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ABSTRACT 

In this paper, an improved Differential Evolution (DE) that incorporates double wavelet-based operations is proposed to 
solve the Economic Load Dispatch (ELD) problem. The double wavelet mutations are applied in order to enhance DE 
in exploring the solution space more effectively for better solution quality and stability. The first stage of wavelet ope- 
ration is embedded in the DE mutation operation, in which the scaling factor is governed by a wavelet function. In the 
second stage, a wavelet-based mutation operation is embedded in the DE crossover operation. The trial population vec- 
tors are modified by the wavelet function. A suite of benchmark test functions is employed to evaluate the performance 
of the proposed DE in different problems. The result shows empirically that the proposed method out-performs signify- 
cantly the conventional methods in terms of convergence speed, solution quality and solution stability. Then the pro- 
posed method is applied to the Economic Load Dispatch with Valve-Point Loading (ELD-VPL) problem, which is a 
process to share the power demand among the online generators in a power system for minimum fuel cost. Two dif- 
ferent conditions of the ELD problem have been tested in this paper. It is observed that the proposed method gives satis- 
factory optimal costs when compared with the other techniques in the literature. 
 
Keywords: Differential Evolution; Evolutionary Algorithm; Economic Load Dispatch 

1. Introduction 
Economic Load Dispatch (ELD) is one of the key consi- 
derations when operating a power generation system. 
Electric power utilities are expected to maximize the pro- 
fit by minimizing the operating cost on generating the 
power. The loading demand and transmission losses must 
be met on providing a stable power supply for the users. 
For secure operation, the demand of power should be 
dispatched to different generators, so that the generation 
capacity limits are not exceeded. Therefore, the ELD 
problem can be formulated as an optimization problem 
[1]. Its objective is to reduce the total power generation 
cost of a group of power generators while satisfying dif- 
ferent constraints. Because of the valve-point loadings 
and rate limits, the input-output characteristics of modern 
generators are nonlinear by nature. As a result, the cha- 
racteristics of ELD with Valve-Point Loading (ELD-VPL) 
problem are multimodal, discontinuous, highly nonlinear, 
large-dimensional and highly constrained; which is dif- 
ficult to solve. The classical gradient techniques failed to 
address the ELD-VPL problem satisfactorily. As a result, 
Evolutionary Algorithms (EAs) have been introduced to 
handle it. For example, the PSO methods were applied to 

solve the ELD-VPL problem in [2,3], and an algorithm 
called DEC-SQ [4] was used to tackle the problem. 

Differential Evolution (DE) has been well accepted as 
a powerful algorithm for handling optimization problems 
during the last decade. Proposed by Storn and Price [5], 
DE is a population based stochastic optimization algo- 
rithm that searches the solution space based on the weighted 
difference between two population vectors. No separate 
probability distribution has to be used so that the scheme 
is completely self-organizing. It is a new member of the 
class of Evolutionary Algorithms (EAs) that imitate the 
process of biological evolution. Owing to the population 
based strategy, EAs are less possibly getting trapped in a 
locally optimal solution. Apart from DE, other EAs in- 
clude Genetic Algorithm (GA) [6] and Evolutionary Pro- 
gramming (EP) [7,8]. 

Similar to GA, DE uses evolutionary operations of 
mutation and crossover to make the population evolving 
towards the global solution within the given solution space. 
Comparing with other optimization algorithms, DE is 
easy to implement, requires fewer parameters for tuning, 
and has a relatively fast convergence speed. A simple 
vector subtraction is able to generate a random direction 
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of exploration over the solution space. DE can also offer 
a high degree of variations for the population to search 
the solution. It has been successfully applied in a num- 
ber of optimization benchmark functions [9] and in a 
wide range of optimization problems such as data clus- 
tering [10], power plant control [11], optimization of non- 
linear functions [12], electromagnetic inverse scattering 
problems [13], etc. However, for maintaining the diversity 
from one generation of population to the next, mutation 
takes an important role in the evolution process. The 
presence of mutation can help assuring the reached solu-
tion is a global optimum; but a too vigorous mutation in 
every iteration step may slow down or even destroy the 
convergence of the algorithm [14,15]. 

On doing the mutation and crossover operation, we 
can have the solution space to be more widely explored 
in the early stage of the search; and it is more likely to ob- 
tain a fine-tuned global solution in the later stage of the 
search by setting a smaller searching space. This can be 
realized by considering the properties of a wavelet func- 
tion [16]. The wavelet is a tool to model seismic signals 
by combining dilations and translations of a simple, oscil- 
latory function (mother wavelet) of a finite domain. In 
this paper, mutation and crossover operations within a 
searching space that take advantage of some wavelet func-
tions are proposed. The double mutation operations in the 
proposed method aid the DE to perform more efficiently 
and provide a faster convergence than the standard DE in 
finding the solution for the ELD-VPL problem. In addi- 
tion, it can achieve better solution quality and stability. 

This paper is organized as follows: Section 2 presents 
the details of the DE with double wavelet mutations. Ex- 
perimental study and analysis for a suite of benchmark 
functions are given in Section 3. These functions serve as 
good platforms to evaluate the performance of the pro- 
posed method. The problem formulation of ELD-VPL is 
given in Section 4. Experimental study of applying the 
proposed method to the ELD-VPL problem is given in 
Section 5. A conclusion will be drawn in Section 6. 

2. DE with Double Wavelet Mutations 

To realize DE, a randomly generated population over the 
solution space is first obtained. The population of solu-
tion vectors is then successively updated until the popu-
lation converges to the optimum. The pseudo code for 
the standard DE (SDE) process is shown in Figure 1. In 
this paper, an algorithm called DE with double wavelet 
mutation (DWM-DE) is proposed and the pseudo code 
of it is shown in Figure 2. The details of both the SDE 
and the DWM-DE are discussed as follows. 

2.1. Standard Differential Evolution (SDE) 

DE attempts to maintain a population of Np vectors for 
each generation of evolution, with each vector contains D 

 

begin  
Initialize the population  
  While (not termination condition) do  
  begin  
     Mutation operation by Equation (2)  
     Crossover operation by Equation (3)  
     Evaluation of the fitness function  
     Select the best vector by Equation (4)  
  end  
end

Figure 1. Pseudo code for SDE. 
 

