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Abstract 
In this paper we expand the Box Method of Sorwar et al. (2007) to value both default free bonds and interest 
rate contingent claims based on one factor non-linear interest rate models. Further we propose a one-factor 
non-linear interest rate model that incorporates features suggested by recent research. An example shows the 
extended Box Method works well in practice. 
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1. Introduction 
 
Stochastic differential equations are the foundations on 
which modern option pricing methodology is based. 
However, non-linear stochastic differential equations for 
interest rate models have been proposed that captures the 
non-linear dynamics of the spot interest rates. There are 
two aspects to the modeling of interest rate term structure 
models and interest rate contingent claims. The first 
concerns the econometric aspects (see for example, [1]) 
and the second the numerical implementation of the re-
sulting models.  With regard to the numerical aspects of 
interest rate modeling, there exist three different ap-
proaches. The first is the lattice approach introduced by 
Cox-Ross-Rubinstein (1979) [2]. However, as Ba-
rone-Adesi, Dinenis and Sorwar (1997) [3] have demon-
strated the lattice approach does not always lead to mea-
ningful bond and hence contingent claim prices. The 
second approach is the Monte-Carlo simulation approach 
introduced by Boyle (1977) is mainly used to value path 
dependent European type contingent claims. To date no 
single accepted Monte-Carlo simulation scheme has been 
put forward for the valuation of American type contin-
gent claims. The third approach is the partial differential 
equation (PDE) approach.  With this approach, the par-
tial first and second order derivatives are discretized to 
produce a system of equations which are then solved 
iteratively to obtain the bond and contingent claim prices. 
However, Sorwar et al. (2007) have shown that the usual 
finite difference approach used to discretize the PDE 
does not always lead to bond and contingent claim prices 

that correspond with analytical prices where these prices 
are available.  

Sorwar et al. (2007) introduced the Box Method from 
engineering to improve on the standard finite difference 
approach. Sorwar et al. (2007) focused on the CKLS 
(1992) model. Sorwar et al. (2007) did not attempt to 
value bonds and contingent claims based on non-linear 
interest rate models. Ait-Sahalia (1996) [4] non-and 
Conley et al. (1997) [5] propose parametric linear 
one-factor which allows non-linear parameterisation. Our 
main objective in this paper is to expand the Box Method 
of Sorwar et al. (1997) to price bonds and contingent 
claims based on both linear and non-linear interest rate 
models. 

The outline of the paper is as follows: Section 2 the 
general non-linear parametric model and the resulting 
partial differential equation for default free bonds and 
contingent claims is outlined. We then derive the Ex-
panded Box Method (EBM) for the valuation of default 
free bonds and contingent claims. Using US estimates we 
compute implied bond and contingent claims prices in 
Section 3. Section 4 contains a summary and conclusion. 
 
2. Expanded Box Method (EBM) 
 
In this section we discuss the valuation of the bond and 
contingent claim prices based on the extended 
Ait-Sahalia (1996) [4] and Conley et al. (1997) [5] 
framework. Following Sorwar et al. (2007) we let: 

( )*
tB r ,t ,T : price of a discount bond at time t which  
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Table 1. lternative Parametric Specifications of the Spot Interest Rate Process ( ) ( )2
t t t tdr r dt r dWµ σ= + . 

Drift function 
( )rµ  

Diffusion function 

( )2 rσ  
Reference 

0 1rα α+  0β  Vasicek (1977) [6] 
 

   
0 1rα α+  1 rβ  Cox-Ingersoll-Ross(1985) [7] 

Brown-Dybvig(1986) [8] 
Gibbons-Ramaswamy(1993) [9] 

   
0 1rα α+  2

2 rβ  Courtadon (1982) [10] 

   

0 1rα α+  3
2 rββ  Chen et al. (1992) 

   
2 3

0 1 2r r
r
αα α α+ + +  3

0 1 2r rββ β β+ +  Ait-Sahalia (1996) [4] 

   

3
5
4

0 1 2r r
r

α
α
αα α α+ + +  3

0 1 2r rββ β β+ +   

   
 
matures at time *T  with the generated spot rate tr  . 

( )*P t ,T ,T : price of a contingent claim at time t  
which expires at time T  based on a discount bond 
which matures at time *T  subject to suitable boundary 
conditions. 

