On Lorentzian α-Sasakian Manifolds

Subbegowda Lokesh, Venkatesha, Channabasappa Shantappa Bagewadi, Kuntinamadu Thimmappa Pradeep Kumar
Department of P.G. Studies and Research in Mathematics, Kuvempu University, Shimoga, India
Email: vensmath@gmail.com

Received December 10, 2011; revised February 10, 2012; accepted February 18, 2012

Abstract

The object of the present paper is to study Lorentzian α-Sasakian manifolds satisfying certain conditions on the $W_{2}{ }^{-}$ curvature tensor.

Keywords: Lorentzian α-Sasakian Manifold; W_{2}-Curvature Tensor; Einstein Manifold

1. Introduction

In 1970, Pokhariyal and Mishra [1] have introduced new curvature tensor called W_{2}-curvature tensor in a Riemannian manifold and studied their properties. Further, Pokhariyal [2] has studied some properties of this curvature tensor in a Sasakian manifold. Matsumoto, Ianus and Mihai [3], Ahmet Yildiz and U. C. De [4] and Venkatesha, C. S. Bagewadi, and K. T. Pradeep Kumar [5], have studied W_{2}-curvature tensor in P-Sasakian, Kenmotsu and Lorentzian para-Sasakian manifolds respectively.
In [6], S. Tanno classified connected almost contact metric manifolds whose automorphism groups possess the maximum dimension. For such a manifold, the sectional curvature of a plane sections containing is a constant, say c. He showed that they can be divided into three classes:

1) Homogeneous normal contact Riemannian manifolds with $c>0$;
2) Global Riemannian products of a line or a circle with a Kaehler manifold of constant holomorphic sectional curvature if $c=0$ and;
3) A warped product space $\mathbb{R} \times_{f} \mathbb{C}$ if $c>0$. It is known that the manifolds of class (1) are characterized by admitting a Sasakian structure.

In the Gray-Hervella classification of almost Hermitian manifolds [7], there appears a class, W_{4}, of Hermitian manifolds which are closely related to locally conformal Kaehler manifolds [8]. An almost contact metric structure on a manifold M is called a trans-Sasakian structure [9] if the product manifold $M \times \mathbb{R}$ belongs to the class W_{4}. The class $C_{6} \oplus C_{5}([10,11])$ coincides with the class of the trans-Sasakian structures of type (α, β). In fact, in [11], local nature of the two subclasses, namely, C_{5} and C_{6} structures of trans-Sasakian structures are characterized completely.

We note that trans-Sasakian structures of type $(0,0)$, $(0, \beta)$ and $(\alpha, 0)$ are cosymplectic [12], β-Kenmotsu [13] and α-Sasakian [13] respectively. In [14] it is proved that trans-Sasakian structures are generalized quasi-Sasakian. Thus, trans-Sasakian structures also provide a large class of generalized quasi-Sasakian structures.

An almost contact metric structure (ϕ, ξ, η, g) on M is called a trans-Sasakian structure [9] if $(M \times \mathbb{R}, J, G)$ belongs to the class W_{4} [7], where J is the almost complex structure on $M \times \mathbb{R}$ defined by

$$
J(X, f d / \mathrm{d} t)=(\phi X-f, \eta(X) d / \mathrm{d} t),
$$

for all vector fields X on M and smooth functions f on $M \times \mathbb{R}$, and G is the product metric on $M \times \mathbb{R}$. This may be expressed by the condition [15]

$$
\begin{aligned}
\left(\nabla_{X} \phi\right) Y & =\alpha(g(X, Y)-\eta(Y) X) \\
& +\beta(g(\phi X, Y)-\eta(Y) \phi X),
\end{aligned}
$$

for some smooth functions α and β on M, and we say that the trans-Sasakian structure is of type (α, β).

A trans-Sasakian structure of type (α, β) is α-Sasakian if $\beta=0$ and α a nonzero constant [16]. If $\alpha=1$, then α-Sasakian manifold is a Sasakian manifold.

