
Journal of Intelligent Learning Systems and Applications, 2012, 4, 98-107
http://dx.doi.org/10.4236/jilsa.2012.42009 Published Online May 2012 (http://www.SciRP.org/journal/jilsa)

Wisdom of Artificial Crowds—A Metaheuristic Algorithm
for Optimization

Roman V. Yampolskiy, Leif Ashby, Lucas Hassan

Department of Computer Engineering and Computer Science Department, University of Louisville, Louisville, USA.
Email: {roman.yampolskiy, lhashb01, lwhass01}@louisville.edu

Received August 6th, 2011; revised March 27th, 2012; accepted April 5th, 2012

ABSTRACT

Finding optimal solutions to NP-Hard problems requires exponential time with respect to the size of the problem. Con-
sequently, heuristic methods are usually utilized to obtain approximate solutions to problems of such difficulty. In this
paper, a novel swarm-based nature-inspired metaheuristic algorithm for optimization is proposed. Inspired by human
collective intelligence, Wisdom of Artificial Crowds (WoAC) algorithm relies on a group of simulated intelligent
agents to arrive at independent solutions aggregated to produce a solution which in many cases is superior to individual
solutions of all participating agents. We illustrate superior performance of WoAC by comparing it against another
bio-inspired approach, the Genetic Algorithm, on one of the classical NP-Hard problems, the Travelling Salesperson
Problem. On average a 3% - 10% improvement in quality of solutions is observed with little computational overhead.

Keywords: NP-Complete; Optimization; TSP; Bio-Inspired

1. Introduction

A large number of important problems have been shown
to be NP-Hard [1]. Problems in that computational class
are believed to require exponential time, in the worst case,
to be solved. Since it is not feasible to practically solve such
problems using Turing/Von-Neumann computational archi-
tecture optimal methods are replaced with heuristic algo-
rithms that usually need polynomial time to provide ap-
proximate solutions [2].

Heuristic algorithms capable of addressing an array of
diverse problems are known as metaheuristics. Such al-
gorithms are computational methods that attempt to find
a close approximation to an optimal solution by itera-
tively trying to improve a candidate answer with regard
to a given measure of quality. Metaheuristic algorithms
don’t make any assumptions about the problem being
optimized and are capable of searching very large spaces
of potential solutions. Unfortunately, metaheuristic algo-
rithms are unlikely to arrive at an optimal solution for the
majority of large real world problems. However, research
continues to find asymptotically better metaheuristic al-
gorithms for specific problems.

Most metaheuristic algorithms in optimization and
search have been modeled on processes observed in bio-
logical systems [3-5]: Genetic Algorithms (GA) [6], Ge-
netic Programming (GP) [7], Cellular Automata (CA) [8],
Artificial Neural Networks (ANN), Artificial Immune
System (AIS) [9], or in the surrounding environment:

Intelligent Water Drops (IWD) [10], Gravitational Search
Algorithm (GSA) [11], Stochastic Diffusion Search (SDS)
[12], River Formation Dynamics (RFD) [2], Electro-
magnetism-Like Mechanism (EM) [13], Particle Swarm
Optimization (PSO) [14], Charged System Search (CSS)
[15], Big Bang-Big Crunch (BB-BC) [16]. Continuing
this trend of nature-inspired solutions a large number of
animal or plant behavior-based algorithms have been pro-
posed in recent years: Ant Colony Optimization (ACO)
[17], Bee Colony Optimization (BCO) [18], Bacterial
Foraging Optimization (BFO) [19], Glowworm Swarm
Optimization (GSO) [20], Firefly Algorithm (FA) [21],
Cuckoo Search (CS) [22], Flocking Birds (FB) [23],
Harmony Search (HS) [24], Monkey Search (MS) [25]
and Invasive Weed Optimization (IWO) [26]. In this pa-
per we propose a novel algorithm modeled on the natural
phenomenon known as the Wisdom of Crowds (WoC)
[27].

Wisdom of Crowds

In his 1907 publication in Nature, Francis Galton reports
on a crowd at a state fair, which was able to guess the
weight of an ox better than any cattle expert [28]. Intri-
gued by this phenomenon James Surowiecki in 2004
publishes: “The Wisdom of Crowds: Why the Many are
Smarter than the Few and How Collective Wisdom
Shapes Business, Economies, Societies and Nations” [27].
In that book Surowiecki explains that “Under the right

Copyright © 2012 SciRes. JILSA

Wisdom of Artificial Crowds—A Metaheuristic Algorithm for Optimization 99

circumstances, groups are remarkably intelligent, and are
often smarter than the smartest people in them. Groups
do not need to be dominated by exceptionally intelligent
people in order to be smart. Even if most of the people
within a group are not especially well-informed or ra-
tional, it can still reach a collectively wise decision” [27].
Surowiecki further explains that for a crowd to be wise it
has to satisfy four criteria:
 Cognitive diversity—individuals should have private

information.
 Independence—opinions of individuals should be

autonomously generated.
 Decentralization—individual should be able to spe-

cialize and draw on local knowledge.
 Aggregation—a methodology should be available for

arriving at a common answer.
Since the publication of Surowiecki’s book, the WoC

algorithm has been applied to many important problems
both by social scientists [29,30] and computer scientists
[31-36]. However, all such research used real human
beings either in person or via a network to obtain the
crowd effect. In this work we propose a way to generate
an artificial crowd of intelligent agents capable of coming
up with independent solutions to a complex problem.

