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ABSTRACT 

Mode choice is important in shipping commodities efficiently. This paper develops a binary logit model and a regres-
sion model to study the cereal grains movement by truck and rail in the United States using the publically available 
Freight Analysis Framework (FAF2.2) database and US highway and networks and TransCAD, a geographic informa-
tion system with strong transportation modeling capabilities. The binary logit model and the regression model both use 
the same set of generic variables, including mode split probability, commodity weight, value, network travel time, and 
fuel cost. The results show that both the binary logit and regression models perform well for cereal grains transportation 
in the United States, with the binary logit model yielding overall better estimates with respect to the observed truck and 
rail mode splits. The two models can be used to study other commodities between two modes and may produce better 
results if more mode specific variables are used. 
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1. Introduction 

Freight transportation in general refers to the aggregated 
movement of goods from one location to another. Today, 
most goods worldwide are transported on multi-modal 
networks involving waterways, railways, highways, air-
ways, and intermodal facilities. In the United States, the 
highway network carries the majority of the total freight. 
Rail is mostly used in shipping bulk and heavy com-
modities over longer distances. According to the 1997 
and 2002 Commodity Flow Surveys, conducted by the 
US Bureau of the Census, about 60% of the total freight 
in 1997 and 70% in 2002 was shipped by the US high-
way network with the rail comes in as the second [1]. 
The splits of tonnage by common modes are listed in 
Table 1 [2]. 

Freight transportation is vital to the US and world 
economy. In 2002, the US transportation system moved 
53 million tons of freight worth of $36 million each day. 
It is expected that there will be an increase of 67% in 
domestic shipping and 87% in international shipping 
over the next 20 years in US [3]. Freight is also an im-
portant factor for national and local decisions on public 
policies, such as infrastructure, investment, and security. 
For example, Intermodal Surface Transportation Effi-
ciency Act (ISTEA) of 1991 required all Metropolitan 

Planning Organizations and Planning agencies to include 
freight transportation issues in state and metropolitan 
transportation plans [4]. This was further continued with 
Transportation Equity Act for the 21st Century (TEA-21) 
and the most recent Safe, Accountable, Flexible, Effi-
cient Transportation Equity Act (SAFETEA-LU) of 2005 
[5]. 

The cereal grains logistics is an important element of 
overall freight movement in the US, particularly for ag-
riculture crops and related products that demand for sig-
nificant transportation services involving movement of 
grains from their production sites to storage points, and 
then to domestic and export markets. Truck, train, and 
barge compete and complement one another in moving 
cereal grains. During the 1978-2004 period, cereal grains 
shipments increased 157% by truck, 31% by barge, and 
16% by rail [6]. A US Department of Agriculture report 
[7] on modal shares of grains transportation indicates that 
truck and rail are the two predominant modes (i.e., 96%+) 
for domestic movement of cereal grains, with barge be-
ing mainly for cereal grains import and export involving 
water shipment [8]. However, these studies, plus a few 
existing reports on cereal grains (i.e., [9]), are mostly 
based upon data collections or surveys, hence descriptive 
in nature without much prescriptive capability. The  
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Table 1. Mode splits by total freight weight (million tons) in the US, 2002 and 2007. 

 2002 2007 

 Total Domestic Exports Imports Total Domestic Exports Imports 

Total 19,328 17,670 525 1133 21,225 19,268 619 1338 

Truck 11,539 11,336 106 97 12,896 12,691 107 97 

Rail 1,879 1769 32 78 2030 1872 65 92 

Water 701 595 62 44 689 575 57 57 

Air, air & truck 11 3 3 5 14 4 4 6 

Intermodal 1292 196 317 780 1505 191 379 935 

Pipeline & unknown 3905 3772 4 130 4091 3934 6 151 

Source: US Department of Transportation, Federal Highway Administration, 2008.  
http://ops.fhwa.dot.gov/freight/freight_analysis/nat_freight_stats/docs/08factsfigures/index.htm 
 
literature also points out that the mode choice for ship-
ping cereal grains varies considerably by distance, speed, 
cost, and other variables. Typically, however, trucks are 
used primarily for short haul distances while railroads 
have a cost advantage for cereal grains over a longer dis-
tance. 

This paper develops a binary logit model to estimate 
the mode splits for cereal grains movement by truck and 
rail in the US The paper starts with a concise literature 
review on freight movement and model choice in Section 
2. In Section 3, a binary logit model is developed for 
truck and rail. The results from the logit model are com-
pared with those observed and from a common linear 
regression model. Here, the regression and logit model 
use the same set of generic variables, hence providing a 
base for comparison. Relevant databases, parameters, and 
variables for the binary logit model are discussed in Sec-
tion 4. Section 5 presents sample results in table and map 
formats. Conclusions and future research improvements 
to the model are included in Section 6. 

