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ABSTRACT 

An efficient and accurate numerical method, which is called the CONV method, was proposed by Lord et al. in [2] to 
price Bermudan options. In this paper, this method is applied to price Bermudan barrier options in which the monitored 
dates may be many times more than the exercise dates. The corresponding algorithm is presented to practical option 
pricing. Numerical experiments show that this algorithm works very well for different exponential Lévy asset models. 
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1. Introduction 

Financial market is developing explosively, although it is 
struck by the financial tsunami recently. Many new fi- 
nancial derivatives, including options, warrants and swaps 
are springing out. They are widely used as risk manage- 
ment tool by investors, stock brokers and bankers. But 
still, options are the most popular derivative products as 
hedging tools in constructing a portfolio. 

Since Bachelier, a French mathematician, first tried to 
give a mathematical definition for Brownian motion and 
used it to model the dynamics of stock process in 1900, 
financial mathematics has developed a lot. Many good 
ideas have been proposed to model the stock pricing pro- 
cesses since then. Recently serval exponential Lévy mo- 
dels are used to model financial markets. For example, 
Merton’s model, Kou’s model, Variance Gamma (VG) 
model, Inverse Gaussian (IG) model, Normal Inverse 
Gaussian (NIG) model, and CGMY model, etc. (refer to 
[1-5]). Meanwhile, many efficient numerical methods for 
option pricing have been proposed. These methods can 
be classified into three major groups: numerical solutions 
to partial integro-differential equations (PIDEs), Monte 
Carlo simulation techniques, and numerical integration 
methods. Each of them has its advantages and disadvan- 
tages for different financial models and specific appli- 
cations (refer to [6]). 

This paper concerns with the application of numerical 
integration methods to price a Bermudan barrier option. 
A Bermudan option is an option where the buyer has the  

right to exercise at a set of pre-specified exercise dates 
before the maturity. A barrier option can either come into 
existence or become worthless if the underlying asset 
reaches a prescribed level (known as barrier) before the 
maturity. 

Pricing Bermudan or barrier options is much harder 
than pricing European options. Because these options are 
depended on paths of the price process for the underlying 
assets. Recently, some new numerical integration me- 
thods based on Fourier transforms are proposed. An effi- 
cient and accurate FFT-based method, called the CONV 
method, was presented by Lord et al. to price Bermudan 
options in [2]. A fast Hilbert transform approach was 
considered by Feng and Linetsky to price barrier options 
in [7]. And a novel numerical method based on Fourier- 
cosine series expansion, called the COS method, was 
proposed by Fang and Oosterlee to to price Bermudan 
options and barrier options respectively (refer to [8,9]). 
This method was also extended to price Bermudan 
barrier options in [10]. 

In this paper, the CONV method is applied to price the 
Bermudan barrier option in which the pre-specified 
monitored dates may be many times more than the pre- 
specified exercise dates. The corresponding numerical 
algorithm is presented for practical option pricing. This 
algorithm works very well and accurately for different 
exponential Lévy asset models. Numerical experiments 
on this algorithm are also given to support the accuracy 
of this algorithm. 

This paper is structured as follows. After this introdu- 
ction, the CONV method is applied to derive the appro- 
ximate pricing formula for Bermudan barrier options un- 
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der the exponential Lévy asset models in Section 2. Then, 
the corresponding numerical algorithm is presented for 
practical Bermuda barrier option pricing in Section 3. 
Finally, the practical Bermudan barrier option prices are 
computed by numerical experiments under the geometric 
Brownian motion (GBM) model and the CGMY model, 
respectively, in Section 4. 

2. The CONV Method 

Let  be the maturity of the option considered here, 
and let M and L be two given positive integers. Denote  



 : = 0,1, , 1, = 0,1, ,mL lt m M l L    

the set of pre-specified monitored dates before the ma- 
turity , and  T

 : = 1, , 1e mLt m M     

the set of pre-specified exercise dates before the maturity 
, where with T 0 10 < < < MLt t t T 

 1 =k kt t t T ML  

t 

 for any kt . We consider an 
American barrier option , which is discretely monitored at 
every k  and can be exercised at each k e



t  , 
namely Bermudan barrier option, whose payoff is given by  

   <1 ,
k

k
t kS Ht

SG t   

Here  for a call and ( )G S S K
   ( ) = ( )G S K S   

for a put with the strike price K  and the spot price , 
and 

kt
 is the price of the underlaying asset at time 

k , and 

S
S
t  >H K  is the constant barrier. Thus, this is 

an up-and-out Bermudan barrier option. 
Assume that, under the risk-neutral probability, the 

price of the underlaying asset is given by  

0= ,Xt
tS S e t  0  

where tX  is a Lévy process and  is the initial price. 
For instance, in the GBM model, 

0S

tX  is given by  

21

2
t tX t Br    

 
 

where  is a standard Brownian motion; in the CGMY 
model, t

tB
X  is a CGMY process. The detail of these 

exponential Lévy models can be found in [4]. Let 
( | )f x  be the conditional density of 

1kt
X


 given 

kt
=X x  for  under the risk-neutral probability. 