Overall, the paper is organized as follows: in Section 2
we introduce the developed Wisdom of Artificial Crowds
algorithm. In Section 3 the Traveling Salesman Problem
is motivated as the canonical NP-Complete problem. In
Section 4 we provide a detailed description of the Ge-
netic Algorithm which is used to generate the intelligent
crowd for the post-processing algorithm to operate on. In
Section 5 we explain how the aggregate of the crowds’
decision is computed. Finally in Section 6 we report the
results of our experiments and in Section 7 we look at
potential future directions for research on Wisdom of
Artificial Crowds.

2. Wisdom of Artificial Crowds

Wisdom of Artificial Crowds (WoAC) is a novel swarm-
based nature-inspired metaheuristic algorithm for opti-
mization. WoAC is a post-processing algorithm in which
independently-deciding artificial agents aggregate their
individual solutions to arrive at an answer which is supe-
rior to all solutions present in the population. The algo-
rithm is inspired by the natural phenomenon known as
the Wisdom of Crowds [27]. WoAC is designed to serve
as a post-processing step for any swarm-based optimiza-
tion algorithm in which a population of intermediate so-
lution is produced, for example in this paper we will il-
lustrate how WoAC can be applied to a standard Ge-
netic Algorithm (GA).

The population of intermediate solutions to a problem
is treated as a crowd of intelligent agents. For a specific
problem an aggregation method is developed which allows

individual solutions present in the population to be com-
bined to produce a superior solution. The approach is
somewhat related to ensemble learning [37] methods
such as boosting or bootstrap aggregation [38,39] in the
context of classifier fusion in which decisions of inde-
pendent classifiers are combined to produce a superior
meta-algorithm. The main difference is that in ensembles
“when combing multiple independent and diverse deci-
sions each of which is at least more accurate than random
guessing, random errors cancel each other out, correct
decisions are reinforced [40]”, but in WoAC individual
agents are not required to be more accurate than random
guessing.

3. Travelling Salesperson Problem

Travelling Salesperson Problem (TSP) has attracted a lot
of attention over the years [41-43] because finding opti-
mal paths is a requirement that frequently appears in real
world applications and because it is a well-defined bench-
mark problem to test newly developed heuristic ap-
proaches [2]. TSP is a combinatorial optimization pro-
blem and could be represented by the following model
[17]: , ,P S f in which S is a search space defined
over a finite set of discrete decision variables Xi, i = 1,…,
n; a set of constraints ; and an objective function f to
be minimized.

TSP is a well-known NP-Hard problem meaning that
an efficient algorithm for solving TSP will be an efficient
algorithm for other NP-Complete problems. In simple
terms the problem could be stated as follows: a salesman
is given a list of cities and a cost to travel between each
pair of cities (or a list of city locations). The salesman
must select a starting city and visit each city exactly once
and return to the starting city. His problem is to find the
route (also known as a Hamiltonian Cycle) that will have
the lowest cost. In this paper we will use TSP as a non-
trivial testing ground for our algorithm.

Dataset

Data for testing of our algorithm has been generated us-
ing a piece of software called Concorde [44]. Concorde
is a C program written for solving the symmetric TSP
and some related network optimization problems and is
freely available for academic use. The program also al-
lows one to generate new instances of the TSP of any
size either with random distribution of nodes, or with
predefined coordinates. For problems of moderate size,
the software could be used to obtain optimal solutions to
specific TSP instances. Appendix contains an example of
a Concorde data file with 7 cities.

4. Genetic Algorithms

Inspired by evolution, genetic algorithms constitute a

Copyright © 2012 SciRes. JILSA

Wisdom of Artificial Crowds—A Metaheuristic Algorithm for Optimization 100

powerful set of optimization tools that have demonstrated
good performance on a wide variety of problems inclu-
ding some classical NP-complete problems such as the
Traveling Salesperson Problem (TSP) and Multiple Se-
quence Alignment (MSA) [45]. GAs search the solution
space using a simulated “Darwinian” evolution that fa-
vors survival of the fittest individuals. Survival of such
population members is ensured by the fact that fitter in-
dividuals get a higher chance at reproduction and survive
to the next generation in larger numbers [6].

GAs have been shown to solve linear and nonlinear
problems by exploring all regions of the state space and
exponentially exploiting promising areas through standard
genetic operators, eventually converging populations of
candidate solutions to a single global optimum. However,
some optimization problems contain numerous local op-
tima which are difficult to distinguish from the global
maximum and therefore result in sub-optimal solutions.
As a consequence, several population diversity mecha-
nisms have been proposed to delay or counteract the con-
vergence of the population by maintaining a diverse popu-
lation of members throughout its search.

A typical GA follows the following steps [46]:
1) A population of N possible solutions is created.
2) The fitness value of each individual is determined.
3) Repeat the following steps N/2 times to create the

next generation.
a) Choose two parents using tournament selection.
b) With probability pc, crossover the parents to create

two children; otherwise simply pass parents to the next
generation.

c) With probability pm for each child, mutate that
child.

d) Place the two new children into the next generation.
4) Repeat new generation creation until a satisfactory

solution is found or the search time is exhausted.