 

begin 
Initialize the population 

While (not termination condition) do 
begin 

Mutation operation by Equation (2) 
Update the new value of F by Equation (12) 
Crossover operation by Equation (3) 
Modifying the trail population vectors  
based on Equation (15) 
Evaluation of the fitness function 
Select the best vector by 
Equation (4) 

end 
end 

Figure 2. Pseudo code for the proposed DE. 
 
elements. Let Px,g be the population of the current ge- 
neration g, and  be the i-th vector in this population: ,x i g
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where gmax is the maximum generation number. Before 
the population can be initialized over the solution space, 
the boundary of the searching space should be specified. 
The population should be uniformly and randomly dis-
tributed in the searching space. Once initialized, DE cre-
ates a mutated vector, vi,g for each target vector xi,g by 
using the mutation operation. This operation adds a sca- 
led, randomly sampled, vector difference to xi,g to form a 
third vector. The mutated vector is therefore realized by 
the following equation: 

 1 2, , , ,v x x xi g i g r g r gF           (2) 

where F is the scaling factor; r1 and r2 are two different 
integers which are randomly generated from {0, 1,…, Np 

 1}. To complement the differential mutation search 
strategy and increase the diversity of the perturbed vec-
tors, DE employs a method called uniform crossover for 
all the mutated vectors. Each vector element pair xj,i,g and 
vj,i,g generates a new trial vector element uj,i,g, which is 
realized by the following equation: 

   
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, ,
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where  is called the crossover rate, which is 
a user-defined value that controls the fraction of elements 
copied from the mutant. randj (0, 1) generates a random 
value between 0 and 1 for the j-th element. The algorithm 
also ensures uj,i,g gets at least one element value as xj,i,g. 
Then the population is updated by comparing each trial 
vector ,  to the corresponding target vector xi,g. If the 
fitness function value of the trial vector is lower than that 
of the target vector, replace the target vector with the trial 
vector in the next generation; otherwise the target vector 
retains its place in the population. The selection opera- 
tion is therefore realized by the following equation: 

]1,0[rC

ui g

  , ,
, 1

,

u      if u x
x

x      otherwise.

i g i g i g
i g

i g

f f


  


,
      (4) 

where f() is the fitness function. Because of this selec- 
tion operation, DE is expected to have high optimization 
ability. When the condition to stop further evolution is 
satisfied; for example, a preset maximum number of ite- 
ration has been reached, the algorithm ends with the best 
solution as the final solution. 

2.2. Differential Evolution with Double Wavelet 
Mutation (DWM-DE) 

In the SDE mutation operation, the value of F in (2) is a 
fixed value within the range of [0, 1] determined based 
on the kind of application. The choice of this value relies 
very much on experience or expert knowledge. Yet, a 
fixed value of F takes no advantage of the benefit brought 
by the evolution. We propose the value of F to diminish 
with the increase of the number of iteration. Moreover, 
for some complex optimization problem such as finding 
the minimum point of a multimodal function with many 
local minima, a large number of iteration for solving the 
problem is required. It reduces the efficiency of the SDE. 
This leads to the proposed DWM-DE in which the value 
F is determined by a wavelet function. The degree of 
different movements for the trial vectors will then be 
increased. More “random” directions for the exploration 
would be generated during the mutation operation. More- 
over, in the crossover operation, we proposed a second 
wavelet mutation that varies the searching space based 
on the wavelet function. As the wavelet function output 
is inversely proportional to the number of iteration; when 
the searching population is approaching the optimal solu- 
tion, the effect of the double wavelet mutations will be 
decreasing until the DE ends eventually. By adopting this 
method, the effort on searching and evaluating those local 
optima, which could be far away from the global opti- 
mum, in the later iteration is reduced. The total number 
of iteration should also decrease. Thanks to the property 
of the wavelet function, the solution stability is enhanced 
in a statistical sense, i.e. the performance of the DE on 

converging to the optimal point is relatively stable des- 
pite the presence of many random factors during the 
evolution. 

2.3. Double Wavelet Mutation 

2.3.1. Wavelet Theory 
Certain seismic signals can be modelled by combining 
translations and dilations of an oscillatory function within a 
finite domain called a “wavelet”. A continuous-time func- 
tion ( )ψ x  is called a “mother wavelet” or “wavelet” if it 
satisfies the following properties: 

Property 1: 

( ) d 0ψ x x



               (5)  

In other words, the total positive momentum of ( )ψ x  
is equal to the total negative momentum of ( )ψ x . 

Property 2: 

2
( ) dψ x x




                (6) 

which means most of the energy in ( )ψ x  is confined to 
a finite duration and bounded. The Morlet wavelet, as 
shown in Figure 3, is an example mother wavelet: 

   2 /2 cos 5xψ x e x             (7) 

The Morlet wavelet integrates to zero (Property 1). 
Over 99% of the total energy of the function is contained 
in the interval of –2.5 < x < 2.5 (Property 2). In order to 
control the magnitude of ( )ψ x , a function ( )aψ x  is 
defined as follows. 

1
( )a

x
ψ x ψ

aa

   
 

              (8) 

where a is the dilation parameter. 
It follows that ( )aψ x  is an amplitude-scaled version 

of ( )ψ x . Figure 4 shows different dilations of the Mor-
let wavelet. The amplitude of ( )aψ x  will be scaled down 
as the dilation parameter a increases. This property is 
used to do the mutation operation in order to enhance the 
searching performance. 

2.3.2. Operation of DE with Wavelet Mutation 
The vectors in the population are mutated based on a 
proposed wavelet mutation (WM) operation, which ex-
hibits a fine-tuning property. First, modify the mutation 
operation (2) as follows. 

 1 2, , , ,v x x xi g i g r g r gF             (9) 

where 

( )aF ψ φ                (10) 

1 φ
F ψ

aa

   
 

             (11) 
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Figure 3. Morlet wavelet. 
 

 

Figure 4. Morlet wavelet dilated by different values of a 
(x-axis: a, y-axis: ψa,0(x)). 
 

By using the Morlet wavelet in (7) as the mother wavelet, 
2
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Referring to the Property 1 of (5), the total positive 
momentum of the mother wavelet is equal to the total 
negative momentum of the mother wavelet. Then, the 
sum of the positive F is equal to the sum of the negative 
F when the number of samples is large and  is ran-
domly generated, i.e. 