In a risk-neutral world, the drift rate is adjusted by the 
market price of risk rλ 1 so that the short-term interest 
process becomes: 

( )( )3 5

3

0 1 2 4

0 1 2                

t

t

dr r r r dt

r r dW

α α

β

α α λ α α

β β β

−= + + + + +

+ +
      (1) 

The resulting partial differential equation is: 

( )

3

3 5

2

0 1 2 2

0 1 2 4

1
2

0

Ur r
r

U Ur r r rU
r t

β

α α

∂β β β
∂

∂ ∂α α λ α α
∂ ∂

−

 + + 

 + + + + + − + = 

 

 (2) 

In equation (2) ( )tU r ,t  may represent either 

( )*
tB r ,t ,T or ( )*P t ,T ,T  subject to the appropriate 

boundary conditions (see [10] for more details). Follow-
ing Sorwar et al. (2007) we transform the above pricing 
equation such that either the bond or the contingent 
claims evolves from the options expiration date or the 
bonds maturity date to the present, i.e. we let T tτ = − . 

The above equation then becomes: 

( ) 3 5

3

2
0 1 2 4

2
0 1 2

2
r r rU U

rr r r

α α

β

α α λ α α∂ ∂
∂∂ β β β

− + + + +
+ − 

+ +  
 

3 3
0 1 2 0 1 2

2 2r UU
r r r rβ β

∂
∂τβ β β β β β

=
+ + + +

    (3) 

We now choose a general function ( )R r, ,α β  such 
that: 

( ) 3 5

3

2

2

0 1 2 4

0 1 2

1

2

U UR
R r r r

r r r U
rr r

α α

β

∂ ∂ ∂
∂ ∂ ∂

α α λ α α ∂
∂β β β

−

  = +  
 + + + +
 

+ +  

     (4) 

The above expression simplifies to yield: 

( ) 3 5

3

0 1 2 4

0 1 2

1 2
r r rR

R r r r

α α

β

α α λ α α∂
∂ β β β

− + + + +
=  

+ +  
    (5) 

We now integrate from the general value r  
( )1 1n nr r r− +< <  to the lower limit of integration 0r =  
to obtain: 

( )
( ) 3 5

3
1

0 1 2 4

0 1 2

2
n

r

r

R r, ,

r r r
exp dr

r r

α α

β

α β

α α λ α α
φ

β β β
−

−

=

  + + + + +   
+ +    

∫
 

where ( )0ln R , ,φ α β= .  We further note that: 

1 1U UR Q
R r r Q r r
∂ ∂ ∂ ∂
∂ ∂ ∂ ∂

   =      
 

where:  

1Risk premium is treated differently by researchers. Vasicek (1977) [6] 
takes ( )rλ λ= , Chan et al. (1992) [1] take ( ) 0rλ = , ox et al. (1985), 

we take ( )r rλ λ= . 
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( )
( ) 3 5

3

0 1 2 4

0 0 1 2

2
r

Q r, ,

r r r
exp dr

r r

α α

β

α β

α α λ α α
β β β

−

=

  + + + + 
  

+ +    
∫

 

So equation (3) becomes: 

3
0 1 2

1 2U rQ U
Q r r r rβ

∂ ∂
∂ ∂ β β β

  − =  + + 

     

We now transform the interest rate as: 

3
0 1 2

2 U
r rβ

∂
∂τβ β β+ +

       
(6)

 

cr
crs
+

=
1

 where c is a constant.       (7) 

This leads to the transformation of equation (6) as: 
 

 

( ) ( )
( )

( ) ( )
( )

( ) ( )

3 33 22
1 1

0 2 0 2

1 2 2 1
1 1

1 1 1 1

U s U Us
Q s s s c s c ss ss s

c s c s c s c s

β β τβ ββ β β β

∂ ∂ ∂ Ψ − = ∂ ∂ ∂  − −   
+ + + +   − − − −   

    (8) 

where: 

( ) ( ) ( )

( )
( )

( )
( ) ( ) ( )

( ) ( )

3 5

3

2

1
0 2 4

2
0 1

0 2

1

1 1 12
1

1 1

s

s c s Q s

s s s
c s c s c s

Q s exp dr
c s s s

c s c s

α α

β

α λ
α α α

ββ β

−

Ψ = −

     +  + + +   − − −      =    
−     

+ +     − −    

∫
 

 
Following the set-up of Sorwar et al. (2007) a grid of 

size M N×  is constructed for values of 
( )m

nU U n r,m t= ∆ ∆  - the value of U  at time increment 

mt  and interest rate increment ns , for each method, 
where: 

0mt t m t= + ∆  0 1m , ,....,M=  
2

1n ns s a+∆ = ∆ +    1n ,....,N=  

where a is an arbitrary constant. 
Using the Euler backward difference for  the time de- 

rivative gives: 0U UU
t

∂
∂τ

−
=

∆
, 

where 0U  and U refers to bond or contingent claims 
prices at time step m-1 and m respectively.  