Implemented GA for Solving TSP

Solutions are encoded as chromosomes which tradition-
ally are represented by data arrays, but can be repre-
sented in other ways. Each solution is rated according to
its fitness which is based on the quality of the solution. A
population of chromosomes that are initially generated
randomly, continually goes through processes of inheri-
tance, mutation, selection, and crossover based on fitness
of the individual chromosomes. Hamiltonian cycles or
paths traveling all nodes only once are encoded as a list
of nodes in chromosomes. An initial population is gene-
rated randomly. Successive populations, generated by
operations of mutation and crossover on a prior popula-
tion, will replace the prior population. Each generation is
likely to yield chromosomes more similar to chromo-
somes representing optimal solutions based on fitness.

This experimental code was implemented as a Windows

Presentation Foundation (WPF) Application using C#. Net
4.0 framework in Visual Studio 2010 running on Win-
dows 7. The application has an “Open” menu item to
show a dialog box to browse for .tsp files and load them.
The application initializes from the data provided by the
file and displays the data graphically. The “Settings”
menu item will open a dialog allowing a user to set pa-
rameters of the genetic algorithm. The user can start the
process with a new population by pressing “Start” or
continue with the existing population by pressing “Con-
tinue”. The best, average, worst, or any combination can
be selected to be graphed as the algorithm is processing.
Any of the parameters may be changed during the execu-
tion of the algorithm.

The application domain is divided into several classes
for representing the TSP, and the genetic algorithm. Fi-
leData and Node classes are used to read a TSP file and
represent the graph of the TSP. Class Solver implements
the genetic algorithm. Solver is a strategy pattern with
the method, Solve, relying on implementations of inter-
faces defining parts of an algorithm. A combination of
concrete implementations that would make up a running
instance of Solver is grouped together by an instance of
EAConfiguration. The EAConfiguration object is passed
to the constructor of Solver. The combination includes
instances of Population, IChromosomeFactory, ICross-
overPolicy, ICrossoverOperator, IMutationPolicy, IMu-
tationOperator, and ITerminationCriteria classes.

The method, Solve, first takes the instance of Popula-
tion and adds instances of IChromosome created by the
instance of IChromosomeFactory. Population is a con-
tainer for ICromosome instances and keeps track of the
sum of all chromosome fitness and current generation.
IChromosome is an interface, defining that chromosomes
need to provide read-only properties of the underlying
data, the fitness and path distance, and provide methods
to be able to clone its type but with different data, and to
convert its data to a standard format to representing the
path. IChromosomeFactory is an interface for factories
that produce IChromosome. Next Solve reduces the size
of Population. If a new EAConfiguration was created,
and it required the size to be smaller than the previous
generation of Population. This is only to allow change of
population size in runtime and not necessarily a general
part of the genetic algorithm. Now that an initial popula-
tion is generated, Solve enters a while loop terminating
on criteria defined by an instance of ITerminationCriteria.

For each iteration of the loop, an instance of ICross-
overPolicy performs a transformation on Population pro-
ducing a new Population, and an instance of IMutaion-
Policy, also performs a transformation on Population
producing a new Population. ICrossoverPolicy and IMu-
tationPolicy are strategy patterns themselves. ICrossover-
Policy takes an instance of ICrossoverOperator and defines

Copyright © 2012 SciRes. JILSA

Wisdom of Artificial Crowds—A Metaheuristic Algorithm for Optimization 101

how that operator is applied to the entire population.
ICrossoverOperator itself is a strategy pattern which if
given two chromosomes produces two new chromo-
somes based on the ones given. Similarly, IMutation-
Policy is an interface for instances to define how to per-
form IMutationOperator instances on the entire popula-
tion. IMutationOperator is an interface for instances to
mutate a given chromosome.

To clarify, there are three tiers of strategy patterns. At
the bottom ICrossoverOperator and IMutationOperator
provide interfaces for instances, to define operations on
interfaces of IChromosome. The next tier, ICrossover-
Policy and IMutationPolicy are interfaces for instances to
define “policies” on how the operations are applied to the
entire population. The top tier is the skeleton layout of
the genetic algorithm Solver itself. The loop also fires an
event at each generation so that a handler may analyze or
display data as the algorithm is running. The use of
events allows UI code to be decoupled with the genetic
algorithm. This describes the general outline of the appli-
cation presenting many interfaces to allow concrete im-
plementations to “plug into”.

IChromosome is the interface for a solution represent-
tation for which two concrete classes are implemented;
OrderedPath and NumberedPermutation. Both Orderd-
Path and NumberedPermutation use classes, Permutation
[47] and BigInteger [48]. OrderedPath simply describes a
solution to the TSP as an array of the nodes in the order
traveled. NumberedPermutation represents a solution as a
number that maps to a specific permutation of the set of
nodes. Given a set of size n, there is n! permutations of
that set. In a Hamiltonian cycle, starting from any node
in the cycle and maintaining all the edges in the cycle
results in equivalent length of the path. Eliminating
equivalent cycles will yield a search space of size (n – 1)!.
Also, traveling a cycle in reverse will have the same dis-
tance. Removing the reverses will reduce the number of
cycles in a set to ((n – 1)/2)!. In the creation of a Num-
beredPermutation chromosome, a number between 1 and
(n – 1)! is given to reduce the solution space as any num-
ber above that will represent a permutation that is equi-
valent to a permutation represented by a number below
or equal to (n – 1)!.