2. Preliminaries

A differentiable manifold of dimension n is called Lorentzian α-Sasakian manifold if it admits a (1, 1)-tensor field ϕ, a contravariant vector field ξ, a covariant vector field η and Lorentzian metric g satisfy ([17-19])

$$
\begin{gather*}
\eta(\xi)=-1 \tag{2.1}\\
\phi^{2}=I+\eta \otimes \xi \tag{2.2}\\
g(\phi X, \phi Y)=g(X, Y)+\eta(X) \eta(Y) \tag{2.3}
\end{gather*}
$$

$$
\begin{align*}
& g(X, \xi)=\eta(X) \tag{2.4}\\
& \phi \xi=0, \eta(\phi X)=0 \tag{2.5}
\end{align*}
$$

for all $X, Y \in T M$.
Also a Lorentzian α-Sasakian manifold M is satisfying [18]
(a) $\nabla_{X}=-\alpha \phi X$, (b) $\left(\nabla_{X} \eta\right)(Y)=-\alpha g(\phi X, Y)$,
where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian metric g.

Further, on Lorentzian α-Sasakian manifold M the following relations hold:

$$
\begin{gather*}
\eta(R(X, Y) Z)=\alpha^{2}(g(Y, Z) \eta(X)-g(X, Z) \eta(Y)) \tag{2.7}\\
R(\xi, X) Y=\alpha^{2}(g(X, Y) \xi-\eta(Y) X) \tag{2.8}\\
R(X, Y) \xi=\alpha^{2}(\eta(Y) X-\eta(X) Y), \tag{2.9}\\
R(\xi, X) \xi=\alpha^{2}(\eta(X) \xi+X) \tag{2.10}\\
S(X, \xi)=(n-1) \alpha^{2} \eta(X), \tag{2.11}\\
S(\phi X, \phi Y)=S(X, Y)+(n-1) \alpha^{2} \eta(X) \eta(Y), \tag{2.12}
\end{gather*}
$$

for all vector fields X, Y, Z where S is the Ricci tensor and Q is the Ricci operator given by $S(X, Y)=g(Q X, Y)$.

An Lorentzian α-Sasakian manifold M is said to be Einstein if its Ricci tensor S is of the form

$$
\begin{equation*}
S(X, Y)=a g(X, Y) \tag{2.13}
\end{equation*}
$$

for any vector fields X and Y, where α is a function on M.
In [1], Pokhariyal and Mishra have defined the curvature tensor W_{2}, given by

$$
\begin{align*}
& W_{2}(X, Y, U, V)=R(X, Y, U, V) \\
& +\frac{1}{n-1}[g(X, U) S(Y, V)-g(Y, U) S(X, V)] \tag{2.14}
\end{align*}
$$

where S is a Ricci tensor of type (0,2).
Consider in an Lorentzian α-Sasakian manifold satisfying $W_{2}=0$ in (2.14), then we have

$$
\begin{align*}
& R(X, Y, U, V) \\
& =1 /(n-1)([g(Y, U) S(X, V)-g(X, U) S(Y, V)] \tag{2.15}
\end{align*}
$$

Putting $X=U=$ in (2.15) then using (2.8) and (2.11), we obtain

$$
\begin{equation*}
S(Y, V)=\alpha^{2}(n-1) g(Y, V) \tag{2.16}
\end{equation*}
$$

Thus M is an Einstein manifold.

Theorem 2.1. If on a Lorentzian α-Sasakian manifold M, the condition $W_{2}=0$ holds, then M is an Einstein manifold.

Definition 2.1. An Lorentzian α-Sasakian manifold is called W_{2}-semisymmetric if it satisfies

$$
\begin{equation*}
R(X, Y) \cdot W_{2}=0 \tag{2.17}
\end{equation*}
$$

where $R(X, Y)$ is to be considered as a derivation of the tensor algebra at each point of the manifold for tangent vectors X and Y.

