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ABSTRACT 

Finding optimal solutions to NP-Hard problems requires exponential time with respect to the size of the problem. Con- 
sequently, heuristic methods are usually utilized to obtain approximate solutions to problems of such difficulty. In this 
paper, a novel swarm-based nature-inspired metaheuristic algorithm for optimization is proposed. Inspired by human 
collective intelligence, Wisdom of Artificial Crowds (WoAC) algorithm relies on a group of simulated intelligent 
agents to arrive at independent solutions aggregated to produce a solution which in many cases is superior to individual 
solutions of all participating agents. We illustrate superior performance of WoAC by comparing it against another 
bio-inspired approach, the Genetic Algorithm, on one of the classical NP-Hard problems, the Travelling Salesperson 
Problem. On average a 3% - 10% improvement in quality of solutions is observed with little computational overhead. 
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1. Introduction 

A large number of important problems have been shown 
to be NP-Hard [1]. Problems in that computational class 
are believed to require exponential time, in the worst case, 
to be solved. Since it is not feasible to practically solve such 
problems using Turing/Von-Neumann computational archi- 
tecture optimal methods are replaced with heuristic algo- 
rithms that usually need polynomial time to provide ap- 
proximate solutions [2]. 

Heuristic algorithms capable of addressing an array of 
diverse problems are known as metaheuristics. Such al- 
gorithms are computational methods that attempt to find 
a close approximation to an optimal solution by itera- 
tively trying to improve a candidate answer with regard 
to a given measure of quality. Metaheuristic algorithms 
don’t make any assumptions about the problem being 
optimized and are capable of searching very large spaces 
of potential solutions. Unfortunately, metaheuristic algo- 
rithms are unlikely to arrive at an optimal solution for the 
majority of large real world problems. However, research 
continues to find asymptotically better metaheuristic al-
gorithms for specific problems. 

Most metaheuristic algorithms in optimization and 
search have been modeled on processes observed in bio- 
logical systems [3-5]: Genetic Algorithms (GA) [6], Ge- 
netic Programming (GP) [7], Cellular Automata (CA) [8], 
Artificial Neural Networks (ANN), Artificial Immune 
System (AIS) [9], or in the surrounding environment: 

Intelligent Water Drops (IWD) [10], Gravitational Search 
Algorithm (GSA) [11], Stochastic Diffusion Search (SDS) 
[12], River Formation Dynamics (RFD) [2], Electro- 
magnetism-Like Mechanism (EM) [13], Particle Swarm 
Optimization (PSO) [14], Charged System Search (CSS) 
[15], Big Bang-Big Crunch (BB-BC) [16]. Continuing 
this trend of nature-inspired solutions a large number of 
animal or plant behavior-based algorithms have been pro- 
posed in recent years: Ant Colony Optimization (ACO) 
[17], Bee Colony Optimization (BCO) [18], Bacterial 
Foraging Optimization (BFO) [19], Glowworm Swarm 
Optimization (GSO) [20], Firefly Algorithm (FA) [21], 
Cuckoo Search (CS) [22], Flocking Birds (FB) [23], 
Harmony Search (HS) [24], Monkey Search (MS) [25] 
and Invasive Weed Optimization (IWO) [26]. In this pa- 
per we propose a novel algorithm modeled on the natural 
phenomenon known as the Wisdom of Crowds (WoC) 
[27]. 

Wisdom of Crowds 

In his 1907 publication in Nature, Francis Galton reports 
on a crowd at a state fair, which was able to guess the 
weight of an ox better than any cattle expert [28]. Intri- 
gued by this phenomenon James Surowiecki in 2004 
publishes: “The Wisdom of Crowds: Why the Many are 
Smarter than the Few and How Collective Wisdom 
Shapes Business, Economies, Societies and Nations” [27]. 
In that book Surowiecki explains that “Under the right 
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circumstances, groups are remarkably intelligent, and are 
often smarter than the smartest people in them. Groups 
do not need to be dominated by exceptionally intelligent 
people in order to be smart. Even if most of the people 
within a group are not especially well-informed or ra- 
tional, it can still reach a collectively wise decision” [27]. 
Surowiecki further explains that for a crowd to be wise it 
has to satisfy four criteria: 
 Cognitive diversity—individuals should have private 

