
Open Journal of Marine Science, 2012, 2, 66-69 
http://dx.doi.org/10.4236/ojms.2012.22009 Published Online April 2012 (http://www.SciRP.org/journal/ojms) 

Simplified Approximate Expressions for the Boundary 
Layer Flow in Cylindrical Sections in Plankton  

Nets and Trawls 

Svein Helge Gjøsund 
SINTEF Fisheries and Aquaculture, Trondheim, Norway 

Email: Svein.H.Gjosund@sintef.no 
 

Received January 18, 2012; revised February 24, 2012; accepted March 10, 2012 

ABSTRACT 

Trawls and plankton nets are basically made up of conical and cylindrical net sections. In conical sections the flow will 
pass through the inclined net wall with a noticeable angle of attack, and then the flow, filtration and drag can be suitably 
modelled e.g. by a pressure drop approach [1]. In cylindrical and other non-tapered net sections, such as foreparts and 
extension pieces in trawls and plankton nets, the flow is directed along the net wall and is best considered in terms of a 
boundary layer. Boundary layer theory and turbulence models can be used to describe such flow, but this requires ex-
tensive numerical modelling and computational effort. Simplified approximate formulas providing a qualitative descrip-
tion of the flow with some quantitative accuracy are therefore also useful. This work presents simplified parametric 
expressions for boundary layer flow in cylindrical net sections, including the boundary layer thickness and growth rate 
along the net, the filtration velocity out of the net wall, the decrease in mass flux through the net due to the growing 
boundary layer, and the effect of twine thickness, flow (towing) velocity and the dimensions of the net. These expres-
sions may be useful for assessing the existence and extension of a boundary layer, for appropriate scaling of boundary 
layer effects in model tests, for proper placement of velocity measurement probes, for assessing the influence on filtra-
tion and clogging of plankton net sections, and more. 
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1. Introduction 

When a cylindrical net is towed through water a bound-
ary layer develops and grows in thickness along the in-
side and outside of the net wall. Mass conservation and 
pressure boundary conditions imply that a transverse 
velocity out of the net is induced and that the mass flux 
through the net decreases downstream. In practice, the 
boundary layer can be assumed to be turbulent all along 
the net, and classic turbulent boundary layer results may 
be used given that the velocity across the wall is small 
compared to the flow velocity outside the boundary layer, 
i.e. v/U < 0.01 [2]. Here v is the average normal velocity 
out of the net wall and U is the undisturbed incident flow 
(towing) velocity. The porosity, twines and knots of a net 
constitute a roughness. The classic result for the turbulent 
boundary layer along a rough wall is the logarithmic law 
[3], but this is cumbersome to use directly. However, the 
boundary layer along a rough wall is a modification of 
that for a smooth wall, for which Prandtl’s simple one- 
seventh power-law applies. In the following we therefore 
assume that roughness has a stronger relative influence 
on the boundary layer thickness than on the shape of the 

boundary layer velocity profile, and that Prandtl’s power- 
law can be used as an approximation for rough walls also, 
if the boundary layer thickness is corrected for rough-
ness. 

2. Materials and Methods 

Prandtl’s one-seventh power-law for the turbulent bound- 
ary layer along a smooth plate is given by Equations (1) 
and (2) [2,3]. Here x is the position along the wall (i.e. 
the distance from the net mouth), δ(x) is the boundary 
layer thickness at x, δ(x)/x is the boundary layer growth 
rate, y is the radial distance from the wall, u(x,y) is the 
boundary layer velocity profile, U is the undisturbed in-
cident flow (towing) velocity, Rex = Ux/υ and Rex = UL/υ 
are the relevant Reynolds numbers, υ is the kinematic 
viscosity, L is the length of the wall, and cf and Cf are the 
skin-friction and drag coefficients for (one side of) the 
wall, respectively. 
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Roughness primarily affects the skin friction coeffi-
cient cf, which in turn affects the boundary layer thick-
ness δ(x) and overall drag coefficient Cf. Considering the 
similarity between Prandtl’s expressions for δ(x)/x, cf and 
Cf we now assume that a relative increase rε in cf due to a 
roughness ε results in a corresponding relative increase in 
δ(x)/x and Cf also, cf. Equation (6). Roughness can be 
categorized in three regimes; smooth, intermediate and 
fully rough. Explicit relations for cf exist for the smooth 
and fully rough regimes, cf. Equations (3) and (4) [2,3], 
while for the intermediate regime only a complex im-
plicit relation exists (cf. Equation (6)-(82) in [3]). For sim-
plicity we therefore consider all roughness to be in the 
fully rough regime. This may overestimate the effect of 
roughness for small and intermediate roughness, but 
within the scope of the present approach and for the want 
of a simplified model it seems an acceptable assumption. 
The ratio rε may now be estimated from Equations (3) 
and (4). The expression for cf, smooth is only slightly more 
accurate than cf, Prandtl in Equation (1), but more consis- 
tent to use in Equation (5) since cf, Prandtl could result in 
rε-values less than 1 in some cases. The expression for  
cf, fully rough applies to so-called sand-grain roughness, which 
is the most commonly used roughness model.  