In an Lorentzian α-Sasakian manifold the W_{2}-curvature tensor satisfies the condition

$$
\begin{equation*}
\eta\left(W_{2}(X, Y) Z\right)=0 \tag{2.18}
\end{equation*}
$$

3. Lorentzian α-Sasakian Manifolds

Satisfying $\tilde{\boldsymbol{P}}(\boldsymbol{X}, \boldsymbol{Y}) \cdot \boldsymbol{W}_{2}=\mathbf{0}$
The pseudo projective curvature tensor \tilde{P} is defined as [20]

$$
\begin{aligned}
& \tilde{P}(X, Y) Z \\
= & a R(X, Y) Z \\
& +b[S(Y, Z) X-S(X, Z) Y] \\
& -\frac{r}{n}\left[\frac{a}{n-1}+b\right][g(Y, Z) X-g(X, Z) Y] .
\end{aligned}
$$

Using (2.8) and (2.11), Equation (3.1) reduces to

$$
\begin{aligned}
\tilde{P}(\xi, Y) Z= & h[g(Y, Z)-\eta(Z) Y] \\
& +b\left[S(Y, Z) \xi-\alpha^{2}(n-1) \eta(Z) Y\right]
\end{aligned}
$$

where $h=\left(a \alpha^{2}-\frac{r}{n}\left[\frac{a}{n-1}+b\right]\right)$.
Now consider in a Lorentzian α-Sasakian manifold

$$
\tilde{P}(X, Y) \cdot W_{2}=0
$$

This condition implies that

$$
\begin{align*}
& \tilde{P}(X, Y) W_{2}(U, V) Z-W_{2}(\tilde{P}(X, Y) U, V) Z \\
& -W_{2}(U, \tilde{P}(X, Y) V) Z-W_{2}(U, V) \tilde{P}(X, Y) Z=0 . \tag{3.3}
\end{align*}
$$

Put $X=\xi$ in (3.3) and then taking the inner product with ξ, we obtain

$$
\begin{align*}
& g\left(\tilde{P}(\xi, Y) W_{2}(U, V) Z, \xi\right) \\
& -g\left(W_{2}(\tilde{P}(\xi, Y) U, V) Z, \xi\right) \\
& -g\left(W_{2}(U, \tilde{P}(\xi, Y) V) Z, \xi\right) \tag{3.4}\\
& -g\left(W_{2}(U, V) \tilde{P}(\xi, Y) Z, \xi\right)=0
\end{align*}
$$

Using (3.2) in (3.4), we obtain
$h\left[-g\left(Y, W_{2}(U, V) Z\right)-g(Y, U) \eta\left(W_{2}(\xi, V) Z\right)\right.$
$-g(Y, V) \eta\left(W_{2}(U, \xi) Z\right)-g(Y, Z) \eta\left(W_{2}(U, V) \xi\right)$
$-\eta(Y) \eta\left(W_{2}(U, V) Z\right)+\eta(U) \eta\left(W_{2}(Y, V) Z\right)$
$\left.+\eta(V) \eta\left(W_{2}(U, V) Z\right)+\eta(Z) \eta\left(W_{2}(U, V) Y\right)\right]$
$-b\left[S\left(Y, W_{2}(U, V) Z\right)+S(Y, U) \eta\left(W_{2}(\xi, V) Z\right)\right.$
$+S(Y, V) \eta\left(W_{2}(U, \xi) Z\right)+S(Y, Z) \eta\left(W_{2}(U, V) \xi\right)$
$+\alpha^{2}(n-1) \eta(Y) \eta\left(W_{2}(U, V) Z\right)$
$+\alpha^{2}(n-1) \eta(U) \eta\left(W_{2}((Y, V) Z)\right.$
$+\alpha^{2}(n-1) \eta(V) \eta\left(W_{2}(U, V) Z\right)$
$\left.+\alpha^{2}(n-1) \eta(Z) \eta\left(W_{2}(U, V) Y\right)\right]=0$.
By using (2.18) in (3.5), we get
$h\left[g\left(Y, W_{2}(U, V) Z\right)\right]+b\left[S\left(Y, W_{2}(U, V) Z\right)\right]=0$.
Taking $U=Z=\xi$ in (3.6) and using (2.14) and (2.10), we have