information. 
 Independence—opinions of individuals should be 

autonomously generated. 
 Decentralization—individual should be able to spe- 

cialize and draw on local knowledge. 
 Aggregation—a methodology should be available for 

arriving at a common answer.  
Since the publication of Surowiecki’s book, the WoC 

algorithm has been applied to many important problems 
both by social scientists [29,30] and computer scientists 
[31-36]. However, all such research used real human 
beings either in person or via a network to obtain the 
crowd effect. In this work we propose a way to generate 
an artificial crowd of intelligent agents capable of coming 
up with independent solutions to a complex problem. 

Overall, the paper is organized as follows: in Section 2 
we introduce the developed Wisdom of Artificial Crowds 
algorithm. In Section 3 the Traveling Salesman Problem 
is motivated as the canonical NP-Complete problem. In 
Section 4 we provide a detailed description of the Ge-
netic Algorithm which is used to generate the intelligent 
crowd for the post-processing algorithm to operate on. In 
Section 5 we explain how the aggregate of the crowds’ 
decision is computed. Finally in Section 6 we report the 
results of our experiments and in Section 7 we look at 
potential future directions for research on Wisdom of 
Artificial Crowds. 

2. Wisdom of Artificial Crowds 

Wisdom of Artificial Crowds (WoAC) is a novel swarm- 
based nature-inspired metaheuristic algorithm for opti- 
mization. WoAC is a post-processing algorithm in which 
independently-deciding artificial agents aggregate their 
individual solutions to arrive at an answer which is supe- 
rior to all solutions present in the population. The algo- 
rithm is inspired by the natural phenomenon known as 
the Wisdom of Crowds [27]. WoAC is designed to serve 
as a post-processing step for any swarm-based optimiza- 
tion algorithm in which a population of intermediate so- 
lution is produced, for example in this paper we will il-
lustrate how WoAC can be applied to a standard Ge- 
netic Algorithm (GA). 

The population of intermediate solutions to a problem 
is treated as a crowd of intelligent agents. For a specific 
problem an aggregation method is developed which allows 

individual solutions present in the population to be com- 
bined to produce a superior solution. The approach is 
somewhat related to ensemble learning [37] methods 
such as boosting or bootstrap aggregation [38,39] in the 
context of classifier fusion in which decisions of inde- 
pendent classifiers are combined to produce a superior 
meta-algorithm. The main difference is that in ensembles 
“when combing multiple independent and diverse deci- 
sions each of which is at least more accurate than random 
guessing, random errors cancel each other out, correct 
decisions are reinforced [40]”, but in WoAC individual 
agents are not required to be more accurate than random 
guessing. 

3. Travelling Salesperson Problem 

Travelling Salesperson Problem (TSP) has attracted a lot 
of attention over the years [41-43] because finding opti-
mal paths is a requirement that frequently appears in real 
world applications and because it is a well-defined bench- 
mark problem to test newly developed heuristic ap- 
proaches [2]. TSP is a combinatorial optimization pro- 
blem and could be represented by the following model 
[17]:  , ,P S f   in which S is a search space defined 
over a finite set of discrete decision variables Xi, i = 1,…, 
n; a set of constraints  ; and an objective function f to 
be minimized. 

TSP is a well-known NP-Hard problem meaning that 
an efficient algorithm for solving TSP will be an efficient 
algorithm for other NP-Complete problems. In simple 
terms the problem could be stated as follows: a salesman 
is given a list of cities and a cost to travel between each 
pair of cities (or a list of city locations). The salesman 
must select a starting city and visit each city exactly once 
and return to the starting city. His problem is to find the 
route (also known as a Hamiltonian Cycle) that will have 
the lowest cost. In this paper we will use TSP as a non- 
trivial testing ground for our algorithm. 

