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ABSTRACT 

In this paper, a novel formulation, smooth entropy support vector regression (SESVR), is proposed, which is a smooth 
unconstrained optimization reformulation of the traditional linear programming associated with a ε-insensitive support 
vector regression. An entropy penalty function is substituted for the plus function to make the objective function con- 
tinuous, and a new algorithm involving the Newton-Armijo algorithm proposed to solve the SESVR converge globally 
to the solution. Theoretically, we give a brief convergence proof to our algorithm. The advantages of our presented al-
gorithm are that we only need to solve a system of linear equations iteratively instead of solving a convex quadratic 
program, as is the case with a conventional SVR, and lessen the influence of the penalty parameter C in our model. In 
order to show the efficiency of our algorithm, we employ it to forecast an actual electricity power short-term load. The 
experimental results show that the presented algorithm, SESVR, plays better precisely and effectively than SVMlight and 
LIBSVR in stochastic time series forecasting. 
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1. Introduction 

Support vector machines (SVMs), based on statistical 
learning theory, are powerful tools for pattern classifica- 
tions and regression problems [1,2] and have been em- 
ployed in engineering practices [3,4]. The basic SVM 
model, maximal margin classifier, needs to solve a con- 
strained optimization mathematical programming, i.e., 
seek for the hyperplane  to realizes the maximal 
margin hyperplane with geometric margin [2]:  

 ,w b

  1,

1
min

2nw b R
w w


             (1) 

subject to  , 1i iy w x b  , . 1, 2, ,i l 
For a given linearly separable training sample  

      1 1 2 2, , , , ,l lS x y x y x y  . Generally, a simple and 
direct method to solve the above SVM model is to trans- 
form this optimization problem into its corresponding 
dual model with some constraint relations as a Lagran- 
gian problem. Traditionally, the researchers usually trans- 
fer a constraint optimization problem into unconstrained 
problems to deal with SVM problems. However, after 
transformation, the corresponding unconstrained problem 
with an important plus function x  is not differentiable, 
so we can not use the traditional fast Newton method to 
directly solve. Fortunately, smoothing methods have been 

gramming problems [5-8]. So, it is natural that we used 
the smoothing method to deal with SVM problems. The 
nature of the smoothing method is to construct a continue 
polynomial to substitute the plus function 

extensively used for solving important mathematical pro- 

x  [9-15]. 
Chen and Mangasarian applied the pena  function tlty

g m

ndard

o 
so

ESVR model has stron athematical 
pr

 Sta  SVM and 
SS

lve the SVM [16]. It is well known that the exact pen- 
alty function is better than inexact penalty function for 
the constrained optimization problems [17]. Meanwhile, 
Smooth support vector regression (SSVR) is seldom re- 
searched except Lee and Wang [18]. So, in this paper, we 
propose a new smooth entropy support vector regression 
(SESVR) model using an exact penalty function which is 
different from the approximating function in [16], and 
study its asymptotic solution approaching the solution of 
primal problem.  

The proposed S
operties, such as strong convexity and infinitely often 

differentiability. To demonstrate the proposed SESVR’s 
capability in solving regression problems, we employ 
SESVR to forecast on power short-term load forecasting 
from the actual electric network. We also compared our 
SESVR model with SVMlight [19] and LIBSVM [20] in 
the aspect of forecast accuracies. 

This paper is organized as follows.
VM are briefly reviewed in Section 2. In Section 3, a 

novel SESVR model is proposed. In Section 4, we ana-
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lyze the asymptotic solution of SESVR. We use the syn- 
thetic data and actual electric power load to test the pro- 
posed SESVR and give a brief analysis in Section 5. Fi- 
nally, some conclusions are drawn in Section 6.  

2. A Brief Review of SSVM 

e set 

2.1. Standard SVM 

Given a training sampl   , , 1,2, ,i ix y i l   

or, 1iy   . The lea
e to co

with 

th two diff

SVM is mainly used to construct a classification hy- 
pe

size of l, xi is a column vect rning 
objective is to construct a hyperplan rrectly classify 
the test samples. 1wx b    represents the classifica- 
tion hyperplane wi erent data classes, the sign 
of data is determined by the following equations:  

1iwx b   , 1iy  ; 1iwx b   , 1iy    

rplane to separate two different kind samples and ma- 
ximize the separation margin. For the nonlinear problem, 
it is necessary to introduce penalty parameter C and non- 
negative slack variable  , The larger C is, the more se- 
vere penalty is. Theref re, the quadratic optimization 
problem can be obtained as following: 

o

  1, 1

1 l

min ,
2n i

w b R i

w w C 
 

             (2) 

subject to  

  1i i iy w x b     , 1, 2, ,i l  . 