φ

1
0

N

F
N

  for         (13) N 

where N is the number of samples. Hence, the overall 
positive mutation and the overall negative mutation 
throughout the evolution are nearly the same in a statis- 

tical sense. This property gives better solution stability 
such that a smaller standard deviation of the solution 
values upon many trials can be reached. As over 99% of 
the total energy of the mother wavelet function is con-
tained in the interval [−2.5, 2.5],  can be generated 
from [−2.5, 2.5] randomly. The value of the dilation pa-
rameter a is set to vary with the value of 

φ

t T in order to 
meet the fine-tuning purpose, where T is the total number 
of iteration and t is the current number of iteration. In 
order to perform a local search when t is large, the value 
of a should increase as t T  increases so as to reduce 
the significance of the mutation. Hence, a monotonic in- 
creasing function governing a and t T  is proposed as 
follows. 

   ln 1 ln
ζwmt

λ λ
Ta e

     
               (14) 

where wm  is the shape parameter of the monotonic 
increasing function, λ is the upper limit of the parameter a. 

ζ

The effects of the various values of the shape parame- 
ter wm  to a with respect to ζ t T  are shown in Figure 
5. In this figure,  is set as 10,000. Thus, the value of a is 
between 1 and 10,000. Referring to (12), the maximum 
value of F is 1 when the random number of  = 0 and φ

1a   (at t T = 0). Then referring to (9), the vector 

,  has a large degree of mutation. It ensures that a 
large search space for the mutated vector is given at the 
early stage of evolution. When the value 

vi g

t T  is near to 
1, the value of a is so large that the maximum value of F 
will become very small. For example, at t T = 0.9 and 

wm 1ζ  , a = 400; if the random value of  is zero, the 
value of F will be equal to 0.0158. A smaller searching 
space for the mutated vector is then given for fine-tuning. 

φ

2.3.3. Operation of DE Crossover with Wavelet 
Mutation 

The crossover operation of (3) is done with respect to the 
 

 

Figure 5. Effect of the shape parameter ξwm to a with re- 
spect to t/T. 
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elements of the trial vector (after mutation) in DE. In 
DWM-DE, the second-stage wavelet mutation is embed- 
ded in the crossover operation. In general, various me- 
thods like uniform mutation or non-uniform mutation [17,18] 
can be employed to realize the mutation operation. In this 
paper, the second-stage wavelet operation, which exhibits a 
fine-tuning ability, is realized by adding a second wave- 
let mutation following the original crossover operation. 
The crossover after the first mutation takes place accord- 
ing to (3). Let  (where g is 
the current generation number and D is the number of 
elements in the vector) be the i-th vector after crossover 
for the second wavelet mutation. The value of the ele- 
ment 

, 0, , 1, , 1, ,u , , ,i g i g i g D i gu u u   

, ,j i gu
,j

 is inside the vector element’s boundary  

min  . The mutated crossover vector is 
given by 

maxpara para j 
 , 0, , 1, , 1, ,u , , ,i g i g i g D i gu u u   , and 

 
 

, , max , ,
, ,

, , , , min

  if 0

  if 0

j
j i g j i g

j i g
j

j i g j i g

u σ para u σ
u

u σ u para σ

     
   

  (15) 

1
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φ
σ ψ φ ψ
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 

             (16) 

where the same Morlet wavelet in (7) is used as the 
mother wavelet and the value of a is governed by (14). 
Similar to F of (12), a larger value of σ  at the early 
stage of evolution gives a larger searching space for the 
solution; when σ  is small at the later stage of evolu- 
tion, the algorithm gives a smaller searching space for 
fine-tuning. 

After the operations of the double wavelet mutation, 
the population is updated by comparing each trial vector 

,ui g  to the corresponding target vector xi,g using the 
method of standard DE as given by (4). A new popula- 
tion is generated and the same evolution process is re- 
peated. Such an iterative process will be terminated when 
a defined number of iteration has been met. 

3. Benchmark Test Functions and Results 

3.1. Benchmark Test Functions 

A suite of eighteen benchmark test functions [19-22] are 
used to test the performance of the proposed DWM-DE. 
Many different kinds of optimization problems are co- 
vered by these benchmark test functions. They can be di- 
vided into three categories. The first one is the category 
of unimodal functions, which involves a symmetric 
model with a single minimum; functions f1-f7 are uni- 
modal functions. The second one is the category of mul- 
timodal functions with a few local minima; functions 
f8-f13 belong to this category. The last one is the category 
of multimodal functions with many local minima; func-
tions f14-f18 belong to this category. The expressions of 
these functions are listed in Table 1. (The details about 

the parameters a, b, and c and the function u() for the 
functions f8, f9 and f12-f14 are given in [22].) 

3.2. Experimental Setup 

We evaluate the performance of SDE [23], DE with sin- 
gle wavelet mutation (first stage only, SWM-DE), DE/ 
local-to-best/1 [20], DE/rand/1 with per-vector-dither [24] 
and the proposed DWM-DE by finding the minimum 
values of the benchmark test functions. The following 
simulation conditions are used: 
 The shape parameter of the wavelet mutation ( wmζ ): 

It is chosen by trial and error for each function through 
experiments for good performance. wm =1 is used 
for all functions (A discussion for the value of wmζ  
will be given in Section 3.4). 

 The parameter λ  for the monotonic increasing func-
tion: 10,000. 

 Initial population: It is generated uniformly at random. 
 Crossover probability constant: C = 0.5. r

 The mutation weight factor (for SDE, DE/local-to- 
best/1 and DE/rand/1): F = 0.5. 

 The population size: 30. 
 The numbers of iteration for all algorithms are listed 

in Table 2. 

3.3. Results and Analysis 

The simulation results for the 18 benchmark test functions 
are given to show the merits of the proposed DWM-DE. 
All results shown are averaged data out of 50 trials. 

3.3.1. Unimodal Functions 
Function f1 is a sphere model, which is smooth and sym- 
metric. The main purpose of testing this function is to 
measure the convergence rate of searching. It is probably 
the most widely used test function. For this function, the 
results in terms of the mean cost value and the best cost 
value of the DWM-DE are much better than those of the 
other methods as shown in Table 3. Also, the standard 
deviation is small, which means that the searched solu- 
tions are stable. In Figure 6(a), the DWM-DE returns a 
faster convergence rate than other methods thanks to its 
better searching ability. 