Dataset 

Data for testing of our algorithm has been generated us-
ing a piece of software called Concorde [44]. Concorde 
is a C program written for solving the symmetric TSP 
and some related network optimization problems and is 
freely available for academic use. The program also al-
lows one to generate new instances of the TSP of any 
size either with random distribution of nodes, or with 
predefined coordinates. For problems of moderate size, 
the software could be used to obtain optimal solutions to 
specific TSP instances. Appendix contains an example of 
a Concorde data file with 7 cities.  

4. Genetic Algorithms 

Inspired by evolution, genetic algorithms constitute a 
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powerful set of optimization tools that have demonstrated 
good performance on a wide variety of problems inclu- 
ding some classical NP-complete problems such as the 
Traveling Salesperson Problem (TSP) and Multiple Se- 
quence Alignment (MSA) [45]. GAs search the solution 
space using a simulated “Darwinian” evolution that fa- 
vors survival of the fittest individuals. Survival of such 
population members is ensured by the fact that fitter in-
dividuals get a higher chance at reproduction and survive 
to the next generation in larger numbers [6].  

GAs have been shown to solve linear and nonlinear 
problems by exploring all regions of the state space and 
exponentially exploiting promising areas through standard 
genetic operators, eventually converging populations of 
candidate solutions to a single global optimum. However, 
some optimization problems contain numerous local op- 
tima which are difficult to distinguish from the global 
maximum and therefore result in sub-optimal solutions. 
As a consequence, several population diversity mecha- 
nisms have been proposed to delay or counteract the con- 
vergence of the population by maintaining a diverse popu- 
lation of members throughout its search. 

A typical GA follows the following steps [46]: 
1) A population of N possible solutions is created. 
2) The fitness value of each individual is determined. 
3) Repeat the following steps N/2 times to create the 

next generation. 
a) Choose two parents using tournament selection. 
b) With probability pc, crossover the parents to create 

two children; otherwise simply pass parents to the next 
generation. 

c) With probability pm for each child, mutate that 
child. 

d) Place the two new children into the next generation. 
4) Repeat new generation creation until a satisfactory 

solution is found or the search time is exhausted. 

Implemented GA for Solving TSP  

Solutions are encoded as chromosomes which tradition- 
ally are represented by data arrays, but can be repre- 
sented in other ways. Each solution is rated according to 
its fitness which is based on the quality of the solution. A 
population of chromosomes that are initially generated 
randomly, continually goes through processes of inheri- 
tance, mutation, selection, and crossover based on fitness 
of the individual chromosomes. Hamiltonian cycles or 
paths traveling all nodes only once are encoded as a list 
of nodes in chromosomes. An initial population is gene- 
rated randomly. Successive populations, generated by 
operations of mutation and crossover on a prior popula- 
tion, will replace the prior population. Each generation is 
likely to yield chromosomes more similar to chromo- 
somes representing optimal solutions based on fitness. 

This experimental code was implemented as a Windows 

Presentation Foundation (WPF) Application using C#. Net 
4.0 framework in Visual Studio 2010 running on Win- 
dows 7. The application has an “Open” menu item to 
show a dialog box to browse for .tsp files and load them. 
The application initializes from the data provided by the 
file and displays the data graphically. The “Settings” 
menu item will open a dialog allowing a user to set pa- 
rameters of the genetic algorithm. The user can start the 
process with a new population by pressing “Start” or 
continue with the existing population by pressing “Con- 
tinue”. The best, average, worst, or any combination can 
be selected to be graphed as the algorithm is processing. 
Any of the parameters may be changed during the execu- 
tion of the algorithm. 

The application domain is divided into several classes 
for representing the TSP, and the genetic algorithm. Fi-
leData and Node classes are used to read a TSP file and 
represent the graph of the TSP. Class Solver implements 
the genetic algorithm. Solver is a strategy pattern with 
the method, Solve, relying on implementations of inter- 
faces defining parts of an algorithm. A combination of 
concrete implementations that would make up a running 
instance of Solver is grouped together by an instance of 
EAConfiguration. The EAConfiguration object is passed 
to the constructor of Solver. The combination includes 
instances of Population, IChromosomeFactory, ICross- 
overPolicy, ICrossoverOperator, IMutationPolicy, IMu- 
tationOperator, and ITerminationCriteria classes. 