Set  
kt 

 
 

0

0

, foracalloption
( ) =

, foraputoption

x

x

S e K
g x

K S e





 

 

   (1) 

and denote  as the option price for the spot stock 
price 

( , )kv x t

0= xS S e . Then, it is clear that 

  { < }( )1, x hMLv g xx t               (2) 

where  0= logh H S . With help of the risk-neutral 
valuation, the option price can be computed recursively 
by the backward induction: letting  

     1, = , d|r t
k ke x t e v y t f yy x

 
      (3) 

for each kt  , and then, if ,  \k et  
    { < }, = , 1k kv x t e x t x h            (4) 

and if k et   

       { < }, = max 1, ,k xkv x t g e x tx h



    (5) 

Finally, the option price  is given by   0,v x t
     0 1, d, |r tv x t e v f yy t y x 


      (6) 

Since each Lévy process is stationary and has in- 
dependent increments, the conditional density  |f y x  
possesses the property:  

    , ,|f f x yy x y x    

where  f x  is the density of 
1t

X . Applying this pro- 
perty infinite integrals  , ke x t



 in (3) becomes to  

   1, ,r t
k ke x t e v x z t f z z 


  ( )d     (7) 

for any kt  . Then, the integral (7) can be rewritten as 
a convolution of  1, kv x z t   and the function ( )f x , 
i.e.  

   1, ( ) ,r t
k ke x t e f x v x t 

           (8) 

Thus, for any > 0 , we have  

   1, ,( )x r t xx
k ke e x t e e v x te f x  

        

Now, the main idea of the CONV method, which was 
proposed by Lord et al. in [1], is that, taking the Fourier 
transform in the both sides of the above equation and 
applying the Convolution theorem of Fourier transform, 
the integral becomes  

 1

( )( , )

= ( ) ,( )

r t x
k

xx
k

e F e e x t

F F e v x te f x







( ) 





  
     

 

where ( )Fg   is the the Fourier transform of function 
( )g x , i.e.  

i( ) ( )d ,xFg e g x x 



    

Here i = 1  is the imaginary unit. Denote ( )z , 
z , is the characteristic function of the density ( )f x  
on the complex plan , i.e.  

i( ) = ( )d ,zxz e f x x z



   

Then, by a simple calculation, we have 
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 
    1

( ),

= (,i

r t x
k

x
k

e F e e x t

F e v x t







)  





  
    

 

Thus, taking the inverse Fourier transform we obtain  

    

 

i

i
1

, = i
2π

, d d

x r t
x

k

y y
k

e
e x t e

e v y t y




 

  



  
 



 


 






     (9) 

Now, by employing the fast Fourier transform (FFT), 
the integral  can be fast and accurately appro- 
ximated by the numerical integrals in (9). 

 , ke x t 

3. The Numerical Algorithm 

Denote  

   
22

2
=0=0

;;

uu

u Tu T
uu

 
     

  
   (10) 

where  ;u T   is the characteristic function of TX , 
and   is a proportionality constant, which is taken as 

= 20  for the GBM model and = 40  for other ex- 
ponential Lévy models according to the suggestion from 
[1]. Let  be an even integer. We consider the grid po- 
ints on 

N
x -axes:  

1
= , = 0,1, ,

2
jx x jj N

  
 

 1N   

where x N  . Furthermore, we also consider the 
grid points for the numerical integrals in (9):  

1
,

= 0,1, , 12
,

j

j j

j N
j N

y x

       
 

  

where 2π   . It is clear that these grids satisfy the 
Nyquist relation: 2πy N   . Now, for each kt   
and each , approximating the first 
integral in (9) with composite trapezoidal rule and the 
second integral with left rectangle rule yields  

0,1, , 1p N  

 

  

 

1
i

=0

1 i

1
=0

,

i
2π

,

p k

Nx r t xp j p
j

j

N y yj n n
n n k

n

x te

y
e e

e v y t

 

 

  



   

 



 
 

 






 

where the weights n  are chosen as 0 1

1
= =

2N     

and = 1n  for . Noting that  1, , 2n N  

0

1
=

2
N    and 2π (x y N

 

  

   

0 0 0

0 0

i ( )

1
i ( )i 2π

=0

1
i 2π

1
=0

,

( 1)

i

1
,1

p

p k

x r t y x p

N
j y xjp N

j
j

N
ynjn N n

n n k
n

x te

e e

e e

e e v y
N

 





 



   


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



 

 

 



 t

  (11) 

Therefore, we can use FFT to calculate the summa- 
tions in the right side of (11). In fact, using the notations 
of the discrete Fourier transformation (DFT) and the in- 
verse discrete transform (IDFT), we have  

 
  

  

0 0 0

0 0

i ( )

i ( )

1
1

, ( 1)

i

( 1) ,

x r t y x pp
p k

j y x
jp

yn n
j n n k

x te e e

D e

D e v y t

 





 



   

 




 

 

 

  (12) 

where  

 
1

i 2π

=0

=
N

jp N
jp j

j

D e 


  

and  

 
1

1 i π

=0

1
=

N
jn N2

j n n
n

D e
N

 


   

are the DFT of sequence  0 1 1, , , N     and the IDFT 
of sequence  1N 0 1

Once the integral 
, , ,   . 