Function f2 is the Generalized Rosenbrock’s function, 
which is also called the Banana function. The global mini- 
mum of this function is inside a long, narrow, parabolic 
shaped flat valley. Owing to the smooth and symmetric 
characteristic of f2, the main purpose of testing is to 
measure the convergence rate of the searching algo- 
rithms. The result is shown in Figure 6(b). The conver- 
gence rate of the proposed DWM-DE is the highest. 
When using the proposed DWM-DE, the solution quality 
is increased when the number of iteration increases. As 
there is only one minimum within the solution space, 
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Table 1. Benchmark test functions. 
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Table 2. Number of iteration in the experiments. 

Test Function No. of Iteration 

f1. Sphere model 300 

f2. Generalized Rosenbrock’s function 500 

f3. Step function 100 

f4. Quartic function 200 

f5. Schwefel’s problem 2.21 500 

f6. Schwefel’s problem 2.22 200 

f7. Easom’s function 200 

f8. Shekel’s foxholes function 50 

f9. Kowalik’s function 100 

f10. Maxican hat function 50 

f11. Six-hump camel back function 50 

f12. Hartman’s family 1 50 

f13. Hartman’s family 2 100 

f14. Generalized penalized’s function 200 

f15. Generalized Rastrigin’s function 1000 

f16. Generalized Griewank’s function 200 

f17. Ackley’s function 500 

f18. Schwefel’s function 500 

 
Table 3. Comparison between different de methods for benchmark test functions (category 1). All results are averaged ones 
over 50 runs. 

    DWM-DE SW-DE SDE DE/local-to-best/1 DE/rand/1with per-vector-dither 

Mean 0.5902 33.9672 0.9937 228.8271 411.8185 

Best 0.0605 0.668 0.4317 17.3954 206.3942 f1 

Std Dev 0.5712 75.9703 0.308 213.2461 99.2895 

Mean 0.0961 51.5008 25.3632 40.3851 30.2437 

Best 0.0068 22.9713 23.7534 26.9933 27.3151 f2 

Std Dev 0.0867 30.3582 0.6442 15.6161 3.9049 

Mean 0 0.78 11.24 4.7 51.54 

Best 0 0 7 1 35 f3 

Std Dev 0 0.9957 1.9119 3.4241 8.1346 

Mean 0.0385 0.2103 0.2307 0.5176 4.2939 

Best 0.0172 0.0366 0.1033 0.0798 1.7894 f4 

Std Dev 0.0111 0.2053 0.0684 0.3172 1.3556 

Mean 1.4127 33.9335 5.5862 44.3662 22.7523 

Best 0.7089 16.0324 3.7069 21.1518 19.1513 f5 

Std Dev 0.3512 9.5589 2.9702 9.0817 2.05 

Mean 0.388 0.7726 3.3391 4.3577 27.5979 

Best 0.1151 0.182 2.3578 0.1878 20.7384 f6 

Std Dev 0.187 0.7565 0.5352 3.6601 3.2958 

Mean –1 –0.9455 –0.9284 –0.66 –0.4641 

Best –1 –1 –1 –1 –1 f7 

Std Dev 0 0.2131 0.2488 0.4785 0.4454 

Copyright © 2012 SciRes.                                                                                JILSA 



An Improved Differential Evolution and Its Industrial Application 88 

       
(a)                                                           (b) 

       
(c)                                                            (d) 

        
(e)                                                            (f) 

 
(g) 

Figure 6. Unimodal functions. 
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nearly all the population will move towards that mini-
mum. Yet, The DWM-DE performs better than the other 
methods in terms of the mean value and the standard 
deviation as shown in Table 3. 

Function f3 is the Step function with many flat surfaces. 
Flat surfaces are obstacles for optimization algorithms 
because they do not give any information about the 
search direction. Unless the algorithm has a variable step 
size, it can get stuck in one of the flat surfaces. All hy- 
brid DEs that involve the mutation operation are good for 
this function as shown in Figure 6(c) because it can ge- 
nerate a long jump by using mutation operations during 
the evolution. 

Function f4 is the Quartic function. Since it is a poly- 
nomial of even degree, it approaches the same limit when 
the argument goes to positive or negative infinity. Thus 
the function has a global minimum. The results are shown 
in Figure 6(d) and Table 3. We can see that the conver- 
gence rate of the proposed DWM-DE is much greater 
than that of SDE. After around 10 times of iteration, the 
proposed method is able to reach the minimum. 

Functions f5 and f6 are the Schwefel’s problem 2.21 
and Schwefel’s problem 2.22. The best value, mean cost 
value and the standard derivation of the DWM-DE are 
the best as shown in Table 3. Thus, the proposed algo- 
rithm gives better solution quality and stability. 

Function f7 is the Easom function where the global 
minimum is near a small area relative to the search space. 
The function was inverted for minimization. The result is 
shown in Figure 6(g). For this function, the convergence 
rate of the proposed DWM-DE is high. While the con- 
vergence rate of DWM-DE is nearly the same as DE with 
single wavelet mutation only, the solution quality on us- 

ing DWM-DE is better than the other algorithms during 
the early evolution. The proposed algorithm gives better 
performance in terms of convergence rate, solution qua- 
lity and stability as shown in Table 3. 

For unimodal functions, the proposed DWM-DE can 
offer a higher rate of convergence. By adopting the Mor- 
let wavelet on controlling the scaling factor F, the degree 
of freedom of the trial vectors can be increased. More 
directions of exploration would be generated during the 
mutation operation. Moreover, based on the fine-tuning 
ability of the wavelet operations, the population can easi- 
ly reach the small region around the global minimum. In 
short, the DWM-DE is the best to tackle unimodal func- 
tions when compared with the other methods. 