The method, Solve, first takes the instance of Popula- 
tion and adds instances of IChromosome created by the 
instance of IChromosomeFactory. Population is a con- 
tainer for ICromosome instances and keeps track of the 
sum of all chromosome fitness and current generation. 
IChromosome is an interface, defining that chromosomes 
need to provide read-only properties of the underlying 
data, the fitness and path distance, and provide methods 
to be able to clone its type but with different data, and to 
convert its data to a standard format to representing the 
path. IChromosomeFactory is an interface for factories 
that produce IChromosome. Next Solve reduces the size 
of Population. If a new EAConfiguration was created, 
and it required the size to be smaller than the previous 
generation of Population. This is only to allow change of 
population size in runtime and not necessarily a general 
part of the genetic algorithm. Now that an initial popula- 
tion is generated, Solve enters a while loop terminating 
on criteria defined by an instance of ITerminationCriteria. 

For each iteration of the loop, an instance of ICross-
overPolicy performs a transformation on Population pro- 
ducing a new Population, and an instance of IMutaion- 
Policy, also performs a transformation on Population 
producing a new Population. ICrossoverPolicy and IMu- 
tationPolicy are strategy patterns themselves. ICrossover- 
Policy takes an instance of ICrossoverOperator and defines 
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how that operator is applied to the entire population. 
ICrossoverOperator itself is a strategy pattern which if 
given two chromosomes produces two new chromo- 
somes based on the ones given. Similarly, IMutation- 
Policy is an interface for instances to define how to per- 
form IMutationOperator instances on the entire popula- 
tion. IMutationOperator is an interface for instances to 
mutate a given chromosome. 

To clarify, there are three tiers of strategy patterns. At 
the bottom ICrossoverOperator and IMutationOperator 
provide interfaces for instances, to define operations on 
interfaces of IChromosome. The next tier, ICrossover- 
Policy and IMutationPolicy are interfaces for instances to 
define “policies” on how the operations are applied to the 
entire population. The top tier is the skeleton layout of 
the genetic algorithm Solver itself. The loop also fires an 
event at each generation so that a handler may analyze or 
display data as the algorithm is running. The use of 
events allows UI code to be decoupled with the genetic 
algorithm. This describes the general outline of the appli- 
cation presenting many interfaces to allow concrete im- 
plementations to “plug into”. 

IChromosome is the interface for a solution represent- 
tation for which two concrete classes are implemented; 
OrderedPath and NumberedPermutation. Both Orderd- 
Path and NumberedPermutation use classes, Permutation 
[47] and BigInteger [48]. OrderedPath simply describes a 
solution to the TSP as an array of the nodes in the order 
traveled. NumberedPermutation represents a solution as a 
number that maps to a specific permutation of the set of 
nodes. Given a set of size n, there is n! permutations of 
that set. In a Hamiltonian cycle, starting from any node 
in the cycle and maintaining all the edges in the cycle 
results in equivalent length of the path. Eliminating 
equivalent cycles will yield a search space of size (n – 1)!. 
Also, traveling a cycle in reverse will have the same dis- 
tance. Removing the reverses will reduce the number of 
cycles in a set to ((n – 1)/2)!. In the creation of a Num- 
beredPermutation chromosome, a number between 1 and 
(n – 1)! is given to reduce the solution space as any num- 
ber above that will represent a permutation that is equi- 
valent to a permutation represented by a number below 
or equal to (n – 1)!. 