 ,p kx te  is computed by (11), we 
can determine the early-exercise price 

k
, k etS t  , by 

the procedure: for each kt e , locate  such that  kj

   , 0j k jk k
x t xe g           (13) 

or,  

         1 1, , 0j k j j k jk k k k
x t x x t xe g e g     (14) 

In the case (13) set  k kj
x t x  , and in the case (14)  

set    1

1

2
j jk k k

x xx t


 . Then the early-exercise  

price at every k et   is given by  
0= kx t

tS S e


k
We summarize the practical pricing procedure by the 

following algorithm: 

. 

Algorithm: (Price an up-and-out Bermudan barrier 
option.) 

1) Calculate  ,p MLx tv ,  by the 
formula:  

= 0,1, , 1p N 

    { < }, = 1
pp ML p x hx t xv g  

2) Take the following backward induction for  
1, ,1k ML   : 

a) For each e\kt   , compute  ,p kx te ,  
= 0,1, ,p 1N  , by the formula (12), and calculate 
 ,p kx tv , = 0,1, ,p 1N   by the formula:  )     , we have 
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    { < }, ,= 1
pp k p k x hx t x tv e  

until  then go to Step b).  k

b) For each e , compute 
e

k 
t 

t  ,p kx te ,  
, by the formula (12), and determine  = 0,1, ,p  1N 

the early-exercise price  
0= kx t

tk
S S e 

. Then, calcu-  

late  ,p kx tv , = 0,1, , 1p N   by the formula:  

     { < }, ,max ( ), 1
pp k p kp xx t x tv g x e h  

Return to Step a).  
3) Compute    0 0, ,p px t x tv e , = 0,1, , 1p N  , 

by the formula (12).  

4. Numerical Experiments 

In this section, we employ the Algorithm to do numerical 
tests for the prices of Bermudan barrier options under the 
following two underlying asset models: the GBM model, 
in which the characteristic function ( )z  is given by  

 2 2
1 1

1
( ) = exp ;i

2
z rzt z t   

the CGMY model, in which the characteristic function 
( )z  is given by  

 2 2
CGMY 11 1

1
( ) = exp ( , )i

2
z z tzt z t     

where  

 

21
= ( )

2

( 1) ( 1)Y Y Y Y

r CT Y

M M G G

    

     
 

and 

    
CGMY 1

1

( , )

exp ( ) ii
YY Y Y

z t

Ct Y M GG zM z



       
 

In these models,  is the gamma function, and , ( )  r
 , , , C G M  and  are parameters, which are 
given in the following Table 1. 

Y

In these numerical tests, we compare the price of 
Bermudan option and the prices of Bermudan barrier 
option under different barriers, under the GBM model 
and the CGMY model, respectively. Table 2 gives the 
different settings in these tests. And all codes in these 
numerical experiments are written in Matlab 7.5. 

Figures 1 and 2 give the results of numerical tests. In 
these figures, the cure plots the Bermudan barrier option 
prices against the different barriers H : in Figure 1, 

, and in Figure 2, H = 100, 120,  
420. Also, in these figures, the straight line is the 
corresponding Bermudan option price with the same pa- 
rameters and the same settings. 

= 60,80, , 200H 

From these figures, we see that the prices of Bermudan  

Table 1. Parameters in 2 models. 

Models r σ C G M Y 

GBM 0.1 0.25 - - - - 

CGMY 0.1 0 1 5 5 1.5 

 
Table 2. Settings in 2 tests. 

Test Models S0 K T M L N 

1 GBM 100 110 1 10 1 215 

2 CGMY 100 80 1 10 1 215 

 

 

Figure 1. Bermudan barrier option prices under GBM 
model. 
 

 

Figure 2. Bermudan barrier option prices under CGMY 
model. 
 
and Bermudan barrier options are quite different. We 
also see that, as the barrier level H  is increasing, the 
deference of two options is decreasing. Specially, the 
Bermudan barrier option price is tending to the Ber- 
mudan option price. Here we must mention that we take 
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the higher barrier levels in CGMY model than ones in 
BS model because the volatility of the CGMY model is 
bigger than BS model. 
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