$$
\begin{align*}
& \left.\frac{b}{n-1} S(Q Y, V)-\left(b \alpha^{2}-\frac{h}{n-1}\right)\right) S(Y, V) \tag{3.7}\\
& -h \alpha^{2} g(V, Y)=0
\end{align*}
$$

If $b=0$, we get

$$
h\left\{\frac{1}{n-1} S(Y, V)-\alpha^{2} g(Y, V)\right\}=0 .
$$

Then, either $h=0$ (or)

$$
S(Y, V)=\alpha^{2}(n-1) g(Y, V)
$$

If $b \neq 0$, then we get

$$
\begin{align*}
S(Q Y, V)= & \left(\alpha^{2}(n-1)-\frac{h}{b}\right) S(Y, V) \tag{3.8}\\
& +\frac{h}{b} \alpha^{2}(n-1) g(V, Y)
\end{align*}
$$

Thus, we can state the following:
Theorem 3.2. If M is an Lorentzian α-Sasakian manifold satisfying the condition $\tilde{P}(X, Y) \cdot W_{2}=0$ Then:

- If $b=0$, then either $h=0$ on M, or M is an Einstein manifold;
- If $b \neq 0$, then the Equation (3.8) holds on M.

4. Lorentzian α-Sasakian Manifold Satisfying $\tilde{\boldsymbol{Z}}(X, Y) \cdot W_{2}=0$

The concircular curvature tensor Z is defined as [21]

$$
\begin{align*}
\tilde{Z}(X, Y) Z= & R(X, Y) Z \\
& -\frac{r}{n(n-1)}[g(Y, Z) X-g(X, Z) Y] \tag{4.1}
\end{align*}
$$

Using (2.8) and (2.11), Equation (4.1) reduces to
$\tilde{Z}(\xi, Y) Z=\left[\alpha^{2}-\frac{r}{n(n-1)}\right][g(Y, Z) \xi-\eta(Z) Y]$.
Now consider in a Lorentzian α-Sasakian manifold

$$
\tilde{Z}(X, Y) \cdot W_{2}=0
$$

This condition implies that

$$
\begin{align*}
& \tilde{Z}(X, Y) W_{2}(U, V) Z-W_{2}(\tilde{Z}(X, Y) U, V) Z \\
& -W_{2}(U, \tilde{Z}(X, Y) V) Z-W_{2}(U, V) \tilde{Z}(X, Y) Z=0 . \tag{4.3}
\end{align*}
$$

Put $X=\xi$ in (4.3) and then taking the inner product with ξ, we obtain

$$
\begin{align*}
& g\left(\tilde{Z}(\xi, Y) W_{2}(U, V) Z, \xi\right) \\
& -g\left(W_{2}(\tilde{Z}(\xi, Y) U, V) Z, \xi\right) \\
& -g\left(W_{2}(U, \tilde{Z}(\xi, Y) V) Z, \xi\right) \tag{4.4}\\
& -g\left(W_{2}(U, V) \tilde{Z}(\xi, Y) Z, \xi\right)=0 .
\end{align*}
$$