3.3.2. Multimodal Functions with a Few Local  
Minima 

Six multimodal functions with a few local minima are 
used to evaluate the five algorithms. Those functions are 
Shekel’s foxholes function, Kowalik’s function, Maxican 
hat function, Six-hump camel back function, Hartman’s 
family 1 and Hartman’s family 2. All of them contain 
some local minima within the searching space. The ex- 
perimental results for these functions are listed in Table 
4 and shown in Figure 7. For all the functions, it is found 
that all the searching methods perform similarly in reaching 
the optimal point. While the functions contain a few local 
minima, all the searching methods do not get trapped in 
the local minima easily. The advantage brought by the 
double wavelet mutation operations to the searching is 
not obvious for these functions. Yet, the solution quality 
and stability offered by DWM-DE are good. 

 
Table 4. Comparison between different de methods for benchmark test functions (category 2). All results are averaged ones 
over 50 runs. 

    DWM-DE SW-DE SDE DE/local-to-best/1 DE/rand/1with per-vector-dither 

Mean 0.998 0.998 0.998 0.998 0.998 

Best 0.998 0.998 0.998 0.998 0.998 f8 

Std Dev 0 0 0 0 0 

Mean 0.0009 0.0012 0.0011 0.0015 0.0016 

Best 0.0005 0.0004 0.0007 0.0003 0.0007 f9 

Std Dev 0.0003 0.0011 0.0008 0.0039 0.0018 

Mean –1 –1 –1 –1 –1 

Best –1 –1 –1 –1 –1 f10 

Std Dev 0 0 0 0 0 

Mean –1.0316 –1.0316 –1.0316 –1.0316 –1.0315 

Best –1.0316 –1.0316 –1.0316 –1.0316 –1.0316 f11 

Std Dev 0 0 0.0001 0 0.0002 

Mean –3.8628 –3.8628 –3.8628 –3.8628 –3.8628 

Best –3.8628 –3.8628 –3.8628 –3.8628 –3.8628 f12 

Std Dev 0 0 0 0 0 

Mean –3.3124 –3.3036 –3.2909 –3.2911 –3.2777 
Best –3.322 –3.322 –3.322 –3.322 –3.322 f13 

Std Dev 0.0303 0.0408 0.0475 0.0527 0.0448 
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Figure 7. Multimodal functions with a few local minma. 
 
3.3.3. Multimodal Functions with Many Local 

Minima 
Functions f14-f18 are multimodal functions with many 
local minima. The experimental results for these func- 
tions are listed in Table 5 and shown in Figure 8. Func- 
tion f14, f15 and f16 are the Generalized penalized’s func-
tion, Generalized Rastrigin’s function and Generalized 
Griewank’s function respectively. They are widely used 
as test functions for global optimization. Those functions 
have an exponentially increasing number of local mini- 
ma as their dimension increases, and the locations of the 
minima are regularly distributed. In the experiment, the 
dimension is 30. As a result, the function contains plen- 
ty of local minima. From Figure 8, we can see that if 
the wavelet mutation is used, the rate of convergence is 
much improved. By adding the double wavelet muta- 
tion operations to the DE, we can reduce the chance that 
the searching process is trapped in some local minima. 
Moreover, by introducing the second wavelet mutation to 
DE, the searching process of DWM-DE is capable of 
moving closely to the global minimum in the early itera-
tion stage. Thanks to the property of the second wavelet 
mutation, the effort on searching and evaluating those 
local minima that are far away from the global minimum 
is reduced. 

Function f17 is the Generalized Ackley’s function, 
which is a continuous multimodal function obtained by 
modulating an exponential function with a cosine wave 
of moderate amplitude. Its topology is characterized by 
an almost flat outer region and a central hole or peak 
where the modulation of the cosine wave becomes more 
and more influential. The result is shown in Figure 8(d). 
It shows that if the double wavelet mutation operations 
are used with DE, the fitness of the function dropped 
rapidly. After 250 times of iteration, the fitness becomes 
near the global minimum. However, even DE with single 
wavelet mutation cannot satisfactorily reach the global 
minimum. It shows the advantage the double wavelet 
mutation operations on reducing the effort for searching 
and evaluating those local minima that are far away from 
the global minimum. 

Function f18 is the Schwefel’s function, which is de-
ceptive in that the global minimum is geometrically dis-
tant from the next best local minima. Therefore, the search 
algorithms are potentially prone to converge to the wrong 
direction. The result is shown in Figure 8(e). Similar to 
functions f16 and f17, if the double wavelet mutation ope- 
rations are used, the convergence rate is much improved. 
The DWM-DE can move closely to the global minimum 
at the early iteration stage. 
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Table 5. Comparison between different de methods for benchmark test functions (category 3). All results are averaged ones 
over 50 runs. 

    DWM-DE SW-DE SDE DE/local-to-best/1 DE/rand/1with per-vector-dither 

Mean 0.4883 67682.17 207.3875 147.6601 6835946 

Best 0.1582 8.0881 22.4585 4.7027 149.9788 f14 

Std Dev 0.2989 289798.5 291.9504 391.5459 4501213 

Mean 8.3213 9.6949 124.7772 34.9675 160.9108 

Best 0.0063 3.3497 87.5478 16.9349 136.2236 f15 

Std Dev 4.4707 3.155 10.5849 11.9889 10.8145 

Mean 1.0243 2.0471 2.2483 3.0293 54.1213 

Best 0.8751 1.1207 1.5661 1.0394 33.3442 f16 

Std Dev 0.0576 1.1589 0.4224 1.9004 10.991 

Mean 0.3199 3.983 0.7723 4.6762 17.728 

Best 0.0271 0.2236 0.0261 2.2245 7.1453 f17 

Std Dev 0.3194 3.5579 2.9323 1.5461 3.687 

Mean –12568.8 –12254.1 –12475.8 –10328.1 –10128.1 

Best –12569.5 –12563.5 –12569 –11004.5 –11272.4 f18 

Std Dev 0.6883 181.3254 145.1123 391.6365 560.2403 

 

  
(a)                                      (b)                                     (c) 

    
(d)                                           (e) 

Figure 8. Multimodal functions with many local minima. 
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For multimodal functions with many local minima, the 

proposed DWM-DE can significantly improve the con- 
vergence rate and the chance of reaching the global opti- 
mum as compared to the other algorithms. 