0i  , 1, 2 ,i  . , l

2.2. Smooth Support Vector Machine (SSVM) 

 Given a database consisting of m points in the n -dimen-
sional real space nR , which are represented by a m n  
matrix, where the  row of the matrix A corres  
to the thi  data point. Two class data 

 thi ponds
A  and A  be- 

long to sitive (+1) and negative (−1) spectively. A 
m n diagonal matrix D with ones or negative ones along 

gonal can be used to specify the membership of 
each point. In other words, 1iiD   depending on whe- 
ther the label of thi  data poi –1.  

Combining the two constraint conditions 

 po , re

its dia

nt is +1 or 
o

(2
f problem 

), we obtain 

  
 

max 0,1

1

i i i

i i 
y w x b

y w x b





   

   
        (3) 

where is a plus function defined as follows 

We substitute Equation (3) into Equation (2), and con- 
ve
unconstrained optimization problem. 

   

, 0x x 
0, 0

x
x   

. 

rt Equation (2) into an equivalent SVM (4) which is an 

 
   1

2

2, 1

1
min 1

2n

l

i
w b R i

w C y w x b
 i  

       (4) 

The above function (4) has a unique solution. Function 
   
can
tion 

is not differentiable and unsmooth, therefore, it 
not be solved using conventional Newton optimiza- 

method, because it always requires the objective 
function’s gradient and Hessian matrix exist. Lee and 
Mangasarian modified the second part of function (4) 
and made it smooth to build a smooth unconstrained 
problem similar to unsmooth unconstrained problem. To 
do that, Lee introduced an approximation of an unsmooth 
function   , which is the integral function of Sigmoid 
function[9,16]: 

   1 xp x , log 1 , 0x e 


         (5) 

Obviously,  ,p x   approach the plus function x  
as   tend erefore, the unconstrained 
m lem (4) ng

o

s to infinity, th opti- 
ization prob  is equivalent to the followi  

smo th support vector machine (SSVM) optimization 
problem (6): 

 
   1

2

,

1
min

2n

l

w b R 2
1

1 ,i i
i

w C p y w x b 
 

       (6) 

The simple lemma that bounds the square dif
between the plus function 

ference 
x

ation 
 and its smooth approxi- 

m  ,p x  .  
Lemma 2.1 [9] For x R  and x  ,  

 
2

2 2 2
, ln 2x x


    

 
, w  

log 2
p

  here  ,xp   is p 

function of (5) with smoothing parameter 0  . 
As the smoothing parameter α approaches infinity, the 

 using ewton- 
A
unique solution of our smooth problem (6) N

rmijo Algorithm approaches the unique solution of the 
equivalent SVM problem (2).  

Theorem 2.2: [9] Let   ,i iw b  be a sequence gener-
ated by Newton-Armijo A orith and  ,w blg m  be the uni- 
que solution of problem (

1) The sequence 
6). 

 ,i iw b  converg the unique 
solution (

es to 
,w b ) from any initial point (w0, b0) in 1nR  . 

2) For any initial point  0 0,b , there exists an inte- 
ger 

w
i  su that the stepsize ch i  of Newton ijo-Arm  

Algorithm equals 1 for i  the sequence i  and 
  iw b  converges to ,i  ,w b . 
Recently, some smooth functions are constructe

plus function 
d to re- 

place the x , for ample, tangent circular 
ar

 

 Model 

Given a data set S which consists of l points in n-di- 

ex
c smooth piecewise function in [11], cubic spline in- 

terpolation function and Hermite interpolation polyno- 
mial in [12], two piecewise smooth functions (1PSSVM, 
2PSSVM) in [13] and so on. 