Using (4.2) in (4.4), we obtain

$$
\begin{align*}
& {\left[\alpha^{2}-\frac{r}{n(n-1)}\right]\left[-g\left(Y, W_{2}(U, V) Z\right)\right.} \\
& -g(Y, U) \eta\left(W_{2}(\xi, V) Z\right)-g(Y, V) \eta\left(W_{2}(U, \xi) Z\right) \\
& -g(Y, Z) \eta\left(W_{2}(U, V) \xi\right)-\eta(Y) \eta\left(W_{2}(U, V) Z\right) \tag{4.5}\\
& \left.+\eta(U) \eta\left(W_{2}(V, Y) Z\right)+\eta(V) \eta\left(W_{2}(U, Y) Z\right)\right] \\
& \left.+\eta(Z) \eta\left(W_{2}(U, V) Y\right)\right]=0 .
\end{align*}
$$

By using (2.18) in (4.5), we get

$$
\begin{equation*}
\left[\alpha^{2}-\frac{r}{n(n-1)}\right]\left[g\left(Y, W_{2}(U, V) Z\right)\right]=0 \tag{4.6}
\end{equation*}
$$

Again from (4.2) we have $\alpha^{2}-\frac{r}{n(n-1)} \neq 0$. And so

$$
\begin{equation*}
W_{2}(U, V, Z, Y)=0 \tag{4.7}
\end{equation*}
$$

In view of (2.14) and (4.7), it follows that

$$
\begin{align*}
& R(U, V, Z, Y) \\
& =\frac{1}{n-1}[g(V, Z) S(U, Y)-g(U, Z) S(V, Y)] . \tag{4.8}
\end{align*}
$$

Contracting (4.8), we have

$$
\begin{equation*}
S(V, Z)=(n-1) g(V, Z) \tag{4.9}
\end{equation*}
$$

Therefore M is an Einstein manifold.
Theorem 4.3. If on a Lorentzian α-Sasakian manifold M, the condition $\tilde{Z}(X, Y) \cdot W_{2}=0$. holds, then M is an

Einstein manifold.

5. Lorentzian $\boldsymbol{\alpha}$-Sasakian Manifolds
 Satisfying $N(X, Y) \cdot W_{2}=0$

The conhormonic curvature tensor N is defined as

$$
\begin{align*}
N(X, Y) Z= & R(X, Y) Z-\frac{1}{n-2}[S(Y, Z) X-S(X, Z) \\
& +g(Y, Z) Q X-g(X, Z) Q Y] \tag{5.1}
\end{align*}
$$

Using (2.8) and (2.11), Equation (5.1) reduces to

$$
\begin{align*}
N(\xi, Y) Z= & \frac{-\alpha^{2}}{n-2}[g(Y, Z) \xi-\eta(Z) Y] \tag{5.2}\\
& -\frac{1}{n-2}[S(Y, Z) \xi-\eta(Z) Q Y]
\end{align*}
$$

Now consider in a Lorentzian α-Sasakian manifold

$$
N(X, Y) \cdot W_{2}=0
$$

This condition implies that

$$
\begin{align*}
& N(X, Y) W_{2}(U, V) Z-W_{2}(N(X, Y) U, V) Z \\
& -W_{2}(U, N(X, Y) V) Z-W_{2}(U, V) N(X, Y) Z=0 \tag{5.3}
\end{align*}
$$

Put $X=\xi$ in (5.3) and then taking the inner product with ξ, we obtain

$$
\begin{align*}
& g\left(N(\xi, Y) W_{2}(U, V) Z, \xi\right) \\
& -g\left(W_{2}(N(\xi, Y) U, V) Z, \xi\right) \\
& -g\left(W_{2}(U, N(\xi, Y) V) Z, \xi\right) \tag{5.4}\\
& -g\left(W_{2}(U, V) N(\xi, Y) Z, \xi\right)=0 .
\end{align*}
$$