A similar affect is used on the OrderedPath chromo- 
somes by always setting the first node traveled as node 0. 
The creation of chromosomes is abstracted away by the 
use of an abstract factory IChromosomeFactory. Or- de-
redPathFactory and NumberedPermutation implement 
the interface by simply calling the constructor of their 
respected product classes and returning the created in- 
stance. OrderedPathFirstNodeZeroFactory produces Or- 
deredPath chromosomes with the first node set to zero. 
NoRepeats implements ICrossoverOperator by taking the 
given chromosomes, the parents, and splicing both at 

some random mark. The first half or each is copied di- 
rectly to the two chromosomes to be returned to the chil- 
dren. The second half of the two parents is read one gene 
at a time and the nodes are added to the end of the res- 
pected child as long as the node has not occurred al- 
ready in the chromosome. If it has, a node that does not 
occur in the child chromosome is added by reading from 
the beginning of the parent chromosome. NoRepeats- 
FirstNodeZero does the exact same, but ensures that the 
first node is zero. This is to be used with OrderedPath- 
NodeZeroFactory and SwapBitsFirstNodeZero, but not 
necessarily enforced. IMutatorOperator guarantees that 
implementations provide method Operated which will 
produce one chromosome based on the chromosome 
given. SwapBits implements IMutatorOperator by taking 
the given chromosomes and selecting two genes at ran- 
dom and simply swapping them. SwapBitsFirstNodeZero 
does exactly the same but ensures that the first node is 
zero. 

The next level is the policies. Policies define how the 
selected operator is to be used on the entire population. 
ICrossoverPolicy implementations have the method Eva- 
luate and the property PercentageRate. Evaluate takes as 
parameters Population, and ICrossoverOperator and re-
turns a new Population. RouletteWheel implements ICross- 
overPolicy by taking the population and selecting two 
parent chromosomes at random but with chromosomes 
with higher fitness being more likely to be selected. This 
is done by taking the summation of fitness in the popula- 
tion, and multiplying it by a random value between zero 
and one. This will be a value between zero and the summed 
fitness. For each chromosome in the population the value 
calculated is tested to see if it is lower than that of the 
chromosome’s fitness. If it is, then that chromosome is 
selected; if not, the calculated value is subtracted and the 
chromosome’s fitness value is reduced for the next iteration. 

This process yields a chromosome chosen with a pro- 
bability of fitness/total fitness. After two parents are se- 
lected this way, they have a probability defined in Per- 
centageRate property of being operated on by the ICross- 
overOperator. If the operator is not applied, the two se- 
lected parents are simply added to the new population. If 
the operator is applied, the ICrossoverOperator method, 
Operate, is used on the two parents, yielding two children. 
If the child’s fitness is greater than the parents’ the child 
is placed in the population; if not the parents are chosen 
instead. This tends to keep chromosomes with higher 
fitness and kills off those with lower fitness. 

Once the new population is filled, it is returned back as 
the next generation. KeepElite is another implementation 
of ICrossoverOperator. This implementation will keep 
the best chromosomes in a given population, and apply 
the same roulette wheel selection on the rest of the popu- 
lation. The number of best chromosomes selected from 
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the population is given by PercentageRate. Occurrence- 
Rate implements IMutationPolicy by simply applying its 
mutation operator for each chromosome, by a probability 
given by PersentageRate. 

A population of solutions produced by a GA tends to 
quickly converge on a local maxima point [45] resulting 
in a population of almost identical solutions (Figure 1). 
Two countermeasures against this problem have been 
developed. One is an early termination of the GA just 
prior to the point of solution convergence, and cognitive 
diversity elimination. The other way to maximize diver- 
sity of solutions present in the crowd of intelligent agents 
provided to the WoAC algorithm by the GA algorithm is 
to conduct multiple runs of the GA on the same dataset. 
Resulting populations are then merged and provide ne- 
cessary cognitive diversity for the WoAC algorithm. 

5. WoAC Aggregation Method 

Building on the work of Yi et al. [30] who used a group 
of volunteers to solve instances of TSP and aggregated 
their answers, we have developed an automatic aggrega- 
tion method which takes individual solutions and pro- 
duces a common solution which reflects frequent local 
structures of individual answers. The approach is based 
on the belief that good local connections between nodes 
will tend to be present in many solutions, while bad local 
structures will be relatively rare. After constructing an 
agreement matrix, Yi et al. [30] applied a nonlinear mo-
notonic transformation function in order to transform 
agreements between answers into costs. They focused on 
the function:  

1
1 21 ,

ijij ac I b b  



,           (1) 

where  

1
1 2,

ijaI b b                  (2) 

is the inverse regularized beta function with parameters 
b1 and b2 both taking a value of at least 1 [30]. 