 ,smooth 2

0.455

ln 0.06Ref
x

c                    (3) 

2.5

,fully rough 2.87 1.58logf

x
c




 
 


           (4) 

 

2.5

,fully rough

,smooth
2

2.87 1.58log

0.455

ln 0.06Re

f

f

x

x
c

r
c




  
         (5) 

 , 1/7 1/7

0.027 0.16
,

Re Ref
x x

c r x r       x         (6) 

 , 1/7

0.031

Ref
L

C r L                         (7) 

Figure 1 shows the boundary layer thickness δε(x) es-
timated from Equation (6) for some values of ε at U = 1 
m/s, indicating that the boundary layer growth rate and 
filtration may be more than doubled for coarse netting 
compared to very fine netting. Note that while boundary 
layer thickness generally decreases with increasing ve-
locity, the effect of roughness on the boundary layer 
thickness increases with increasing velocity, see Figure 
2 also. The boundary layer thickness may also be known 
from observations or measurements, and may then be  

 

Figure 1. Boundary layer growth along a flat rough wall 
estimated from Equation (6) for U = 1 m/s and roughness 
heights ε = 0, 0.1, 0.5, 1, 5 and 10 mm. 
 

 

Figure 2. Calculated vs. measured boundary layer thickness 
for cylindrical net with dtwine = 2 mm, L = 2.2 m, R = 0.1 m 
for U = 0.29, 0.51 and 0.85 m/s. The measured values for 
δ/R are approximate values found graphically from the 
original plots in [4], δ/R for ε = 2 mm are calculated using 
Equation (6), and δ/R for ε = 0 mm (smooth surface) are 
calculated using Equation (1).  
 
inserted directly into Equations (8)-(10).  

Hence we assume that the boundary layer thickness 
along a cylindrical net can be approximated by δε(x) in 
Equation (6), and that the velocity profile across the 
boundary layer can be approximated by u(x, y)/U = 
(y/δε(x))1/7. Under these assumptions expressions for the 
mass flux, radial filtration velocity and drag for a cylin-
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drical net can be found analytically. The mass flux Q 
through a cross-section of the net is found by integrating 
the axial velocity over the cross-sectional area, assuming 
undisturbed flow outside the boundary layer (i.e. in the 
central core of the net), and using integration by parts for 
the power law expression, cf. Equation (9). Here R = D/2 
is the radius of the net, r is the radial distance from the 
centreline of the net and y = R – r is the radial distance 
from the net wall. The radial velocity v(x) across the net 
wall is found by averaging the loss in Q from x to x + dx 
over the circumferential strip 2πRdx and making use of 
Equation (8), yielding Equation (10). The drag coeffi-
cient for the cylindrical net, normalized by the frontal 
area A0, is derived in Equation (11), where L is the length 
of the net and τw = cf·ρU

2/2 is the wall shear stress. Cf 
typically lies in the range 0.001 - 0.010 [3]. Note that cf 
and Cf apply to one side of a wall, and that we must in-
clude both the inside and outside of a cylindrical net 
when calculating the drag. 
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3. Results 

The simplified expressions in Equations (9)-(11) are 

compared with experimental measurements from Vincent 
and Marichal (1996) [4]. They consider an open-ended 
cylindrical net with L = 2.2 m, D = 0.2 m (L/D = 11), 
twine diameter d = 2 mm and stretched diamond mesh 
length lm = 30 mm, for three undisturbed flow (towing) 
velocities; U = 0.29, 0.51 and 0.85 m/s. There are no 
noticeable differences between the measured boundary 
layers for the different velocities in [4], and they are 
therefore represented by the same markers in Figure 2. 
The boundary layers calculated from Equation (1) (smooth 
surface) are clearly thinner than the measured ones, while 
those calculated using Equation (6) with a roughness 
height equal to the twine diameter compare quite well 
with the measurements. The discrepancy is most pro-
nounced towards the open end of the net, which is to be 
expected since the present simplified model does not 
account e.g. for end effects or pressure gradients. Figure 
2 also shows that when roughness is accounted for the 
calculated boundary layers for the three velocities nearly 
merge into a single curve, in agreement with the meas- 
urements. Figures 3 and 4 show that the mass flux and 
filtration velocity are well predicted by Equations (9) and 
(10), both when δ(x) is corrected for roughness according 
to Equation (6) and when δ(x) is taken directly from the 
measurements. Although the boundary layer eventually 
extends over the entire cross-sectional area of the net, the 
filtration velocity out of the net wall is small (v ~ 0.01 - 
0.001 U) and the filtered volume is modest (less than 
20% of the inflow is filtered through the net wall). The 
drag coefficient can be estimated to CD, A0 ≈ 0.65 for all 
three velocities (no drag forces or coefficients are given  
 

 

Figure 3. Calculated vs measured mass flux Q for U = 0.51 
m/s.  

Copyright © 2012 SciRes.                                                                                OJMS 



S. H. GJØSUND 

Copyright © 2012 SciRes.                                                                                OJMS 

69

 

Figure 4. Calculated vs measured filtration velocity v for U 
= 0.51 m/s. 
 
in [4]). 

4. Discussions 

The simplified expressions presented here compare quite 
well with the measurements in [4]. Comparisons with 
more measurements are necessary to assess the quantita- 
tive performance of the simplified model, but an excel- 
lent agreement with accurate measurements cannot be 

expected. For instance, the present approach neglects the 
influence of the pressure gradient in the outer region of 
the boundary layer. This likely explains why the dis-
crepancy with measurements increases towards the open 
end of the net in Figure 2. Also, since boundary layer 
theory basically applies to solid surfaces, the present ap-
proach is better suited for low porosities than for high 
porosities, noting that porosity as such is not a parameter 
in the model. 

The present approach may still provide useful esti-
mates of the boundary layer flow in cylindrical net sec-
tions in a very simple manner. For fine-meshed netting 
such as in plankton nets the porosity is low and the 
roughness small, and then the present approach may be 
quite representative. 
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