Using (5.2) in (5.4), we obtain

$$
\begin{align*}
& \frac{-\alpha^{2}}{n-2}\left[-g\left(Y, W_{2}(U, V) Z\right)-g(Y, U) \eta\left(W_{2}(\xi, V) Z\right)\right. \\
& -g(Y, V) \eta\left(W_{2}(U, \xi) Z\right)-g(Y, Z) \eta\left(W_{2}(U, V) \xi\right) \\
& -\eta(Y) \eta\left(W_{2}(U, V) Z\right)+\eta(U) \eta\left(W_{2}(Y, V) Z\right) \\
& \left.+\eta(V) \eta\left(W_{2}(U, Y) Z\right)+\eta(Z) \eta\left(W_{2}(U, V) Y\right)\right] \\
& -\frac{1}{n-2}\left[-S\left(Y, W_{2}(U, V) Z\right)-S(Y, U) \eta\left(W_{2}(\xi, V) Z\right)\right. \\
& -S(Y, V) \eta\left(W_{2}(U, \xi) Z\right)-S(Y, Z) \eta\left(W_{2}(U, V) \xi\right) \\
& -\eta(Q Y) \eta\left(W_{2}(U, V) Z\right)+\eta(U) \eta\left(W_{2}(Q Y, V) Z\right) \\
& \left.+\eta(V) \eta\left(W_{2}(U, Q Y) Z\right)+\eta(Z) \eta\left(W_{2}(U, V) Q Y\right)\right]=0 . \tag{5.5}
\end{align*}
$$

By using (2.18) in (5.5), we get

$$
\begin{align*}
& \left\{\frac{\alpha^{2}}{(n-2)}\right\} g\left(Y, W_{2}(U, V) Z\right) \tag{5.6}\\
& +\frac{1}{n-2} S\left(Y, W_{2}(U, V) Z\right)=0
\end{align*}
$$

Taking $U=Z=\xi$ in (5.6) and then using (2.14) and (2.10), we have

$$
\begin{align*}
S(Q Y, V)= & \alpha^{2}(n-2) S(Y, V) \\
& +\alpha^{4}(n-1) g(Y, V) \tag{5.7}
\end{align*}
$$

Thus, we can state the following:
Theorem 5.4. If on a Lorentzian α-Sasakian manifold M, the condition $N(X, Y) \cdot W_{2}=0$ holds, then Equation (5.7) is satisfied on M.

6. Lorentzian α-Sasakian Manifolds
 Satisfying $\tilde{C}(X, Y) \cdot W_{2}=0$

The quasi-conformal curvature tensor \tilde{C} is defined as

$$
\begin{align*}
\tilde{C}(X, Y) Z= & a R(X, Y) Z+b[S(Y, Z) X-S(X, Z) Y \\
& +g(Y, Z) Q X-g(X, Z) Q Y] \\
& -\frac{r}{n}\left[\frac{a}{n-1}+2 b\right][g(Y, Z) X-g(X, Z) Y] . \tag{6.1}
\end{align*}
$$

Using (2.8) and (2.11), Equation (6.1) reduces to

$$
\begin{align*}
\tilde{C}(\xi, Y) Z= & k[g(Y, Z) \xi-\eta(Z) Y] \tag{6.2}\\
& +b[S(Y, Z) \xi-\eta(Z) Q Y]
\end{align*}
$$

where $k=\alpha^{2}(a+b(n-1))-\frac{r}{n}\left(\frac{a}{n-1}+2 b\right)$.
Now consider in a Lorentzian α-Sasakian manifold

$$
\tilde{C}(X, Y) \cdot W_{2}=0
$$

This condition implies that

$$
\begin{align*}
& \tilde{C}(X, Y) W_{2}(U, V) Z-W_{2}(\tilde{C}(X, Y) U, V) Z \tag{6.3}\\
& -W_{2}(U, \tilde{C}(X, Y) V) Z-W_{2}(U, V) \tilde{C}(X, Y) Z=0 .
\end{align*}
$$