In our implementation of the aggregation function we 
continue working with agreements between local com- 
ponents of the solutions. The process in which this im- 
plementation aggregates chromosomes is via recording 
the number of occurrences of edges, creating a new path 
traveling along edges that have occurred the most in the 
population of the solutions. First, an occurrence matrix is 
created to accumulate the number of times each edge 
shows up. This is done by constructing an n × n matrix 
with ni, where 0 < i ≤ n. Each cell stores the number of 
edge occurrences with the cell’s row number corresponding 
to one node of the edge and the cell’s column number 
corresponding to the other node in the edge. This matrix 
ends up being a symmetric matrix, and to save memory, 
only the lower triangle is stored. An example, of only two 
paths on 11 nodes can be seen in Figure 2. 

To get every value of a row as if the entire matrix was 
completed, values of the column that lie on the last dis- 
played value of the row, are used to complete the row. 
This is possible because of matrix symmetry. Figure 3 
demonstrates this concept, highlighting what is to be con- 
sidered the entire row five. Now that the number of edge 
occurrences has been tallied, a new path is to be constructed 
using the most occurring edges. The algorithm starts with 
the most occurring edge. In the case of multiple max oc-
currences being equal, as in this example, the first one is 
used. In our example, the new path will start using the 
 

 

Figure 1. Paths get shorter with successive generations. 
 

 

Figure 2. An example matrix with two paths shown. 
 

 

Figure 3. Representative selection of the entire row five. 
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cell (5,4) meaning that the nodes 5 and 4 make the most 
frequently occurring edge. To find the next node, the 
algorithm searches the most occurring edge that shares 
one of the nodes used in the last step. This is done by 
looking at all the cells that share either the same row or 
same column. As mentioned earlier, a row’s data is com-
pleted by using the data of the column of the last cell in 
the row. This implies that any column’s data is part of 
some row. 

populations. WoAC was applied to each of these popula- 
tions, using all chromosomes of the population. Figure 5 
shows 6 tables, each listing the best, average, worst, and 
WoAC for each population that resulted from the genetic 
algorithm. The results of WoAC are highlighted light 
blue if the results are equal to the best or highlighted dark 
blue if the results of WoAC are better than the best. 
 

 

To continue this example, in order to find the next 
node connecting to the edge (5,4), the cells that make up 
the row and column of (5,4) are examined. This can be 
seen in Figure 4. This process is continued until all 
nodes are connected to construct a new path. To make 
sure that a node is not used twice, a checklist is used to 
mark which rows have been used; nodes in these rows 
will be ignored. As the algorithm is run, sometimes a 
node cannot be found. In this case a node with the closest 
distance to the last node inserted into the new path, and 
that is not checked off, is used to continue the process. 

6. Experimental Results 

The GA was run 10 times, on 6 data sets, producing 60 Figure 4. The cells that make up row and column of (5,4). 
 

       

       

       

Figure 5. Comparison of GA vs. WoAC on six progressively larger TSP instances. 
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Figure 6 shows scatter plots graphing similarity to dis- 

tance. Proportion of coincidence of path with other sub- 
jects was calculated by counting the number of edges a 
solution has in common with other solutions, and then 
dividing the number of agreeing edges by the number of 
cities to get the percentage of agreement. These are then 
averaged for all the cities to find the final value. WoAC 
was then applied to all populations of each given data set. 
This was done for the best chromosome from each popu- 
lation starting with top 5, then top 10, and so on incre- 
menting by 5 up to the total population size of 100. Fig- 
ure 7 shows a table displaying the best results from the 
genetic algorithm alone, result of applying WoAC to all 
chromosomes from the population, result of applying 
WoAC to the top 1 percent of chromosomes from the 
population, result of applying WoAC to the best number 

of chromosomes from the population, and the best num- 
ber that was used. Highlighted in blue are the best results 
from all cases. On average a 3% - 10% improvement could 
be seen in cases where WoAC had improvement over 
standalone GA. Graphical representations of the best 
WoAC results for different datasets are displayed in 
Figures 8-13. The blue dots represent the nodes, gray 
lines are paths from the chromosomes, and orange lines 
are the path generated from WoAC. 