A similar affect is used on the OrderedPath chromo-
somes by always setting the first node traveled as node 0.
The creation of chromosomes is abstracted away by the
use of an abstract factory IChromosomeFactory. Or- de-
redPathFactory and NumberedPermutation implement
the interface by simply calling the constructor of their
respected product classes and returning the created in-
stance. OrderedPathFirstNodeZeroFactory produces Or-
deredPath chromosomes with the first node set to zero.
NoRepeats implements ICrossoverOperator by taking the
given chromosomes, the parents, and splicing both at

some random mark. The first half or each is copied di-
rectly to the two chromosomes to be returned to the chil-
dren. The second half of the two parents is read one gene
at a time and the nodes are added to the end of the res-
pected child as long as the node has not occurred al-
ready in the chromosome. If it has, a node that does not
occur in the child chromosome is added by reading from
the beginning of the parent chromosome. NoRepeats-
FirstNodeZero does the exact same, but ensures that the
first node is zero. This is to be used with OrderedPath-
NodeZeroFactory and SwapBitsFirstNodeZero, but not
necessarily enforced. IMutatorOperator guarantees that
implementations provide method Operated which will
produce one chromosome based on the chromosome
given. SwapBits implements IMutatorOperator by taking
the given chromosomes and selecting two genes at ran-
dom and simply swapping them. SwapBitsFirstNodeZero
does exactly the same but ensures that the first node is
zero.

The next level is the policies. Policies define how the
selected operator is to be used on the entire population.
ICrossoverPolicy implementations have the method Eva-
luate and the property PercentageRate. Evaluate takes as
parameters Population, and ICrossoverOperator and re-
turns a new Population. RouletteWheel implements ICross-
overPolicy by taking the population and selecting two
parent chromosomes at random but with chromosomes
with higher fitness being more likely to be selected. This
is done by taking the summation of fitness in the popula-
tion, and multiplying it by a random value between zero
and one. This will be a value between zero and the summed
fitness. For each chromosome in the population the value
calculated is tested to see if it is lower than that of the
chromosome’s fitness. If it is, then that chromosome is
selected; if not, the calculated value is subtracted and the
chromosome’s fitness value is reduced for the next iteration.

This process yields a chromosome chosen with a pro-
bability of fitness/total fitness. After two parents are se-
lected this way, they have a probability defined in Per-
centageRate property of being operated on by the ICross-
overOperator. If the operator is not applied, the two se-
lected parents are simply added to the new population. If
the operator is applied, the ICrossoverOperator method,
Operate, is used on the two parents, yielding two children.
If the child’s fitness is greater than the parents’ the child
is placed in the population; if not the parents are chosen
instead. This tends to keep chromosomes with higher
fitness and kills off those with lower fitness.

Once the new population is filled, it is returned back as
the next generation. KeepElite is another implementation
of ICrossoverOperator. This implementation will keep
the best chromosomes in a given population, and apply
the same roulette wheel selection on the rest of the popu-
lation. The number of best chromosomes selected from

Copyright © 2012 SciRes. JILSA

Wisdom of Artificial Crowds—A Metaheuristic Algorithm for Optimization 102

the population is given by PercentageRate. Occurrence-
Rate implements IMutationPolicy by simply applying its
mutation operator for each chromosome, by a probability
given by PersentageRate.

A population of solutions produced by a GA tends to
quickly converge on a local maxima point [45] resulting
in a population of almost identical solutions (Figure 1).
Two countermeasures against this problem have been
developed. One is an early termination of the GA just
prior to the point of solution convergence, and cognitive
diversity elimination. The other way to maximize diver-
sity of solutions present in the crowd of intelligent agents
provided to the WoAC algorithm by the GA algorithm is
to conduct multiple runs of the GA on the same dataset.
Resulting populations are then merged and provide ne-
cessary cognitive diversity for the WoAC algorithm.

5. WoAC Aggregation Method

Building on the work of Yi et al. [30] who used a group
of volunteers to solve instances of TSP and aggregated
their answers, we have developed an automatic aggrega-
tion method which takes individual solutions and pro-
duces a common solution which reflects frequent local
structures of individual answers. The approach is based
on the belief that good local connections between nodes
will tend to be present in many solutions, while bad local
structures will be relatively rare. After constructing an
agreement matrix, Yi et al. [30] applied a nonlinear mo-
notonic transformation function in order to transform
agreements between answers into costs. They focused on
the function:

1
1 21 ,

ijij ac I b b

, (1)

where

1
1 2,

ijaI b b (2)

is the inverse regularized beta function with parameters
b1 and b2 both taking a value of at least 1 [30].