3. The Proposed SESVR
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mensional real space nR  and l observations of real va- 

nlinear regression 
function, 

lue associated with each point, that is,  

  , , , , 1,2, ,n
i i i iS x y x R y R i l      

We would like to find a linear or no
 f x , tolerating a small error in fitting this 

given data set. This can be achieved by utilizing the  - 
insensitive lo unction that sets an ss f  -insensitive “tube” 
around the data, within which errors are discarded. Also, 
applying the idea of support vector machines (SVMs) [2]. 
The function  f x  is made as flat as possible in fitting 
the training data set. The idea of representing the solution 
by means of a sm l subset of training points has enor- 
mous computational advantages. The 

al
 -insensitive loss 

function maintains that advantages, while still ensuring 
the existence of a global minimum and the optimization 
of a reliable generalization bound. 

This linear regression problem can be formulated as an 
unconstrained minimization problem given as follows: 

  1

2

2,

1
min 1

2n

T

w b R
w C





            (7) 

where,    max 0, i ii
w x b y


      , lR


  .  

That represents the fitting errors and the positive con-
meter C here weights the tradeo etween 

fit
trol para ff b the 

ting errors and the flatness of the linear regression 
function  f x . To deal with the  -insensitive loss 
function in the objective function of the above minimiza-
tion problem onventionally, it is reformulated as a con-
strained minimization problem defined as follows: 

 

, c

 
* 1 2, , , 1

1 ˆmin ,
2n l

l

i i
w b R i

w w C
 

 
  

   

Subject to  

 
  ˆ

ˆ, 0, 1,2, ,

i i

i i

i i

w x b y

y w x b

i l

i

i

 

 

 

    

    

  

           (8) 

This formulation (8), which is equival
lation (7), is a convex quadratic minimization problem 
with

ent to the formu- 

 1n   free variables, 2 l nonnegative variables, and 
2 l inequality constraints. However, more variables and 
constraints in the formulation enlarges the problem size 
and could increase computational complexity for solving 
the regression problem. 

We denote  

 
    ,i i i ix b y y w x bmax 0, w

,i w b

        
 





       1 2 2, , , , , , lw b w b w b w b         ,

and . Adopting Fletcher’s nonlinearly un-

differentiable precise penalty method [21], we obtai  the 
equivalent unconstraint optimization problem: 

1, 2, , 2i l 

n

 
   

1 1,

1
min , , ,

2nw b R
w b w w C w b 






      (9) 

 ,w b Lemma 3.1 [22]  is an arbitrary point in 
1nR  ,   is a Lagrang lier vector. If p

C

e multip arameter  

 satisfies 
1

2
C 


  , 0w b  . Then the  

rd optimal sufficient condition is equivalent be-

 and 

2nd o er 
timization  (9) and pro

  

tween the op problem blem (8) in 
the point  ,bw  . where 


  of is a dual norm

1
 . 

In term of Lemma 3.1, inter-dual norm 

 and 

1
 , 

when the trade-off penalty factor C satisfying 

 

1
C  , 

we can so llowing mal problem: lve the fo opti

 
 

    
1,

min , : ,
2nw b R

w b w w



) 

1

1 2max 0, , , ,lC w b w b   
    (10

and obtain a feasible solution of the optimizat
lem (9). However, maximum function  

ion prob- 

    1 2max 0, , , ,lw b w b   is not smooth and undif- 

y the following 
smooth entropy function 

ferentiable, so that, we can not directly utilize Newton 
gradient descent method. We emplo

    
2

1 2
1

, ln 1 exp ,
l

r l i
i

p r w b r  


   
 

  and substi- 

tute it for approximating maximum function  
    1 2max 0, , , ,lw b w b  . 

Lemma 3.2:    1 2 2max 0, , ,r l l1 2lim , ,p 2
0r

      


fo

  

r arbitrary 1 2 2, , l   . 
in the smThen, we obta

tion model (1
ooth d differentiable optimi-

za 1) which is equivalent to problem (9): 
 an

 
 

  

2

2

2,

2

min , :
2n r

w b R

l

w b w




1

1

ln 1 exp ,i
i

C r w b r


    
 


1) 

We call the above problem (11) a smooth
support vector regression (SESVR). 