2. Literature Review 

Mode choice analysis in transportation borrows from the 
traditional consumer utility analysis. The study of mode 
choice for goods transportation has its root in mode 
choice analysis in passenger travel demand research. The 
basic notion of model choice modeling is that the choice 
of travelers is influenced by and determined through a set 
of characteristics associated with each mode and the 
travelers are concerned with maximizing the satisfaction 
from a choice for a certain set of alternatives. Selected 
research in this line can be found in [10-22]. 

Two types of models are common in freight model 
choice literature: aggregate and disaggregate. An aggre-
gate choice model in freight transportation describes the 
group behavior of many shippers and carriers. Aggregate 
choice models typically rely on level-of-service attributes 

(i.e., price, cost, origin, and destination) for a sample of 
population [15,23]. An aggregate choice model is useful 
for describing general trends and policy makers who are 
interested in decision-making based on general charac-
teristics observed. 

A disaggregate choice model describes the behavior of 
one or a small number of shippers/carriers who have the 
same relative shipping characteristics. For freight trans-
portation, the disaggregated choice models take the form 
of consignment or logistics models. The consignment 
models take into account the characteristics of the com-
modity and alternative modes [24], such as cost, time, 
weight, value, distance, reliability [23]. The logistics 
choice models take into account inventory and supply 
chain information, such as inventory costs, loss and 
damage costs, capital carrying costs, shipping rates, and 
reliability of modal service [25]. 

The most popular discrete choice models include pro-
bit and logit models, which can be binary, multinomial, 
and nested multinomial [17], with the discrete logit 
model being the dominant one in transportation research. 
[10] was the first to use the multinomial logit model in 
theoretical analysis of individual choice behavior and 
provided a key component to the multinomial logit with 
the influential independence of irrelevant alternatives 
(IIA). The logit model was first used in transportation by 
[26] in describing travel mode choices between auto and 
transit. The model considers the utility gained from each 
alternative choice by considering the characteristics of 
each respective alternative. 

In freight transportation, [27] estimated the model 
choice for each commodity using a binary logit model 
and provided insights for each commodity’s variation in 
shipment according to its qualities. [28] used a multino-
mial logit model to estimate the model choice between 
freight movements in their study of spatial price compe-
tition. The study combined model and destination pairs 
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such as barges to Portland, trains to Seattle, trains to 
Portland and truck/barge to Portland. They found that 
with the expansion of the market boundary, increases in 
the probability of the mode/destination choice occur. For 
areas where freight movement is consolidated to only 
two modes, binary logit for only rail and truck can be 
used. [29] used a binary logit model for rail and truck 
flows in the European freight flow model. Their research 
compared the use of a binary logit to that of a neural 
network model. Their study suggests that when calibrat-
ing a model for changes in attributes of the network and 
the modes, the binary logit is more sensitive to those 
changes. 

[30] used logit model as part of a model for Texas 
trade and industrial production. In this study, the demand 
for commodities was forecasted using an Input-Output 
model using the multinomial logit for assigning certain 
freight modes to the network. The multinomial logit was 
used to model the origin and rail and truck mode choices 
for Texas counties and export zones to estimate export 
zone flows, which were assigned to inter-zonal flows. 
[31] developed the Great Britain Freight Model (GBFM) 
to integrate multiple data sources and software compo-
nents into one entity to observe and analyze domestic and 
international freight flows in Great Britain. 

3. Methodology 

This study utilizes and compares two general models 
commonly used in transportation, namely binary logit 
model and regression model, to investigate the relative 
contributions of important factors to freight flows by 
truck and rail in the US 

3.1. Binary Logit Model 

The binary logit model is formulated as: 

 ij ijP f U                 (1) 

ij ij ijU V                   (2) 

where Pij = probability that decision maker (i.e., shipper 
or carrier) i chooses mode j (j = t or r, truck = t and rail = 
r); ij  = utility function; ij  = the observable portion 
of the utility; and 

U V

ij  = random portion of the utility. 
Following [15] and dropping the random portion in 

Equation (2), we can write the binary logit model as: 

,

ij ijV
ij

j r t

P e e


 V               (3) 

where . 
,

1.0ij
j r t

P



This study concerns the aggregate freight movement 

(the total flows for a commodity from an origin to a des-
tination from all individual decision makers) in US and 
thus is not interested in differences among decision mak-

ers who may view the same contributing factors differ-
ently in model choice due to the decision makers’ own 
constraints and opportunities. Rather, we assume these 
decision makers are represented by one rational decision 
maker who must choose between truck or rail mode in 
shipping throughout US In this case, we can drop the i in 
Equations (1)-(3) above and only consider the mode 
relevant factors, such as those related to the commodity, 
the network, the cost that faces the decision maker. 