3.4. The t-Test 

The t-test is a statistical method to evaluate the signifi- 
cant difference between two methods. The t-value will be 
positive if the first method is better than the second, and 
it is negative if it is poorer. The t-value is defined as fol- 
lows: 

2 1

2 2
2 1

1 1

α α
t

σ σ

ξ ξ




   
       

          (17) 

where 1α  and 2α  are the mean values of the first and 
second methods, respectively; σ1 and σ2 are the standard 
deviations of the first and second methods, respectively; 
and ξ is the value of the degree of freedom. When the 
t-value is higher than 1.645 (with ξ = 49 for 50 runs), 
there is a significant difference between the two algo- 
rithms with a 95% confidence level. The t-values be- 
tween the DWM-DE and other optimization algorithms 
are shown in Table 6. The N/A in the table means the 
result of t-test is undefined. We see that most of the 
t-values in this table are higher than 1.645. Therefore, the 
performance of the DWM-DE is significantly better than 

that of other optimization algorithms with a 95% confi- 
dence level. 

3.5. Sensitivity of the Shape Parameter for the 
WM 

The mean cost values offered by the DWM-DE under 
different values of the shape parameter wm  for all test 
functions in Section 3.1 are listed in Table 7. The func-
tions are tested by using wm  = 0.2, 0.5, 1, 2, and 5. In 
this experiment, the parameter λ is fixed at 10,000. If the 
optimization problem needs a more significant mutation 
to reach the optimal point, a smaller wm  should be 
used. Conversely, if the DWM-DE needs to perform the 
fine-tuning faster, a larger wm  should be used. In ge- 
neral, if the function is smooth and symmetric, the 
searching algorithms should be fast to jump to the area 
near the global optimum and then perform the fine-tun- 
ing. Therefore, a smaller wm  can be set ( wmζ  = 0.2) so 
that the DWM-DE will perform more significant muta- 
tion in order to increase its speed of convergence. In 
some cases, the value of wm  is not very critical, e.g. in 
f7, f8 and f9. For f7, the mean cost values under different 
values of wm  are nearly the same. However, in some 
cases, the value of the parameter wm  is sensitive to the 
performance of the searching, e.g. in f2 and f5. In con- 
clusion, no formal method is available to choose the val-
ue of the parameter wm ; it depends on the chara- cteris-
tics of the optimization problems. 

ζ

ζ

ζ

ζ

ζ

ζ

ζ
ζ

ζ

 
Table 6. t-value between dwm-de and other de methods. 

Functions t-value between 
DWM-DE and SWM-DE 

t-value between 
DWM-DE and SDE 

t-value between DWM-DE  
and DE/local-to-best/1 

t-value between DWM-DE and DE/r and/1
with per-vector-dither 

f1 3.106535 4.396617 7.568123 29.28583 

f2 11.97319 274.8664 18.24283 54.5784 

f3 5.539252 41.57059 9.705914 44.80157 

f4 5.90861 19.61271 10.67363 22.19623 

f5 24.0406 9.866993 33.41888 72.54976 

f6 3.489848 36.80786 7.659204 58.28451 

f7 1.808415 2.034921 5.024374 8.507825 

f8 N/A N/A N/A N/A 

f9 1.860521 1.655212 1.084652 2.712445 

f10 N/A N/A N/A N/A 

f11 N/A 0 N/A 3.535534 

f12 N/A N/A N/A N/A 

f13 1.224414 2.69834 2.477622 4.536719 

f14 1.651429 5.011117 2.657828 10.73876 

f15 4.521753 85.52812 39.58508 109.6375 

f16 6.232955 20.30214 7.456842 34.15952 

f17 7.250986 1.084521 19.51148 33.26134 

f18 11.0344 8.376944 38.8019 34.21467 
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Table 7. Sensitivity of the shape parameter wm for wavelet 
mutation. 

Functions 0.2 0.5 1 2 5 

f1 0.1022 0.4705 0.5902 1.4617 0.6216 

f2 0.0065 0.0144 0.0961 0.3188 16.7615

f3 0 0 0 0.12 1.76 

f4 0.0329 0.033 0.0385 0.044 0.0582 

f5 0.4248 0.7679 1.4127 2.771 4.5791 

f6 0.3018 0.5405 0.388 0.937 0.7229 

f7 –1 –1 –1 –0.9999 –0.9798

f8 0.998 0.998 0.998 0.998 7.2744 

f9 0.0014 0.001 0.0009 0.0013 0.0016 

f10 –1 –1 –1 –1 –1 

f11 –1.0316 –1.0316 –1.0316 –1.0316 –1.0316

f12 –3.8628 –3.8627 –3.8628 –3.8623 –3.862 

f13 –3.3121 –3.312 –3.3124 –3.3186 –3.3059

f14 0.1728 0.4728 0.4883 1.308 7.9534 

f15 5.4248 4.9128 8.3213 10.4683 10.9009

f16 0.9953 1.0694 1.0243 0.9733 0.9356 

f17 0.0457 0.2032 0.3199 1.2207 1.7944 

f18 –12569.4 –12569.1 –12568.8 –12567.5 –12554.9

3.6. Sensitivity of the Parameter λ for the WM 

The mean cost values offered by the DWM-DE with dif- 
ferent values of the WM’s parameter λ for all test func- 
tions are tabulated in Table 8. The functions are tested 
by using λ = 100, 1000, 10,000, and 100,000. In this ex- 
periment, the parameter ζwm is fixed at 1. If we want a 
smaller value of the upper limit (the searching limit) of 
the particle’s mutated element, a larger value of λ should 
be used. In some cases, the parameter λ is not very sensi-
tive, such as f3-f4, f7-f13, f16 and f18. The mean cost values 
under different values of λ have no significant difference.  
However, in some cases, such as f1, the value of the pa-
rameter λ is sensitive to the performance of the DWM- 
DE. In f1, the mean cost value is 0.3202 when λ = 100, 
and the mean cost value is 1.4945 when λ = 100,000. 
Their difference is around 5 times. In conclusion, similar 
to the parameter ζwm, no formal method is available to 
choose the value of the parameter λ. It depends on the 
characteristics of the optimization problem. Comparing 
with the sensitivity of the shape parameter ζwm, the pa- 
rameter λ is less sensitive to the performance of the 
searching. 

Table 8. Sensitivity of the parameter λ for wavelet mutation. 