We have performed additional experiments to verify 
cross-domain applicability of WoAC and the results are 
encouraging. In solving instances of NP-Complete game 
—Light Up, improvement due to WoAC over pure GA 
varied from 3.5% to 35% [4]. For another canonical NP- 
Complete problem—Knapsack, improvements as a result 
of postprocessing by WoAC varied from 1.0% to 1.8% [3]. 

 

    

    

 

Figure 6. Scatter plots for 22, 44, 77, 97 and 222 city TSP. 
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Figure 7. Best results from GA and expert agents. 

 

 
Figure 8. 11 nodes: Top 30 from each population. 

 

 
Figure 9. 22 nodes: Top 80 from each population. 

 

 
Figure 10. 44 nodes: Top 90 from each population. 

 

 
Figure 11. 77 nodes: Top 10 from each population. 

 

Figure 12. 97 nodes: Top 45 from each population. 
 

 

Figure 13. 222 nodes: Top 15 from each population. 

7. Conclusions 

We have presented a novel swarm-based nature-inspired 
metaheuristic algorithm for optimization. In many cases 
WoAC outperformed even the best solutions produced by 
the genetic algorithm. In the case of running WoAC on a 
single population, better results seemed to appear more 
frequently in the larger data sets. Improved results are 
also seen in the case of running WoAC on groups of popu- 
lations after reducing the number of chromosomes to use 
from each population. In both cases, the larger indepen- 
dent variance in the set used for WoAC, whether a single 
population or multiple, seemed to yield better results. On 
the small instances of TSP, the genetic algorithm is quick 
to find good solutions and the entire population tends to 
converge on best chromosome in the population. This 
gives poor independent variance and WoAC results in 
equal or worse results after processing the population. 

As the data sets increase in size, the genetic algorithm 
performs worse, but this allows more room for improve-
ment for WoAC. In using WoAC on multiple populations, 
the analysis gave varying results on different percentages 
of best chromosomes in each population. This parameter 
can be changed and WoAC tested to compare results, but 
a common value does not seem to generalize across dif-
ferent size data sets. This is due to high dependence on 
the data used. The larger data sets used with multiple 
populations did show more consistent improvement after 
the application of WoAC. Running WoAC on datasets 
with several hundred cities and subsampling any number 
of top chromosomes yielded better results than the best 
result from the genetic algorithm alone. Even running 
WoAC on each single population seemed to show im-
provement, giving better results on 5 of the 10 popula-
tions generated.  
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WoAC is a postprocessing algorithm with running 
time in milliseconds which is negligible in comparison to 
the algorithm it attempts to improve, genetic search. 
While, WoAC does not always produce a superior solu-
tion, in cases where it fails it can be simply ignored since 
the GA itself provides a better solution in such cases. 
Consequently, WoAC is computationally efficient and 
can only improve the quality of solutions, never hurting 
the overall outcome.   

In the future we plan on conducting additional ex-
periments aimed at improving overall performance of the 
WoAC algorithm. In particular we are going to investi-
gate how WoAC could be combined with non-GA, 
swarm-based approaches such as ACO [17], BCO [18], 
(BFO) [19], or (GSO) [20]. Special attention should be 
given to discovering better aggregation rules and optimal 
ways of achieving diversity in the populations. An im-
portant question to ask, deals with an optimal percentage 
of the population to be used in the crowd. In other words, 
should the whole population be used or is it better to se-
lect a sub-group of “experts”. Finally we are very inter-
ested in applying WoAC to other NP-Hard problems. 
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Appendix: Concorde Data File 

NAME: Concorde7 
TYPE: TSP 
DIMENSION: 7 
EDGE_WEIGHT_TYPE: EUC_2D 
NODE_COORD_SECTION 

1) 87.951292 2.658162 
2) 33.466597 66.682943 
3) 91.778314 53.807184 
4) 20.526749 47.633290 
5) 9.006012 81.185339 
6) 20.032350 2.761925 
7) 77.181310 31.922361 
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