087 

[8] R. Buyya, M. Pathan and A. Vakali, “Content Delivery 
Networks,” 1st Edition, Springer Publishing Company, 
Incorporated, Berlin, 2008.  
doi:10.1007/978-3-540-77887-5 

[9] S. Tarkoma, “Overlay Networks,” CRC Press, London, 
2010. doi:10.1201/9781439813737 

[10] C. G. Plaxton, R. Rajaraman and A. W. Richa, “Access-
ing Nearby Copies of Replicated Objects in a Distributed 
Environment,” Proceedings of the 9th Annual ACM Sym-
posium on Parallel Algorithms and Architectures, New 
York, 22-25 June 1997, pp. 311-320.  

[11] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. 
Kaashoek, F. Dabek and H. Balakrishnan, “Chord: A 
Scalable Peer-to-Peer Lookup Protocol for Internet Ap-
plications,” IEEE/ACM Transactions on Networking, Vol. 
11, No. 1, 2003, pp. 17-32.  
doi:10.1109/TNET.2002.808407 

[12] A. Rowstron and P. Druschel, “Pastry: Scalable, Decen-
tralized Object Location and Routing for Large-Scale 
Peer-to-Peer Systems,” Proceedings of the 18th IFIP/ 
ACM International Conference on Distributed Systems 
Platforms, Heidelberg, 12-16 November 2001, pp. 329- 
350.  

[13] B. Y. Zhao, J. Kubiatowicz and A. D. Joseph, “Tapestry: 
An Infrastructure for Fault-tolerant Wide-Area Location 
and Routing,” Computer Science Division (EECS), Uni-
versity of California, Oakland, 2001.  

[14] E. Anceaume, F. Brasileiro, R. Ludinard and A. Ravoaja, 
“PeerCube: A Hypercube-Based P2P Overlay Robust 
against Collusion and Churn,” 2nd IEEE International 
Conference on Self-Adaptive and Self-Organizing Systems, 

Copyright © 2012 SciRes.                                                                                IJCNS 

http://dx.doi.org/10.1109/MCOM.2011.5723810
http://dx.doi.org/10.1109/ICIW.2009.20
http://dx.doi.org/10.1007/s00530-011-0229-x
http://dx.doi.org/10.3390/fi3020087
http://dx.doi.org/10.1007/978-3-540-77887-5
http://dx.doi.org/10.1201/9781439813737
http://dx.doi.org/10.1109/TNET.2002.808407


K. YAMASHITA, K. OIDA 

Copyright © 2012 SciRes.                                                                                IJCNS 

279

Ann Arbor, 3-7 October 2008, pp. 15-24.  
doi:10.1109/SASO.2008.44 

[15] S. C. Han and Y. Xia, “Network Load-Aware Content 
Distribution in Overlay Networks,” Computer Communi-
cations, Vol. 32, 2009, pp. 51-61.  
doi:10.1016/j.comcom.2008.09.021 

[16] A. Shaikh, R. Tewari and M. Agrawal, “On the Effec-
tiveness of DNS-Based Server Selection,” Proceedings of 
IEEE INFOCOM 2001 20th Annual Joint Conference of 
the IEEE Computer and Communications Societies, An-
chorage, Vol. 3, 22-26 April 2001, pp. 1801-1810.  

[17] S. Ratnasamy, M. Handley, R. M. Karp and S. Shenker, 
“Topologically-Aware Overlay Construction and Server 
Selection,” 21st Annual Joint Conference of the IEEE 
Computer and Communications Societies, New York, Vol. 
3, 23-27 June 2002, pp. 1190-1199.  

[18] M. Hofmann and L. R. Beaumont, “Content Networking: 
Architecture, Protocols, and Practice,” Morgan Kaufmann 
Publishers, San Francisco, 2005, pp. 129-134.  

[19] C. M. Chen, Y. Ling, M. Pang, W. Chen, S. Cai, Y. Suwa 
and O. Altintas, “Scalable Request-Routing with Next- 
Neighbor Load Sharing in Multi-Server Environments,” 
Proceedings of the 19th International Conference on Ad- 
vanced Information Networking and Applications, IEEE 

Computer Society, Washington, 28-30 March 2005, pp. 
441-446.  

[20] C. E. Bell and S. Stidham Jr., “Individual versus Social 
Optimization in the Allocation of Customers to Alterna-
tive Servers,” Management Science, Vol. 29, No. 7, 1983, 
pp. 831-839. doi:10.1287/mnsc.29.7.831 

[21] S. Shenker and A. Weinrib, “The Optimal Control of 
Heterogeneous Queueing Systems: A Paradigm for Load- 
Sharing and Routing,” IEEE Transactions on Computers, 
Vol. 38, 1989, pp. 1724-1735. doi:10.1109/12.40850 

[22] K. Oida and S. Saito, “A Packet-Size Aware Adaptive 
Routing Algorithm for Parallel Transmission Server Sys-
tems,” Journal of Parallel and Distributed Computing, 
Vol. 64, No. 1, 2004, pp. 36-47.  
doi:10.1016/j.jpdc.2003.07.008 

[23] F. T. Leighton, “Introduction to Parallel Algorithms and 
Archtectures: Arrays, Trees, Hypercubes,” Morgan Kauf-
mann Publishers, Waltham, 1992.  

[24] Y. Saad and M. Schultz, “Topological Properties of Hy-
percubes,” IEEE Transactions on Computers, Vol. 37, No. 
7, 1988, pp. 867-872. doi:10.1109/12.2234 

[25] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, 
“Introduction to Algorithms,” 3nd Edition, The MIT 
Press, Cambridge, 2001. 

 
 

http://dx.doi.org/10.1016/j.comcom.2008.09.021
http://dx.doi.org/10.1287/mnsc.29.7.831
http://dx.doi.org/10.1109/12.40850
http://dx.doi.org/10.1016/j.jpdc.2003.07.008
http://dx.doi.org/10.1109/12.2234