The observable portion of the utility function must be 
specified to be operational. Following the convention in 
literature, we can write the observable utility in an addic-
tive form for  and  as follows (after dropping i): itV irV

 
1 1 1

, ,
l m n

t lt mt nt t l lt m mt n nt
l m n

V x y z a x b y c z
  

        (4) 

 
1 1 1

, ,
l m n

r lr mr nr r l lr m mr n nr
l m n

V x y z a x b y c z
  

       (5) 

The input   1 1, , , , ,lt t lt lr r lr x x x x x x   = commod-
ity-relevant observable input of truck or rail mode (i.e., 
weight, value);   1 , , , ,mt t mt mr r 1 mr,y y y y y  y = net-
work-relevant observable input of truck and rail mode (i.e., 
O-D distance, speed);   , , ,nt t nt nrz z 1 1r nrz z  = 
decision maker-relevant observable input (i.e., fuel cost). 
l, m, and n are numbers of variables. In the above, 

 are parameters to be estimated and 

,z 

,t

, z

r, ,l m na b c    are 
mode specific constants. 

The independence of irrelative alternatives (IIA) prop-
erty applies to the binary logit model in that the relative 
probability of choosing t rather than r depends only on 
the characteristics (utility) of the alternatives t and r [10]. 
Moreover, as long as  and  do not change, the 
relative probability will not change, regardless of 
whether other alternatives area added or deleted from the 
choice set [32]. This can be shown by using Equation (3) 
for the two modes: 

tV rV

   t t tr r r

t t rr

V V VV V V
t r

V V VV

P P e e e e e e

e e e 

        
 

    (6) 

By taking a natural logarithm transformation, we have: 

   
  

ln ln 1

, , , ,

t t tr

t lt mt nt r lr mr nr

P P P P

V x y z V x y z

   
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    (7) 

or 

   

  

1

1 1

ln
l

t t r l lt lrr
l

m n

m mt mr n nt nr
m n

P P a x x

b y y c z z

 


 

   

   



  
  (8) 

The above model (7) or (8) is in fact logit based odds 
model,  ln 1t t , for choosing truck mode as a func-
tion of differences between truck utility function and rail 

P P
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utility function. This additive formulation allows the es-
timation of logit parameters of  with observed 

 with inputs lt mt nt

, ,l m na b c
, ,, 1t r tP P P   x y z  and , ,lr mr nrx y z  

through logarithmic linear regression. The best-fit 
log-linear regression function with the constant estimate, 
 , the probability estimates, , and the parameters, 

, can be written as: 

ˆ
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for each of k O-D pairs. 

ˆ 1rP                 (11) 

for each of k O-D pairs. 

3.2. Linear Regression Model 

The linear regression model utilizes the estimation 
method of ordinary least squares to estimate the parame-
ters for the dataset. The equations take the following 
forms for truck t and rail r: 

1 1

l m

t l lt m
l m

P a x b
 

  
1

n

n nt t
n

c z


t   mty  t te P e   (12) 

1 1

l m
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1

n

n nr r
n

c z


mrb y  r re P e   (13) 

or 

 t t t rP P P P  , for each of k O-D pairs    (14) 

 r r t rP P P P  , for each of k O-D pairs    (15) 

where Pt and Pr = the actual proportions of tonnage 
shipped on each mode r and t, tP  and rP

t rP P  

 = the regres-
sion estimated proportions of tonnage shipped on each 
mode r and t,  and  = errors between actual and 
estimated for each mode r and t. Transformations 
(14)-(15) are important to ensure  since the 
regression estimated probabilities (

te re

1.0

tP  and rP ) in Equa-
tions (12) and (13) are typically not summed to 1.0. 

3.3. Model Performance Measures 

The relative performance of the binary logit model 
(9)-(11) and the linear regression model (12)-(15) can be 
quickly compared using the average absolute changes 
between estimated and observed probabilities (16)-(23) 
and correlations shown by scatter plots of observed and 

Regression model esti

mated probabilities. 

mates vs. observed probabilities: 

esti

 t t tP P P                   (16) 

absolute change for an O-D pair, truck. 

 r r rP P P                  (17) 

absolute change for an O-D pair, rail. 

 t t t
k

P P P k               (18) 

average absolute change for k O-D pairs, truck . 

 r r r
k

P P P k               (19) 

average absolute change for k O-D pairs, rail. 
 probabili-

tie
Binary logit model estimates vs. observed
s: 

 t̂ t tP P P                  (20) 

absolute change for an O-D pair, truck. 

 P̂ P P        r r r          (21) 

absolute change for an O-D pair, rail . 

 P̂ P P k   t t t
k

           (22) 

average absolute change for k O-D pairs, truck. 

 P̂ P P k              r r r
k

(23) 

average absolute change for k O-D pairs, rail. 