Integra t ing equat io n (8 )  f ro m the  point 

1
1
2 2

n n

n

s s
s −

−

+
=  to point 1

1
2 2

n n

n

s s
s +

+

+
= , we have:

( )
( )

( ) ( )
( )

( ) ( )

( )
( ) ( )

1 1 1
2 2 2

1 1 1
2 2 2

1
2

1
2

3 22

02

12 2
1 1

12
1

n n n

n n n

n

n

s s s

s s s

s

s

U st s ds t Q s f s Uds Q s f s Uds
s s c s c s

Q s f s U ds
c s

+ + +

− − −

+

−

∂ ∂ −∆ Ψ + ∆ + ∂ ∂  − −

=
−

∫ ∫ ∫

∫

         (9) 

 
Discretizing each of the above integrals, and rearrang-

ing gives us the following matrix equation: 
1

1 1
m m m m

n n n n n n n nU U U Uα χ η β−
− += + +      (10) 

where: 

( )
1
2

1
2

n

n

s

s

Ut s ds
s s

+

−

∂ ∂ −∆ Ψ + ∂ ∂ ∫  

( )
( ) ( )

1
2

1
2

32
2

1

n

n

s

s

st Q s f s Uds
c s

+

−

∆ +
−

∫  
2Where a and 0s∆ are arbitrary constants. A derivation of this expres-
sion can be found in Settari and Aziz (1972) [11]. 
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( )
( ) ( )

1
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1
2

2

12
1

n

n

s

s

Q s f s Uds
c s

+

−
−

∫  

( )
( ) ( )

1
2

1
2
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12
1

n

n

s

s

Q s f s U ds
c s

+

−

=
−

∫         (9) 

Discretizing each of the above integrals, and rearrang-
ing gives us the following matrix equation: 

1
1 1

m m m m
n n n n n n n nU U U Uα χ η β−

− += + +      (10) 

where: 

( )
( )

( )
( )

( )
( )

( )
( )

( )
( ) ( )
( )

( ) ( )

1
2

1
2

1 1
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1

1

0 1
1 1
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1 2
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1

n

n

n
n n n

n
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n

n
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n

I
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s s Q s

s st t tI I
s s Q s s s Q s

s f s
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c s

f s
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c s

α

χ

β

η

−

−

+

+

− +

− +

+ −

+ −

=

Ψ−∆
=

−

Ψ−∆
=

−

Ψ Ψ∆ ∆
= + + ∆ +

− −

= −
−

= −
−

  

The matrix equation linking all bond prices or contingent 
claim prices between two successive time steps m-1 and 
m is: 

1
0 1

1
0 1

1

1 1 0 1

2 2 2 0 1

3 3 3

3 3 3

2 2 2

1 1 1

0 0 0 0
0 0 0

0 0 0
0

0
0

0 0 0

m

m

m
N N

m

m

N N N

N N N
m

N N N N

U
U

U

U
U

U

α
α

α

η β α
χ η β α

χ η β

χ χ β
χ η β

χ η α

−

−

−

− − −

− − −

− − −

 
 
 
 
 

= 
 
 
 
 
 

  
  
  
  
  
  
  
  
  
  

  
















      


  


  


 

 

  Sorwar et al. [12] used the following SOR iteration 
process to determine bond and contingent claims prices: 

( )1 1
1 1

1m m m m
n n n n n n n

n

z U U Uα χ β
η

− −
− += − −       (11) 

In particular they evaluated bond using the following 
expression: 

( ) 11m m m
n n nU z Uω ω −= + −          (12) 

Contingent claims were calculated using: 

( ) 11m m m
n n nU max Z , z Uω ω − = + −        (13) 

where Z is the intrinsic value of the contingent claim 
and for n=1,......,N-1, and ( ]1 2,ω∈ 3. 

 
3. Analysis of Results 
 
In this section we apply the EBM using recent estimates 
of the non-linear model of Ait-Sahalia (1996) [4] on 
7-day Eurodollar deposit spot rate over 1973-1995 to 
demonstrate the method. Ait-Sahalia (1996, Table 4) [4] 
obtained the following estimates: 

3
0 1

2 1
2 3

4 643 10

4 333 10 1 143 10 2

. ,

. , . , ,

α α

α α

−

− −

= − × =

× = − × =
 

4
4 51 304 10 1. ,α α−= × = .