4.

s an infinitely diffe- 
d using 
roblem 

    (1

 entropy 

 The Asymptotic Analysis of SESVR 

The proposed SESVR problem (11) i
rentiable optimization issue, and can be solve
Newton iterating algorithm. We hope solve the p
(11) instead of the problem (9), however, so far, we don’t 
know the solution relations between the problem (11) and  

the primal SVR problem (8). In fact, when 
1

C  ,  

although the solution of the primal problem (8) is not the 
optimal solution of the problem (11), we can prove that 
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the convergence bound between the solution of -  the prob
lem (11) and the solution of the problem (9) is controlled 
by smoothing parameter r i.e: 

Theorem 4.1: Suppose that  ,w b   is a optimal solu-
tion of problem (9), and   is Lagrange multiplier vector, 
if 

1
C  , then for an arbitrary point   1, nw b R   

and a given small 0r  , we have 

   
mal solution

d 

 , , ln 2 1r rw b w b C r l          (12) 

Proof: Because point  ,w b   is the opti  
of problem (9), an   is Lagrang

-Kuhn-Tu
e multiplier vector, 

we obtain the Ka cher complem
co

ma 3.1, we know  is the optimal 
solution of problem (10), so, we equality

rush entarity 
nditions: 

   * , 0, 0, , 0

1, 2, , .

i i i iw b w b

i m

        

 
   (13) 

From Lem



 ,w b 

obtain in  (14) 

   
      

2
*

1 2
1

max 0, , , , , ,
l

l i i
i

C w b w b w b        



  

 
      

  

2
*

1 2
1

* *

, ,

,

max 0, , , , , ,

,

l

i l
i

w b w b

w b

w b w b w b

w b

 



   



 

 

     







 



 

 

i

(14) 

On the other hand, for any given point   1, nw b R  , 
all constant penalty parameter , and arbitrary sm

, we have 

1   (15

we ge

1   

ns (14),

1

Then, the theorem 4.1 is correct. 
Theorem 4.2: Suppose that 

0C 
0r 

      , , , lnrw b w b w b C r      ) 

Considering  ,w being a feasible solution, then 
t 

2l

b  

    , , ln 2r w b w b C r l          (16) 

From Equatio  (15), and (16), we know  

    , , ln 2

, ln 2 1

, ln 2

r

r

w b w b C r l

w b C r l

w b C r l

 





     

   

   

 


   
   1

 ,w b   is an optimal so-
lution of problem (9),   is Lagrange multiplier vector,  

and  ,w b  is the optimal solution of problem (11), if  

1
C  , then  

     ln 2 1 , ,C r l w b w b     

 3 ln 2 1C r l  
     (1


7) 

The pr rem 3.4 in [22], so we ab- 
andon the redundant proof. 

Theorem 4.2 shows that the solution of SE
approaches the solution of primal problem (8) as the 
sm

oof is similar to Theo

SVR (11) 

oothing parameter 0r  . By making use of this re- 
sults and taking advantage of the twice differentiability 
of the objective function, we prescribe a globally conver- 
gent algorithm 4.3 based on Newton-Armijo algorithm 
for solving (11) as follows. 

Algorithm 4.3: Start with any choice of initial point 
  1

0 0, nw b R  , and stop if  ,i iw b  satisfy  

1i iw w     and 1i ib b     for a given suffici-  

ently small constant  . 
Step 1: Initialize 0 1C  , 0 1r  .  

1, 2,kStep 2: For   , u ewton-Armsing N ijo algori- 
thm [9,16], we the unconstr solve aint optimization prob- 
lem: 

  1, a ink k rw b    
,

rg m ,n kw b R
w b


 

Step 3: Let 1 : 2k kr r  . If  ,k kw b  is a feasible so- 
lution of (11), then 1 :k kC C  , otherwise, 1 : 2k kC C  . 

From Algorithm
lowing facts. 

nd  

 4.3, we can easily validate the fol- 

1) 0kr   a

      1x 0, ,1 2 2, , ma , ,
kr l lp w b w b    . k as 

2) 1k kC r   and for an arbitrary  ,w b ,  

  

  
1,

kr
  2

2

1

,

ln 1 exp , 0.

k l

l

k k i k
i

C r w b r


    
 

 
 

f the seque

C p

3) I nces   ,k kw b  co  non
nce, then . 

ntain a -feasible 
infinite sub-seque

With finitely iterating, the  
 kr 

 sequence   ,k kw b  of Al- 
gorithm 4.3 globally converge to the unique solution based 
on the following Lemma 4.4 - 4.5 and Theorem 4.6. 

Lemma 4.4: The sequence   ,w b
 p

k k

d all the correspondin oints are feasible points 
of problem (9). 

 is boundary 
an g cluster

uence Lemma 4.5: Any cluster point of seq   ,k kb  
is the optimal solution of problem (9). 