In our implementation of the aggregation function we
continue working with agreements between local com-
ponents of the solutions. The process in which this im-
plementation aggregates chromosomes is via recording
the number of occurrences of edges, creating a new path
traveling along edges that have occurred the most in the
population of the solutions. First, an occurrence matrix is
created to accumulate the number of times each edge
shows up. This is done by constructing an n × n matrix
with ni, where 0 < i ≤ n. Each cell stores the number of
edge occurrences with the cell’s row number corresponding
to one node of the edge and the cell’s column number
corresponding to the other node in the edge. This matrix
ends up being a symmetric matrix, and to save memory,
only the lower triangle is stored. An example, of only two
paths on 11 nodes can be seen in Figure 2.

To get every value of a row as if the entire matrix was
completed, values of the column that lie on the last dis-
played value of the row, are used to complete the row.
This is possible because of matrix symmetry. Figure 3
demonstrates this concept, highlighting what is to be con-
sidered the entire row five. Now that the number of edge
occurrences has been tallied, a new path is to be constructed
using the most occurring edges. The algorithm starts with
the most occurring edge. In the case of multiple max oc-
currences being equal, as in this example, the first one is
used. In our example, the new path will start using the

Figure 1. Paths get shorter with successive generations.

Figure 2. An example matrix with two paths shown.

Figure 3. Representative selection of the entire row five.

Copyright © 2012 SciRes. JILSA

Wisdom of Artificial Crowds—A Metaheuristic Algorithm for Optimization

Copyright © 2012 SciRes. JILSA

103

cell (5,4) meaning that the nodes 5 and 4 make the most
frequently occurring edge. To find the next node, the
algorithm searches the most occurring edge that shares
one of the nodes used in the last step. This is done by
looking at all the cells that share either the same row or
same column. As mentioned earlier, a row’s data is com-
pleted by using the data of the column of the last cell in
the row. This implies that any column’s data is part of
some row.

populations. WoAC was applied to each of these popula-
tions, using all chromosomes of the population. Figure 5
shows 6 tables, each listing the best, average, worst, and
WoAC for each population that resulted from the genetic
algorithm. The results of WoAC are highlighted light
blue if the results are equal to the best or highlighted dark
blue if the results of WoAC are better than the best.

To continue this example, in order to find the next
node connecting to the edge (5,4), the cells that make up
the row and column of (5,4) are examined. This can be
seen in Figure 4. This process is continued until all
nodes are connected to construct a new path. To make
sure that a node is not used twice, a checklist is used to
mark which rows have been used; nodes in these rows
will be ignored. As the algorithm is run, sometimes a
node cannot be found. In this case a node with the closest
distance to the last node inserted into the new path, and
that is not checked off, is used to continue the process.

6. Experimental Results

The GA was run 10 times, on 6 data sets, producing 60 Figure 4. The cells that make up row and column of (5,4).

Figure 5. Comparison of GA vs. WoAC on six progressively larger TSP instances.

Wisdom of Artificial Crowds—A Metaheuristic Algorithm for Optimization 104

Figure 6 shows scatter plots graphing similarity to dis-

tance. Proportion of coincidence of path with other sub-
jects was calculated by counting the number of edges a
solution has in common with other solutions, and then
dividing the number of agreeing edges by the number of
cities to get the percentage of agreement. These are then
averaged for all the cities to find the final value. WoAC
was then applied to all populations of each given data set.
This was done for the best chromosome from each popu-
lation starting with top 5, then top 10, and so on incre-
menting by 5 up to the total population size of 100. Fig-
ure 7 shows a table displaying the best results from the
genetic algorithm alone, result of applying WoAC to all
chromosomes from the population, result of applying
WoAC to the top 1 percent of chromosomes from the
population, result of applying WoAC to the best number

of chromosomes from the population, and the best num-
ber that was used. Highlighted in blue are the best results
from all cases. On average a 3% - 10% improvement could
be seen in cases where WoAC had improvement over
standalone GA. Graphical representations of the best
WoAC results for different datasets are displayed in
Figures 8-13. The blue dots represent the nodes, gray
lines are paths from the chromosomes, and orange lines
are the path generated from WoAC.

We have performed additional experiments to verify
cross-domain applicability of WoAC and the results are
encouraging. In solving instances of NP-Complete game
—Light Up, improvement due to WoAC over pure GA
varied from 3.5% to 35% [4]. For another canonical NP-
Complete problem—Knapsack, improvements as a result
of postprocessing by WoAC varied from 1.0% to 1.8% [3].

Figure 6. Scatter plots for 22, 44, 77, 97 and 222 city TSP.

Copyright © 2012 SciRes. JILSA

Wisdom of Artificial Crowds—A Metaheuristic Algorithm for Optimization 105

Figure 7. Best results from GA and expert agents.

Figure 8. 11 nodes: Top 30 from each population.

Figure 9. 22 nodes: Top 80 from each population.

Figure 10. 44 nodes: Top 90 from each population.

Figure 11. 77 nodes: Top 10 from each population.

Figure 12. 97 nodes: Top 45 from each population.

Figure 13. 222 nodes: Top 15 from each population.