Put $X=\xi$ in (6.3) and then taking the inner product with ξ, we obtain

$$
\begin{align*}
& g\left(\tilde{C}(\xi, Y) W_{2}(U, V) Z, \xi\right) \\
& -g\left(W_{2}(\tilde{C}(\xi, Y) U, V) Z, \xi\right) \tag{6.4}\\
& -g\left(W_{2}(U, \tilde{C}(\xi, Y) V) Z, \xi\right) \\
& -g\left(W_{2}(U, V) \tilde{C}(\xi, Y) Z, \xi\right)=0 .
\end{align*}
$$

Using (6.2) in (6.4), we obtain

$$
\begin{align*}
& k\left[-g\left(Y, W_{2}(U, V) Z\right)-g(Y, U) \eta\left(W_{2}(\xi, V) Z\right)\right. \\
& -g(Y, V) \eta\left(W_{2}(U, \xi) Z\right)-g(Y, Z) \eta\left(W_{2}(U, V) \xi\right) \\
& -\eta(Y) \eta\left(W_{2}(U, V) Z\right)+\eta(U) \eta\left(W_{2}(Y, V) Z\right) \\
& \left.+\eta(V) \eta\left(W_{2}(U, Y) Z\right)+\eta(Z) \eta\left(W_{2}(U, V) Y\right)\right] \\
& -b\left[S\left(Y, W_{2}(U, V) Z\right)+S(Y, U) \eta\left(W_{2}(\xi, V) Z\right)\right. \\
& +S(Y, V) \eta\left(W_{2}(U, \xi) Z\right)+S(Y, Z) \eta\left(W_{2}(U, V) \xi\right) \\
& +\eta(Q Y) \eta\left(W_{2}(U, V) Z\right)-\eta(U) \eta\left(W_{2}(Q Y, V) Z\right) \\
& \left.-\eta(V) \eta\left(W_{2}(U, Q Y) Z\right)-\eta(Z) \eta\left(W_{2}(U, V) Q Y\right)\right]=0 . \tag{6.5}
\end{align*}
$$

By using (2.18) in (6.5), we get

$$
\begin{equation*}
k g\left(Y, W_{2}(U, V) Z\right)+b S\left(Y, W_{2}(U, V) Z\right)=0 . \tag{6.6}
\end{equation*}
$$

Taking $U=Z=\xi$ in (6.6) and then using (2.14) and (2.10), we have

$$
\begin{align*}
& \frac{b}{n-1} S(Q Y, V)-\left(b \alpha^{2}-\frac{k}{n-1}\right) S(Y, V) \tag{6.7}\\
& -k \alpha^{2} g(V, Y)=0
\end{align*}
$$

If $b=0$, we get

$$
k\left\{\frac{1}{n-1} S(Y, V)-\alpha^{2} g(Y, V)\right\}=0 .
$$

Then, either $k=0$ (or)

$$
S(Y, V)=\alpha^{2}(n-1) g(Y, V)
$$

If $b \neq 0$, then we get

$$
\begin{align*}
S(Q Y, V)= & \left(\alpha^{2}(n-1)-\frac{k}{b}\right) S(Y, V) \\
& +\left(\frac{k}{b} \alpha^{2}(n-1)\right) g(V, Y) \tag{6.8}
\end{align*}
$$

Thus, we can state the following:
Theorem 6.5. If M is an Lorentzian α-Sasakian manifold satisfying the condition $\tilde{C}(X, Y) \cdot W_{2}=0$, then we get:

- If $b=0$, then either $k=0$ on M, or M is an Einstein manifold;
- If $b \neq 0$ then the Equation (6.8) holds on M.

REFERENCES

[1] G. P. Pokhariyal and R. S. Mishra, "The Curvature Tensor and Their Relativistic Significance," Yokohoma Mathematical Journal, Vol. 18, 1970, pp. 105-108.
[2] G. P. Pokhariyal, "Study of a New Curvature Tensor in a Sasakian Manifold," Tensor N.S., Vol. 36, No. 2, 1982, pp.