Theorem 4.6: Let {(wk, bk)} be a sequence generated

w

 
by Algorithm 4.3 and ( ,w b ) be ue solution of 
problem (9).  

1) The sequen

 the uniq

ces   ,w b  k k

tion 
converge to unique so- 

lu  ,w b  from any initial point  0 0,w b 1nR 
2) For any initial point 

. 
 ,w b , th0 0

r 
ere exists an inte- 

ge k  such that the stepsize i  of Newton-Armijo Al- 
gorithm equals 1 for k k and the sequence {(wk, bk)} 
converges to 

 
 ,w b . 

Lemma 4.5, Lemm  Theorem 4.6 can be in- 
ferred fr 9,18]. In the above discussio str

a 4.6 a
om [ n, we con uct 

th r 

nd

e smooth entropy support vecto regression model for a 
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linear regression function in tting the given training 
data points under the c on that minimizes the squares 
of the 

fi
riteri

 -inse  lonsitive ss function. That is approximating 
2ly R  by a linear function of the form:  

1T Ty w x b               (18) 

where nw R  and b R  are parameters to be deter- 
mined by minimizing the objective function in (11). Ap- 
plying the duality theorem in convex minimization prob- 
lem [23], w  can be represented by TA u  for some 

. Hence, we have 2u R l

1T Ty AA u b            (19) 

This motivated the nonlinear support vector regression 
model. In order to generalize our results from the linear 
case to nonlinear case, we employ the kernel technique 

s been used exten



that ha sively in kernel-based learning 
algorithms [1,2].  

We simply replace the TAA  in (1

ke

9) by a nonlinear  

rnel matrix K(A, AT), where    
,

, ,T T
i ji j

K A A K A A  

and  ,T

 

K x z  is a nonlinear kernel function. Using the 
same loss criterion with the linear case, this will give us 
the nonlinear support vector regression formulation as 
follows: 

 
  

1


,

ˆ, ,
nw b R

u b u b 


    (20
21

min
l

T T C
u AA u   ) 

12 2 i i
i

where  

    , max 0, , T
i i iu b K A A u b y     , 

   ˆ , max 0, , T
i i iu b y K A A u b     , 


1, 2, ,i l  . 

 , T
iK A A

1 2l . We solve
rithm 4.3, and obtain 

 is a kernel map from l  to 
 the optimal solution (2 go- 

parameters  and the 
regression function is 


   (

esults and Analysis 

In order to test the efficiency of our proposed smooth 
entropy support vector regressions, we utilize S
forecast electricity power short term load and compared 
the results with the conventional SVMlight [19] and LIB- 

mputer, 

tion problem, our stop criterion for the proposed model 

1 2n nR R 
0) using Al

b . Then 
R  

u

   , ,T T Ty K x A u b u K A x b  

 
 

 
2

1

,
l

i i
i

u K A x b



21) 

5. Experimental R

ESVR to 

SVM [20]. 
All experiments were run on a personal co

which consisted of a 1.9 GHz AMD dual core processor 
and 960 megabytes of memory. Based on the first order 
optimality conditions of unconstrained convex minimiza- 

was satisfied when the gradient of the objective function 
is less than 510  and select . We implemented 
SE

410 
SVR in C++ programming. In the experiments, 2- 

norm relative error was chosen to evaluate the tolerance 
between the predicted values and the actual values. For 
an actual value y  and the predicted vector ŷ , the 1- 
norm relative error of two vectors y  and ŷ  was de- 
fined as follows: 

2

1

1
100%

2

l
i i

i i

y y
E

l y

         (22) 

Aim to evaluate how well each method generalized to 
unseen data, we split the entire data set into two arts, the 
training set and testing set. The traini g data was used to 
generate the regr

ˆ

 p
n

ession function that is learning from 
training data; the testing set, which is not in
training procedure, was used to evaluate t
ability of the resulting regression function. A smaller 
te

th

 see that the relative 
er

 

volved in the 
he prediction 

sting error indicates a better prediction ability. We per- 
formed tenfold cross-validation on each data set and re- 
ported the average testing error in our numerical results.  