Functions λ = 100 λ = 1000 λ = 10,000 λ = 100,000

f1 0.3202 0.8152 0.5902 1.4945 

f2 0.0131 0.0357 0.0961 0.0359 

f3 0 0.02 0 0.02 

f4 0.0405 0.0395 0.0385 0.0395 

f5 0.6381 1.0508 1.4127 1.5449 

f6 0.4413 0.7524 0.388 0.8447 

f7 –1 –0.9997 –1 –1 

f8 0.998 0.998 0.998 0.998 

f9 0.0011 0.001 0.0009 0.0011 

f10 –1 –1 –1 –1 

f11 –1.0316 –1.0316 –1.0316 –1.0316 

f12 –3.8628 –3.8619 –3.8628 –3.8623 

f13 –3.3122 –3.3145 –3.3124 –3.3211 

f14 0.3142 0.6711 0.4883 0.9591 

f15 6.7112 7.7008 8.3213 8.3281 

f16 1.0369 1.0698 1.0243 1.0726 

f17 0.2116 0.3268 0.3199 0.4361 

f18 –12569.1056 –12568.6379 –12568.8411 –12568.2966

4. The Economic Load Dispatch with 
Valve-Point Loading Problem 

The Economic Load Dispatch with Valve-Point Loading 
(ELD-VLP) is a method to control or schedule a group of 
power generator outputs with respect to the load de- 
mands, and operate a power system economically so as 
to minimize the operation cost of the power system. Be- 
cause of the valve-point loadings and rate limits, the in-
put-output characteristics of modern generators are non- 
linear by nature. As a result, the characteristics of ELD- 
VPL problems are multimodal, discontinuous, and highly 
nonlinear. In this paper, the DWM-DE is employed to 
solve the ELD-VPL problem, which aims at minimizing 
the following objective function: 

 
1

i

n

i L
i

C P

                 (18) 

where Ci(PLi) is the operation fuel cost of generator i, and 
n denotes the number of generators. The problem is sub-
ject to balance constraints and generating capacity con-
straints as follows. 

i

n

L L Los
i 1

D   P P


  s              (19) 
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max
; 1, 2, ,

i, min i i,  L L LP P P i    n      (20) 

where DL is the load demand, PLi  is the output power of 
the i-th generator, PLoss is the transmission loss, and 

maxi,  L  and 
i, min L  are the maximum and minimum out- 

put power of the i-th generator, respectively. The opera- 
tion fuel cost function is given by 

P P

  2

i i ii L i L i L iC P a P b P c           (21) 

where ai, bi, and ci are the coefficients of the cost curve 
of the i-th generator. 

To obtain the practical ELD solution, the operation of 
the ELD problem should be considered with the valve- 
point effects. Typically, to model the effects of valve 
points, a rectified sinusoidal term is added to the cost 
function: 

    ,min

2 sin
i i i i ii L i L i L i i i L LC P a P b P c e f P P       (22) 

where ei and fi are the coefficients of the valve point 
loadings. The generating units with multivalve steam tur- 
bines exhibit a greater variation in the fuel cost functions. 
In practice, the valve-point effects introduce ripples in 
the heat-rate curves. 

To solve the ELD-VPL problem by using DWM-DE, 
the solution representation of elements in the population 
is defined as follows: 

2 3 1
P

1  nL L L LP P P P

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From (16), we have 
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In this paper, the power loss is not considered; there-
fore , and 0LossP 

1

1
n
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L L
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P D P



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Based on the problem defined above, the objective of 
this optimization problem is to minimize the total fuel 
cost based on (22) by using DWM-DE. 

5. The Experiment and Result of the 
ELD-VPL Problem 

In this paper, ELD-VPL problem with 13 and 40 genera-
tors system with a non-smooth fuel cost function with 
sinusoidal terms are used to test the performance of the 
proposed DWM-DE method. The results obtained are 
compared with those reported in the literature. Both the 
13- and 40-generator systems have non-convex solution 
spaces with many local minima. As a result, the global 
minimum is difficult to determine. For the 13-generator 
system, the total load demand of 1800 MW is tested. For the 
40-generator system, the total load demand of 10,500 
MW is tested. The parameters for the 13- and 40-gene- 
rator systems are shown in Tables 9 and 10 respectively. 
By using the WDM-DE, the following simulation con- 
ditions are used: 
 Shape parameter of the wavelet mutation ( ζ ): 1. wm

 Parameter λ  for the monotonic increasing function: 
10,000. 

 Initial population: It is generated uniformly at ran-
dom. 

 Crossover probability constant: Cr = 0.5. 
 Mutation weight factor (For SDE): F = 0.5. 
 Numbers of iteration: 500. 
 Number of population: 50. 

All results shown are averaged ones out of 100 trials. 
The statistical results in terms of the mean cost value, the 
best cost value, and the standard deviation are shown in 
Table 11. From the result obtained in this experiment, 
we find that the DWM-DE performs much better than the 
other DE methods. The DWM-DE can offer the best 
(minimum) cost. The average cost for the 13-generator 
system is $17,996.43, and the best (minimum) cost is  L                (25) 

 
Table 9. Parameters for the 13 generators system. 

Unit (i) ai bi ci ei fi Pi,min Pi,max 

1 0.00028 8.10 550 300 0.035 0 680 

2 0.00056 8.10 309 200 0.042 0 360 

3 0.00056 8.10 307 150 0.042 0 360 

4 0.00324 7.74 240 150 0.063 60 180 

5 0.00324 7.74 240 150 0.063 60 180 

6 0.00324 7.74 240 150 0.063 60 180 

7 0.00324 7.74 240 150 0.063 60 180 

8 0.00324 7.74 240 150 0.063 60 180 

9 0.00324 7.74 240 150 0.063 60 180 

10 0.00284 8.60 126 100 0.084 40 120 

11 0.00284 8.60 126 100 0.084 40 120 

12 0.00284 8.60 126 100 0.084 55 120 

13 0.00284 8.60 126 100 0.084 55 120 

Copyright © 2012 SciRes.                                                                                JILSA 



An Improved Differential Evolution and Its Industrial Application 95

Table 10. Parameters for the 40 generators system. 