222-225.
[3] K. Matsumoto, S. Ianus and I. Mihai, "On P-Sasakian manifolds Which Admit Certain Tensor Fields," Publicationes Mathematicae Debrecen, Vol. 33, 1986, pp. 61-65.
[4] A, Yildiz and U. C. De, "On a Type of Kenmotsu Manifolds," Differential Geometry-Dynamical Systems, Vol. 12, 2010, pp. 289-298.
[5] Venkatesha, C. S. Bagewadi and K. T. Pradeep Kumar, "Some Results on Lorentzian Para-Sasakian Manifolds," ISRN Geometry, Vol. 2011, Article ID 161523.
[6] S. Tanno, "The Automorphism Groups of Almost Contact Riemannian Manifolds," Tohoku Mathematical Journal, Vol. 21, No. 1, 1969, pp. 21-38. doi:10.2748/tmj/1178243031
[7] A. Gray and L. M. Hervella, "The Sixteen Classes of almost Hermitian Manifolds and Their Linear Invariants," Annali di Matematica Pura ed Applicata, Vol. 123, No. 4, 1980, pp. 35-58. doi:10.1007/BF01796539
[8] S. Dragomir and L. Ornea, "Locally Conformal Kaehler Geometry, Progress in Mathematics," Birkhauser Boston, Inc., Boston, 1998.
[9] J. A. Oubina, "New Classes of Contact Metric Structures," Publicationes Mathematicae Debrecen, Vol. 32, No. 4, 1985, pp. 187-193.
[10] J. C. Marrero, "The Local Structure of Trans-Sasakian Manifolds," Annali di Matematica Pura ed Applicata, Vol. 162, No. 4, 1992, pp. 77-86. doi:10.1007/BF01760000
[11] J. C. Marrero and D. Chinea, "On Trans-Sasakian Manifolds," Proceedings of the XIVth Spanish-Portuguese Conference on Mathematics, University La Laguna, Vol. I-III, 1990, pp. 655-659.
[12] D. E. Blair, "Contact Manifolds in Riemannian Geometry," Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1976.
[13] K. Kenmotsu, "A Class of Almost Contact Riemannian Manifolds," Tohoku Mathematical Journal, Vol. 24, No. 1, 1972, pp. 93-103. doi:10.2748/tmj/1178241594
[14] M. M. Tripathi, "Trans-Sasakian Manifolds Are Generalized Quasi-Sasakian," Nepali Mathematical Sciences Report, Vol. 18, No. 2, 2000, pp. 11-14.
[15] D. E. Blair and J. A. Oubina, "Conformal and Related Changes of Metric on the Product of Two Almost Contact Metric Manifolds," Publications Matematiques, Vol. 34, 1990, pp. 99-207.
[16] D. Janssens and L. Vanhecke, "Almost Contact Structures and Curvature Tensors," Kodai Mathematical Journal, Vol. 4, No. 1, 1981, pp. 1-27. doi:10.2996/kmj/1138036310
[17] A. Yildiz and C. Murathan, "On Lorentizian $_\alpha$-Sasakian Manifolds," Kyungpook Mathematical Journāl, Vol. 45, No. 1, 2005, pp. 95-103.
[18] U. C. De and M. M. Tripathi, "Ricci Tensor in 3-Dimensional Trans-Sasakian Manifolds," Kyungpook Mathematical Journal, Vol. 43, 2003, pp. 247-255.
[19] K. Matsumoto and I. Mihai, "On a Certain Transformation in a Lorentzian Para-Sasakian Manifold," Tensor N.S., Vol. 47, 1988, pp. 189-197.
[20] K. Yano and M. Kon, "Structures on Manifolds," Series in Pure Mathematics, Vol. 3, World Scientific Publishing Co., Singapore, 1984.
[21] G. P. Pokhariyal and R. S. Mishra, "Curvature Tensor and Their Relativistic Significance II," Yokohama Mathematical Journal, Vol. 19, 1971, pp. 97-103.