Our actual power load data and its corresponding wea- 
ther data come from HuaiNan electric network from 
April 2004 to August 2004, sampling frequency is one 
times each hour, sampling days is 120, so we gain 2880 
(120 × 24) training data. We use trained SESVR model 
to forecast the load of August 10 2005. It is know that 
summer season influence power load more drastically 

an other three seasons, it is why we sample load from 
summer season, meanwhile, we can study whether or not 
weather influence and how to influence electricity load. 
The numerical results of short-term load forecasting were 
also included in following Table 1. 

From Table 1 and Figure 1, we can find out our pro- 
posed SESVR model is a feasible forecasting method for 
electric power short-term load, If we generated the train- 
ing samples for SESVR including the weather tempera- 
tures, the relative error is 1.28%, otherwise the error is 
3.06%. So, the weather temperatures can upgrade fore- 
casting accuracies, moreover, we can

rors of night time is bigger than that of daytime. On the 
other hand, we find out the penalty parameter C in Algo- 
rithm 4.3 increases monotonously, so Algorithm 4.3 is 
stable, however, SVMlight and LIBSVM are influenced by 
penalty parameter C. In order to gain the optimal solu-
tions of SVMlight and LIBSVM, we must tune C carefully. 
This increases the computational complexity. With re-
gard to this point, Algorithm 4.3 is superior to SVMlight 
and LIBSVM. 

Figure 2 illustrates the tenfold numerical results and 
comparisons of our proposed SESVR, SVM, LIBSVM. 
The experimental results demonstrated that our proposed 
SESVR model is a powerful tool for forecast electric 
power short-term load, and better precise and effective 
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Figure 1. The electricity load forecasting results using our proposed SESVR model. Blue line, red line, and green line show 
the actual load, forecasting load with no temperature, and forecasting load with temperature, respectively. 
 

 

Figure 2. The electricity load forecasting comparison of SESVR, SVMlight, LIBSVM. Blue line shows the actual load, read line 
represents the forecasting load using our proposed regression model SESVR, yellow line and green line illustrate the fore-
casting loads using SVMlight and LIBSVM model, respectively. 
 

than LIBSVM and SVMlight model. Table 1. The load forecasting result on 10 August 2005. 

No temp. Temp. 
Time/h 

Actual load 
/MW orecasting /MW Forecasting /MW 6. Conclusions 

We opos a novel for on, SESV ich is 
a s oth unco ained opti on reform n of 
the itional linear programm ssociated n ε-I 
nse ive supp vector regr . We have oyed 

titute it f  plus 
nuous. We have pro- 

rithm involving a very fast New- 
m to solve the SESVR that has been 

lving 
a 

F

 have pr ed mulati R, wh
mo nstr mizati ulatio
trad ing a with a
nsit ort ession  empl

0 55 56.20 54.79 

1 53 54.30 53.80 

3 

o 3.

2 53 52.06 53.67 

52 51.75 53.12 

4 53 52.56 53.66 

5 57 52.40 57.12 

6 61 61.59 62.08 

7 68 68.93 69.33 

8 78 77.98 77.79 

9 81 80.79 81.31 

10 86 84.13 85.42 

11 83 81.96 83.05 

12 81 74.30 81.78 

13 82 87.20 83.19 

14 84 82.87 86.09 

15 85 77.80 86.71 

16 85 92.70 87.89 

17 85 81.85 84.01 

18 81 79.51 80.98 

19 87 84.93 86.36 

20 86 84.62 84.83 

21 80 78.38 78.95 

22 72 69.71 69.83 
23 

Relative err
64 
r % 

61.86 
06% 

64.59 
1.28% 

an en nction 
function to avoid objective disconti

tropy penalty fu to subs or the

posed a new algo
ton-Armijo algorith
shown convergent globally to the solution. In our algo- 
rithm, the penalty parameter C is creasing monotonously, 
the influence to SESVR performance is smaller than 
foregoing SVMlight and LIBSVM. Theoretically, we have 
given a brief convergence proof to our algorithm.  

In order to show the efficiency of our algorithm, we 
employ it to forecast an actual electricity power short- 
term load. The experimental results show that the pro- 
posed SESVR is effective and precise, and plays better 
performances than SVMlight and LIBSVR in stochastic 
time series forecasting. Moreover, an advantage of our 
proposed SESVR algorithm is that we only need to solve 
a system of linear equations iteratively instead of so

convex quadratic program, as is the case with a con- 
ventional SVR. 
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