7. Conclusions

We have presented a novel swarm-based nature-inspired
metaheuristic algorithm for optimization. In many cases
WoAC outperformed even the best solutions produced by
the genetic algorithm. In the case of running WoAC on a
single population, better results seemed to appear more
frequently in the larger data sets. Improved results are
also seen in the case of running WoAC on groups of popu-
lations after reducing the number of chromosomes to use
from each population. In both cases, the larger indepen-
dent variance in the set used for WoAC, whether a single
population or multiple, seemed to yield better results. On
the small instances of TSP, the genetic algorithm is quick
to find good solutions and the entire population tends to
converge on best chromosome in the population. This
gives poor independent variance and WoAC results in
equal or worse results after processing the population.

As the data sets increase in size, the genetic algorithm
performs worse, but this allows more room for improve-
ment for WoAC. In using WoAC on multiple populations,
the analysis gave varying results on different percentages
of best chromosomes in each population. This parameter
can be changed and WoAC tested to compare results, but
a common value does not seem to generalize across dif-
ferent size data sets. This is due to high dependence on
the data used. The larger data sets used with multiple
populations did show more consistent improvement after
the application of WoAC. Running WoAC on datasets
with several hundred cities and subsampling any number
of top chromosomes yielded better results than the best
result from the genetic algorithm alone. Even running
WoAC on each single population seemed to show im-
provement, giving better results on 5 of the 10 popula-
tions generated.

Copyright © 2012 SciRes. JILSA

Wisdom of Artificial Crowds—A Metaheuristic Algorithm for Optimization 106

WoAC is a postprocessing algorithm with running
time in milliseconds which is negligible in comparison to
the algorithm it attempts to improve, genetic search.
While, WoAC does not always produce a superior solu-
tion, in cases where it fails it can be simply ignored since
the GA itself provides a better solution in such cases.
Consequently, WoAC is computationally efficient and
can only improve the quality of solutions, never hurting
the overall outcome.

In the future we plan on conducting additional ex-
periments aimed at improving overall performance of the
WoAC algorithm. In particular we are going to investi-
gate how WoAC could be combined with non-GA,
swarm-based approaches such as ACO [17], BCO [18],
(BFO) [19], or (GSO) [20]. Special attention should be
given to discovering better aggregation rules and optimal
ways of achieving diversity in the populations. An im-
portant question to ask, deals with an optimal percentage
of the population to be used in the crowd. In other words,
should the whole population be used or is it better to se-
lect a sub-group of “experts”. Finally we are very inter-
ested in applying WoAC to other NP-Hard problems.

REFERENCES
[1] R. M. Karp, “Reducibility among Combinatorial Pro-

blems,” In: R. E. Miller and J. W. Thatcher, Eds., Com-
plexity of Computer Computations, Plenum, New York,
1972, pp. 85-103.

[2] P. Rabanal, I. Rodriguez and F. Rubio, “Using River
Formation Dynamics to Design Heuristic Algorithms,”
Lecture Notes in Computer Science, Vol. 4618, 2007, pp.
163-177. doi:10.1007/978-3-540-73554-0_16

[3] R. V. Yampolskiy and A. EL-Barkouky, “Wisdom of
Artificial Crowds Algorithm for Solving NP-Hard Prob-
lems,” International Journal of Bio-Inspired Computation,
Vol. 3, No. 6, 2011, pp. 358-369.
doi:10.1504/IJBIC.2011.043624

[4] L. H. Ashby and R. V. Yampolskiy, “Genetic Algorithm
and Wisdom of Artificial Crowds Algorithm Applied to
Light Up,” The 16th International Conference on Com-
puter Games, Louisville, 27-30 July 27, 2011, pp. 27-32.

[5] A. B. Khalifa and R. V. Yampolskiy, “GA with Wisdom
of Artificial Crowds for Solving Mastermind Satisfiabi-
lity Problem,” International Journal of Intelligent Games
& Simulation, Vol. 6, No. 2, 2011, pp. 12-17.

[6] D. E. Goldberg, “Genetic Algorithms in Search, Optimi-
zation and Machine Learning,” Addison Wesley Publish-
ing Company, Boston, 1989.

[7] J. R. Koza, “Genetic Programming: A Paradigm for Ge-
netically Breeding Populations of Computer Programs to
Solve Problems,” Technical Report, Stanford University.
Stanford, 1990.

[8] S. Wolfram, “A New Kind of Science,” Wolfram Media
Inc., Champaign, 2002.

[9] J. D. Farmer, N. Packard and A. Perelson, “The Immune

System, Adaptation and Machine Learning,” Physica D,
Vol. 2, No. 1-3, 1986, pp. 187-204.
doi:10.1016/0167-2789(86)90240-X

[10] H. Shah-Hosseini, “The Intelligent Water Drops Algo-
rithm: A Nature-Inspired Swarm-Based Optimization Al-
gorithm,” International Journal of Bio-Inspired Compu-
tation, Vol. 1, No. 1-2, 2009, pp. 71-79.
doi:10.1504/IJBIC.2009.022775

[11] E. Rashedi, H. Nezamabadi-Pour and S. Saryazdi, “GSA:
A Gravitational Search Algorithm,” Information Sciences,
Vol. 179, No. 13, 2009, pp. 2232-2248.
doi:10.1016/j.ins.2009.03.004

[12] J. M. Bishop, “Stochastic Searching Networks,” 1st IEE
International Conference on Artificial Neural Networks,
London, 16-18 October 1989, pp. 329-331.