4
0 1

3 3
2 3

1 108 10

1 883 10 9 681 10 2 073

. ,

. , . , .

β β

β β

−

− −

= × =

− × = × =
. 

Table 2 reports the bond prices for maturities ranging 
from 6 months to 30 years and across interest rates of 2% 
to 16%.  Table III reports both the value of call and put 
options across a wide range of interest rates. We consider 
both short and long dated call and put options. The short 
dated call and put options are based on a 5-year bond 
with an expiry date of 1 year and is during the last year 
before the bond matures. Similarly long dated options are 
based on 10-year bond with an expiry date of 5 years 
during the last 5 years of the bond. Finally both call and 
put option prices are calculated across a wide range of 
exercise prices. The exercise prices are chosen so as to 
highlight variation of prices for both in-the-money and 
out-of-the-money options. We assume λ, the market 
price of risk is zero. 

Turning to Table 2, we find that at lower interest rate 
bond prices decay slowly as the term to maturity in-
creases. For example, at 2% interest rate a 1 year matur-
ity bond is valued at 98.1119, whilst a 30 year bond is 
valued at 74.8290. At high interest rates, the bond price 
decay is more rapid for example at 16% interest rate, a 1 
year maturity bond is valued at 85.2915, whist a 30 year 
maturity bond is valued at 1.1770. Turning to Table 3, 
we observe the following features. Short expiry call op 

3ω is determined by numerical experimentation.  For all our calcula-
tions we took 1 85.ω =  
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Table 2. All options written on zero coupon bonds with a face value of $100.00. 
 Interest Rate 

Maturity 
of Bond 

2% 4%  6% 8% 10% 12% 14% 16% 

0.5 99.0286 98.0370 96.9855 96.0885 95.1315 94.1844 93.2506 92.3403 
         
1 98.1119 96.1434 94.0805 92.3406 90.5050 88.7059 86.9566 85.2915 
         
5 92.2400 83.3035 74.3413 67.4685 60.8623 54.9010 49.7324 45.6212 
         

10 87.0431 71.9535 56.7017 46.1717 37.2750 30.1193 24.7834 21.3038 
         

15 83.1089 64.1538 44.6651 32.1800 22.9491 16.5267 12.3933 10.1317 
         

20 79.9228 58.6473 36.4723 22.9644 14.3178 9.0809 6.2237 4.8889 
         

25 77.2156 54.6338 30.8731 16.8832 9.0110 5.0032 3.1400 2.3870 
         

30 74.8290 51.6021 27.0075 12.8582 5.7491 2.7679 1.5921 1.1770 

 
Table 3. All options written on zero coupon bonds with a face value of $100.00. 

 
r (%) 

 
Exercise-

Price 

5 year ma-
turity 

1 year ex-
piry 

5 year ma-
turity 

1 year ex-
piry 

  
Exercise-

Price 

10 year 
maturity 
5 year ex-

piry 

10 year 
maturity 
5 year ex-

piry 
 (83.3035) call put  (71.9535) call put 
4 70 16.0031 0.0000  60 21.9713 0.0007 
 75 11.1959 0.0000  65 17.8062 0.0493 
 80 6.3895 0.0050  70 13.6418 0.6489 
 85 1.9369 1.6966  75 9.5270 3.1894 
 90 0.1421 6.6966  80 5.7979 8.0466 
 (67.4685)    (46.1717)   
8 55 16.6811 0.0000  35 22.5578 0.0000 
 60 12.0641 0.0000  40 19.1843 0.0000 
 65 7.4471 0.0000  45 15.8109 0.0058 
 70 2.8302 2.5315  50 12.4375 3.8283 
 75 0.0203 7.5315  55 9.0641 8.8283 

12 (54.9010)    (30.1193)   
 45 14.9341 0.0000  20 19.1395 0.0000 
 50 10.4996 0.0000  25 16.3942 0.0000 
 55 6.0652 0.1561  30 13.6492 0.0183 
 60 1.6310 5.1561  35 10.9042 4.8804 
 65 0.0000 10.1561  40 8.1591 9.8804 

16 (45.6212)    (21.3038)   
 35 15.7692 0.0000  10 16.7416 0.0000 
 40 11.5046 0.0000  15 14.4606 0.0000 
 45 7.2400 0.0005  20 12.1795 0.0001 
 50 2.9755 4.3788  25 9.8985 3.6962 
 55 0.0129 9.3782  30 7.6174 8.6962 

 
tions decay faster than longer expiry call options; for 
example at r = 4%; the price of a call option decreases 
from 16.0031 to 11.1959 when the exercise price in 
creases from 70 to 75. For a similar 5 year call option the 
price decreases from 21.9713 to 17.8062, when the exer-
cise price increases from 60 to 65. Furthermore, the call 
option prices decrease at a slower rate at high interests. 
This feature becomes more pronounced for longer expiry 
call options. With regard to put options we find, the 
prices are very close to zero, when the options are at-the- 
money or out-of-the-money. Finally, we find that the 
value of in-the-money put options is dominated by the 

intrinsic-value. 
 