Unit (i) ai bi ci ei fi Pi,min Pi,max 

1 0.00690 6.73 94.705 100 0.084 36 114 

2 0.00690 6.73 94.705 100 0.084 36 114 

3 0.02028 7.07 309.54 100 0.084 60 120 

4 0.00942 8.18 369.03 150 0.063 80 190 

5 0.01140 5.35 148.89 120 0.077 47 97 

6 0.01142 8.05 222.33 100 0.084 68 140 

7 0.00357 8.03 278.71 200 0.042 110 300 

8 0.00492 6.99 391.98 200 0.042 135 300 

9 0.00573 6.60 455.76 200 0.042 135 300 

10 0.00605 12.9 722.82 200 0.042 130 300 

11 0.00515 12.9 635.20 200 0.042 94 375 

12 0.00569 12.8 654.69 200 0.042 94 375 

13 0.00421 12.5 913.40 300 0.035 125 500 

14 0.00752 8.84 1760.40 300 0.035 125 500 

15 0.00708 9.15 1728.30 300 0.035 125 500 

16 0.00708 9.15 1728.30 300 0.035 125 500 

17 0.00313 7.97 647.85 300 0.035 220 500 

18 0.00313 7.95 649.69 300 0.035 220 500 

19 0.00313 7.97 647.83 300 0.035 242 550 

20 0.00313 7.97 647.81 300 0.035 242 550 

21 0.00298 6.63 785.96 300 0.035 254 550 

22 0.00298 6.63 785.96 300 0.035 254 550 

23 0.00284 6.66 794.53 300 0.035 254 550 

24 0.00284 6.66 794.53 300 0.035 254 550 

25 0.00277 7.10 801.32 300 0.035 254 550 

26 0.00277 7.10 801.32 300 0.035 254 550 

27 0.52124 3.33 1055.10 120 0.077 10 150 

28 0.52124 3.33 1055.10 120 0.077 10 150 

29 0.52124 3.33 1055.10 120 0.077 10 150 

30 0.01140 5.35 148.89 120 0.077 47 97 

31 0.00160 6.43 222.92 150 0.063 60 190 

32 0.00160 6.43 222.92 150 0.063 60 190 

33 0.00160 6.43 222.92 150 0.063 60 190 

34 0.00010 8.95 107.87 200 0.042 90 200 

35 0.00010 8.62 116.58 200 0.042 90 200 

36 0.00010 8.62 116.58 200 0.042 90 200 

37 0.01610 5.88 307.45 80 0.098 25 110 

38 0.01610 5.88 307.45 80 0.098 25 110 

39 0.01610 5.88 307.45 80 0.098 25 110 

40 0.00313 7.97 647.83 300 0.035 242 550 

 
Table 11. Result of the ELD-VPL problem. 

Number of Generators Load  DWM-DE Standard DE DE/local-to-best/1 DE/rand/1 with per-vector-dither

Mean 17996.43 18185.27 18078.82 18213.61 

Best 17972.78 18104.61 17982.91 18077.96 13 1800 MW

Std Dev 20.85 51.61 47.95 45.34 

Mean 121521.79 121834.62 123363.297947 122490.90 

Best 121431.63 121530.99 121971.298961 122188.14 40 10500 MW

Std Dev 53.27 172.74 610.10 89.64 
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$17,972.78. For the 40-generator system, the average 
cost is $121,521.79, and the best (minimum) cost is 
$121,431.63. Moreover, the smallest standard deviation 
is also obtained by using DWM-DE. Thanks to the wa- 
velet properties, the stability of the optimization solu- 
tion is improved. In the ELD-VPL problem, the solution 
stability is very important. Since the load demand is 
changing with time. A stable optimization method can 
offer a better quality of the power generation service. To 
conclude, the convergence speed, solution quality and 
solution stability of the DWM-DE are good. DWM-DE is 
suitable to be applied to the ELD-VPL problem. 

Table 12 summarized the best results obtained by 
DWM-DE, DEC-SQP [4] and IGA [25,26] for compari- 
son. The result shows that the DEC-SQP performs the 
best for the 13-generator system. The best cost is $17,938.95, 
while the best cost of DWM-DE is $17,972.78. Although, 
the DWM-DE method cannot offer the best result, the 
result is already very near to the DEC-SQP method. As 
the dimension of the 13-generator system is relatively 
small, the wavelet based mutations of DWM-DE might 
not be able to enhance the searching process very effec- 
tively. For the 40-generator system, the best result of 
DWM-DE, MPSO [2], DEC-SQP [4] and NPSO-LRS 
[27] are summarized in Table 13. Among the 4 methods, 
DWM-DE offers the best result. The best cost for the 
40-generator system is $121,431.63. Since the dimension 
of the 40-generator system is large, the wavelet based 
mutations of DWM-DE can enhance the searching pro- 
cess effectively and it does not trap into some local mini- 
mum easily. For the ELD-VPL problem, to obtain the 
best result, we suggest applying DWM-DE for the high 
dimensional cases; for example, a dimension higher than 30. 

6. Conclusion 

In this paper, we have proposed an improved Differential 
Evolution (DE) that incorporates double wavelet-based 
mutations to handle the ELD-VPL problem. In the first 
mutation operation, a scheme on tuning the scaling factor 
F of the DE algorithm that applies a wavelet function is 
proposed. In the crossover operation of DE, a second 
mutation operation for modifying the trial population 
vectors that applies a wavelet function is proposed. The 
resulting DWM-DE takes advantage of the properties of 
the wavelet function to improve the solution quality and 
stability. The proposed method can explore the solution 
space more effectively in reaching the global solution. 
Simulation results have shown that the proposed dou- 
ble-wavelet-mutation based DE is a useful algorithm to 
solve a suite of 18 benchmark test functions, and offers 
better results in terms of convergence rate, solution qua- 
lity and stability. Moreover, the ELD-VPL problem is 
solved by the DWM-DE. It is shown empirically that the 
proposed method out-performs significantly the conven-  

Table 12. Comparison with other published results for the 
13 generators system (load = 1800 MW). 

Number of Generators Load DWM-DE DEC-SQP IGA 

13 1800 MW 17972.78 17938.95 18069.40

 
Table 13. Comparison with other published results for the 
40 generators system (load = 10,500 MW). 

Number of 
Generators

Load DWM-DE MPSO DEC-SQP NPSO-LRS

40 10,500 MW 121431.63 122252.26 121741.97 1216664.43

 
tional methods in terms of convergence speed, solution 
quality and solution stability, especially when the dimen-
sion of the problem is high. 
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