[13] X.-J. Wang, L. Gao and C.-Y. Zhang, “Electromagne-
tism-Like Mechanism Based Algorithm for Neural Net-
work Training,” Lecture Notes in Computer Science, Vol.
5227, 2008, pp. 40-45. doi:10.1007/978-3-540-85984-0_5

[14] J. Kennedy and R. Eberhart, “Particle Swarm Optimiza-
tion,” IEEE International Conference on Neural Net-
works, Perth, 27 November-1 December 1995, pp. 1942-
1948.

[15] A. Kaveh and S. Talatahari, “A Novel Heuristic Optimi-
zation Method: Charged System Search,” Acta Mecha-
nica, Vol. 213, No. 3-4, 2010, pp. 267-289.
doi:10.1007/s00707-009-0270-4

[16] O. K. Erol and I. Eksim, “A New Optimization Method:
Big Bang-Big Crunch,” Advances in Engineering Soft-
ware, Vol. 37, No. 2, 2006, pp. 106-111.
doi:10.1016/j.advengsoft.2005.04.005

[17] M. Dorigo, M. Birattari and T. Stutzle, “Ant Colony Op-
timization: Artificial Ants as a Computational Intelligence
Technique,” IEEE Computational Intelligence Magazine,
Vol. 1, No. 4, 2006, pp. 28-39.
doi:10.1109/MCI.2006.329691

[18] D. T. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim
and M. Zaidi, “The Bees Algorithm—A Novel Tool for
Complex Optimisation Problems,” Virtual International
Conference on Intelligent Production Machines and Sys-
tems, Cardiff, 13-14 July 2006, pp. 454-459.

[19] K. M. Passino, “Biomimicry of Bacterial Foraging for
Distributed Optimization and Control,” Control Systems
Magazine, Vol. 22, No. 3, 2002, pp. 52-67.
doi:10.1109/MCS.2002.1004010

[20] K. N. Krishnanand and D. Ghose, “Detection of Multiple
Source Locations Using a Glowworm Metaphor With
Applications to Collective Robotics,” IEEE Swarm Intel-
ligence Symposium, Pasadena, 8-10 June 2005, pp. 84-91.

[21] X. S. Yang, “Firefly Algorithms for Multimodal Optimi-
zation,” Lecture Notes in Computer Sciences, Vol. 5792,
2009, pp. 169-178. doi:10.1007/978-3-642-04944-6

[22] X.-S. Yang and S. Deb, “Cuckoo Search via Levy
Flights,” World Congress on Nature & Biologically In-
spired Computing, Coimbatore, 9-11 December 2009, pp.
210-214.

[23] C. W. Reynolds, “Flocks, Herds, and Schools: A Distri-
buted Behavioral Model,” 14th Annual Conference on

Copyright © 2012 SciRes. JILSA

http://dx.doi.org/10.1007/978-3-540-73554-0_16
http://dx.doi.org/10.1504/IJBIC.2011.043624
http://dx.doi.org/10.1016/0167-2789(86)90240-X
http://dx.doi.org/10.1504/IJBIC.2009.022775
http://dx.doi.org/10.1016/j.ins.2009.03.004
http://dx.doi.org/10.1007/978-3-540-85984-0_5
http://dx.doi.org/10.1007/s00707-009-0270-4
http://dx.doi.org/10.1016/j.advengsoft.2005.04.005
http://dx.doi.org/10.1109/MCI.2006.329691
http://dx.doi.org/10.1109/MCS.2002.1004010
http://dx.doi.org/10.1007/978-3-642-04944-6

Wisdom of Artificial Crowds—A Metaheuristic Algorithm for Optimization

Copyright © 2012 SciRes. JILSA

107

Computer Graphics and Interactive Techniques, Anaheim,
27-31 July 1987, pp. 25-34.

[24] Z. W. Geem, J. H. Kim and G. V. Loganathan, “A New
Heuristic Optimization Algorithm: Harmony Search,” Si-
mulation, Vol. 76, No. 2, 2001, pp. 60-68.
doi:10.1177/003754970107600201

[25] A. Mucherino and O. Seref, “Monkey Search: A Novel
Metaheuristic Search for Global Optimization,” AIP
Conference on Data Mining, Systems Analysis and Opti-
mization in Biomedicine, Gainesville, 28-30 March 2007,
pp. 162-173.

[26] A. R. Mehrabian and C. Lucas, “A Novel Numerical Op-
timization Algorithm Inspired from Weed Colonization,”
Ecological Informatics, Vol. 1, No. 4, 2006, pp. 355-366.
doi:10.1016/j.ecoinf.2006.07.003

[27] J. Surowiecki, “The Wisdom of Crowds: Why the Many
Are Smarter than the Few and How Collective Wisdom
Shapes Business, Economies, Societies and Nations,”
Doubleday, New York, 2004.

[28] F. Galton, “Vox Populi,” Nature, Vol. 75, No. 1949, 1907,
pp. 450-451.

[29] S. K. M. Yi, M. Steyvers, M. D. Lee and M. Dry, “Wis-
dom of Crowds in Minimum Spanning Tree Problems,”
Proceedings of the 32nd Annual Conference of the Cog-
nitive Science Society, Austin, 2010, pp. 1840-1845.