4. Conclusions 
 
The  introduction of non-linear stochastic interest rate 
models has led to the possibility of valuing interest con-
tingent claims that reflects the characteristics of the yield 
curve more accurately. In this paper we have expanded 
the Box Method to value both bond and American type 
interest rate contingent claims based on single factor 
non-linear interest rate models. We have found that the 
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Expanded Box Method works well with the example 
considered. 
 
5. References 
 
[1] K. C. Chan, G. A. Karolyi, F. A. Longstaff and A. B. 

Sanders, “An Empirical Comparison of Alternative Mod-
els of the Short-Term Interest Rate,” Journal of Finance, 
Vol. 47, No. 3, 1992, pp. 1209-1227. 

[2] J. C. Cox and S. A. Ross, “Option Pricing: A Simplified 
Approach,” Journal of Financial Economics, Vol. 7, No. 
3, 1979, pp. 229-264.  

[3] G. Barone-Adesi, E. Dinenis and G. Sorwar, “A Note on 
the Convergence of Binomial Approximations for Interest 
Rate Models,” Journal of Financial Engineering, Vol. 6, 
No. 1, 1997, pp. 71-78. 

[4] Y. Ait-Sahalia and Y. Testing “Continuous-Time Models 
of the Spot Interest Rate,” Review of Financial Studies, 
Vol. 9, No. 2, 1996, pp. 385-426. 

[5] T. G. Conley, L. P. Hansen, E. G. J. Luttmer and J. A. 
Scheinkman, “Short-Term Interest Rates as Subordinated 
Diffusions,” Review of Financial Studies, Vol. 10, No. 3, 
1997, pp. 525-577. 

[6] O. A. Vasicek, “An Equilibrium Characterization of the 
Term Structure,” Journal of Financial Economics, Vol. 5, 
No. 2, 1977, pp. 177-188. 

[7] J. C. Cox, J. E. Ingersoll and S. A. Ross, “A Theory of 
the Term Structure of interest Rates,” Econometrica, Vol. 
53, No. 2, 1985, pp. 385-407. 

[8] S. J. Brown, P. H. Dybvig, “The Empirical Implications 
of the Cox, Ingersoll, Ross Theory of the Term Structure 
of Interest Rates,” Journal of Finance, Vol. 41, No. 3, 
1986, pp. 617-630. 

[9] M. R. Gibbons and K. Ramaswamy, “A Test of the Cox, In-
gersoll, and Ross Model of the Term Structure,” Review of 
Financial Studies, Vol. 6, No. 3, 1993, pp. 619-658. 

[10] G. Courtadon, “The Pricing of Options on Default-Free 
Bonds,” Journal of Financial and Quantitative Analysis, 
Vol. 17, No. 1, 1982, pp. 75-100. 

[11] A. Settari and K. Aziz, “Use of Irregular grid in Reservoir 
Simulation,” Society of Petroleum Engineering Journal, 
Vol. 12, No. 2, 1972, pp. 103-114. 

[12] G. Sorwar and G. Barone-Adesi, W. Allegretto, “Valua-
tion of Derivatives Based on Single-Factor Interest Rate 
Models,” Global Finance Journal, Vol. 18, No. 2, 2007, 
pp. 251-269. 



G. SORWAR  ET  AL. 
 

Copyright © 2010 SciRes.                                                                                  AM 

43 

 
Appendix 
 

( ) ( ) ( )
1
2

1 1
2 2

1 11
2 22

n

n nn

s

n n
s ss

U U Us ds s s
s s s s

+

+ −−

+ −

∂ ∂ ∂ ∂ Ψ ≈ Ψ −Ψ ∂ ∂ ∂ ∂ ∫  

Further: 

1
2

1
2

1

1

1

1

n

n

m m
n n

s n n

m m
n n

s n n

U UU
s s s

U UU
s s s

+

−

+

+

−

−

−∂
≈

∂ −

−∂
≈

∂ −

 

Substitution of the above approximation yields: 
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We further take: 
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Similar approximation yields: 
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