[30] S. K. M. Yi, M. Steyvers, M. D. Lee and M. Dry, “Wis-
dom of the Crowds in Traveling Salesman Problems,”
2011. socsci.uci.edu/~mdlee/YiEtAl2010.pdf

[31] C. Wagner, C. Schneider, S. Zhao and H. Chen, “The
Wisdom of Reluctant Crowds,” 43rd Hawaii Interna-
tional Conference on System Sciences, Honolulu, 5-8
January 2010, pp. 1-10.

[32] M. C. Mozer, H. Pashler and H. Homaei, “Optimal Pre-
dictions in Everyday Cognition: The Wisdom of Indi-
viduals or Crowds?” Cognitive Science, Vol. 32, No. 7,
2008, pp. 1133-1147. doi:10.1080/03640210802353

[33] F. Bai and B. Krishnamachari, “Exploiting the Wisdom of
the Crowd: Localized, Distributed Information-Centric
VANETs,” Communications Magazine, Vol. 48, No. 5,
2010, pp. 1-8.

[34] T. Moore and R. Clayton, “Evaluating the Wisdom of
Crowds in Assessing Phishing Websites,” Lecture Notes
in Computer Science, Vol. 5143, 2008, pp. 16-30.
doi:10.1007/978-3-540-85230-8_2

[35] K. Shiratsuchi, S. Yoshii and M. Furukawa, “Finding
Unknown Interests Utilizing the Wisdom of Crowds in a

Social Bookmark Service,” IEEE/WIC/ACM International
Conference on Intelligence and Intelligent Agent Tech-
nology, Hong Kong, 18-22 December 2006, pp. 421-424.

[36] F. C. C. Osorio and J. Whitney, “Trust, the Wisdom of
Crowds, and Societal Norms,” 1st International Confer-
ence on Security and Privacy for Emerging Areas in
Communication Networks, Athens, 5-9 September 2005,
pp. 199- 208.

[37] D. Opitz and R. Maclin, “Popular Ensemble Methods: An
Empirical Study,” Journal of Artificial Intelligence Re-
search, Vol. 11, 1999, pp. 169-198.

[38] P. Melville and R. J. Mooney, “Diverse Ensembles for
Active Learning,” 21st International Conference on Ma-
chine Learning, Banff, 4-8 July 2004, pp. 584-591.

[39] P. Melville and R. J. Mooney, “Constructing Diverse
Classifier Ensembles Using Artificial Training Examples,”
18th International Joint Conference on Artificial Intelli-
gence, Acapulco, 9-15 August 2003, pp. 505-510.

[40] R. J. Mooney, “Machine Learning: Ensembles,” 2011.
cs.utexas.edu/~mooney/cs391L/slides/ensembles.ppt

[41] M. Bellmore and G. L. Nemhauser, “The Traveling Sales-
man Problem: A Survey,” Operations Research, Vol. 16,
No. 3, 1968, pp. 538-558. doi:10.1287/opre.16

[42] M. Dorigo and L. M. Gambardella, “Ant Colonies for the
Traveling Salesman Problem,” Biosystems, Vol. 43, No. 2,
1997, pp. 73-81. doi:10.1016/S0303-2647(97)01708-5

[43] R. E. Burkard, V. G. Deineko, R. V. Dal, J. A. A. V. D.
Veen and G. J. Woeginger, “Well-Solvable Special Cases
of the Traveling Salesman Problem: A Survey,” SIAM
Review, Vol. 40, No. 3, 1998, pp. 496-546.

[44] W. Cook, “Concorde TSP Solver,” 2010.
tsp.gatech.edu/concorde/index.html

[45] R. V. Yampolskiy, “Application of Bio-Inspired Algo-
rithm to the Problem of Integer Factorisation,” Interna-
tional Journal of Bio-Inspired Computation, Vol. 2, No. 2,
2010, pp. 115-123. doi:10.1504/IJBIC.2010.032127

[46] R. Yampolskiy, et al., “Printer Model Integrating Genetic
Algorithm for Improvement of Halftone Patterns,” Wes-
tern New York Image Processing Workshop, Rochester,
2004.

[47] J. McCaffrey, “Using Permutations in NET for Improved
Systems Security,” 2003.
msdn.microsoft.com/en-us/library/Aa302371

[48] C. K. Tan, “C# BigInteger Class-CodeProject,” 2002.
http://www.codeproject.com/KB/cs/biginteger.aspx

Appendix: Concorde Data File

NAME: Concorde7
TYPE: TSP
DIMENSION: 7
EDGE_WEIGHT_TYPE: EUC_2D
NODE_COORD_SECTION

1) 87.951292 2.658162
2) 33.466597 66.682943
3) 91.778314 53.807184
4) 20.526749 47.633290
5) 9.006012 81.185339
6) 20.032350 2.761925
7) 77.181310 31.922361

http://dx.doi.org/10.1177/003754970107600201
http://dx.doi.org/10.1016/j.ecoinf.2006.07.003
http://dx.doi.org/10.1080/03640210802353
http://dx.doi.org/10.1007/978-3-540-85230-8_2
http://dx.doi.org/10.1287/opre.16
http://dx.doi.org/10.1016/S0303-2647(97)01708-5
http://dx.doi.org/10.1504/IJBIC.2010.032127