4. Database, Parameters, and Variables 

 freight databases from the 

Analysis Framework (FAF ) 
da

states. It also contains information on USA domestic 

4.1. Freight Databases 

There are numerous useful
private sector (i.e., PIERS) and the public sector, such as 
Commodity Flow Survey (CFS), Railroad Performance 
Measures (RPM), and Freight Analysis Framework 
(FAF). These databases vary by commodity code, such as 
Standard Classification of Transportation Goods (SCTG), 
Harmonized Schedule (HS); geographic level, such as 
country, state, metropolitan statistics area (MSA); time, 
such as yearly or monthly; mode (i.e., truck, rail), etc. 
Databases from the private sector are often proprietary 
and costly, while the databases from the public sector are 
often aggregated but free. 

This study uses Freight 2.2

tabase, which has origin-destination (O-D) information 
for 43 commodity groups in SCTG, is based on 2002 
CFS and projected for 2010 through 2035. The geo-
graphic information system (GIS) database includes 131 
metropolitan statistic areas (MSA) and the remainders of 
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shipments in value and weight by mode. The latest 
available FAF3.0 is based on 2007 CFS and projected for 
2010 to 2040. However, FAF2.2 contains virtually the 
same information on mode, value, weight, commodity, 
and O-D pairs as FAF2.2 does. 

There are also some highway and rail network data-
bases in a GIS format, such as North American Trans-
po

US Ac-
co

 one shipment of cereal grain using 
tru

ameters and Variables 

aracteristics of the 
ode. In general it is 

 and railroad. For each mode, the 

ge

odity Variables 
The generic characteristics of the commodity shipment 

onnage and dollar value. 
rtation Atlas Data (NTAD) from the Bureau of Trans-

portation Statistics (BTS), the intermodal highway 
transportation network by Oak Ridge National Laborato-
ries (ORNL), FAF2.2 highway network in Shape GIS 
format. This study utilizes the 2006 NTAD truck and rail 
networks processed within TransCAD 4.8 [33]. 

The study area and data used for this research are all 
cereal grains shipments by rail and truck in the 

rding to BTS, cereal grains freight comprised of ap-
proximately 7% of all freight moved in the US during the 
year 2002 [34]. The FAF2.2 dataset describes the cereal 
grains commodity according to the SCTG coding scheme. 
This commodity class includes multiple types of grain 
including but not exclusive to unsweetened corn, wheat, 
rye, barley, and oats. 

The dataset contains 11 origins and 22 destinations 
each receiving at least

ck and rail. For validation of the model choice analy-
sis, only origins and destinations (O-D) which sent and 
received cereal rain by truck and rail were considered. 
Other O-Ds which shipped only by truck or only by rail 
were excluded because of the possibility that a modal 
choice could not take place. Intermodal choices that may 
occur somewhere on the route to a destination were not 
considered in this study. Some outliers (about 10) were 
also excluded. As a consequence the dataset used as in-
put to the binary logistic model contains about 60 obser-
vations. 

4.2. Par

The parameters consist of both ch
shipment and characteristics of the m
helpful to use alternative specific variables. Alternative 
specific variables are those which vary across modes. 
However, since the mode specific information is often 
unavailable, variables which provide generic measure-
ment for all modes are useful. Generic characteristics are 
those attributes that are indistinguishable between modes. 
The generic features of the shipment, such as tonnage 
and value, apply to all modes, though the actual magni-
tudes of tonnage and value for each shipment may be 
different [35]. So are the network features, such as travel 
distance or speed or time, and energy use features, such 
as fuel consumption. 

For this study, variables were chosen to describe two 
different modes: truck

neric variables are used to construct the utility function 
for a mode. The parameters and variables are listed in 
Table 2. 

4.2.1. Comm

take the form of shipment t
These measurements for the commodity are given in 
units of tons and millions of US dollars. The variables 
are denoted 1 1,t rx x  in Table 2. 

4.2.2. Netwo riables rk Va
The rail and truck transportation networks are totally 

e set of origins and destina-

Estimating the cost of freight transportation is a chal-
uch difficulty in determining 

odel. 

different. However, the sam
tions for cereal grains are used for both networks. Ori-
gins and destinations were connected to each network. 
The attribute file for the railroad and highway network 
provides the length of each link in the network. Tran-
sCAD’s multiple shortest path function was used to 
compute the shortest path distance for each origin and 
destination. O-D shortest path distances were recorded 
for both networks. The speed values include the stop 
times for trucks and the dwell times for rail shipments. 
The speed values for railroads were taken from the Rail-
road Performance Measures dataset [36]. Their dataset is 
a compilation of US railroad information including av-
erage speeds and average dwell times for railroad desti-
nations. The truck speeds were taken from a study con-
ducted by the American Transportation Research Insti-
tute [37]. The travel time is calculated by distance for 
each O-D divided by the speed of the mode for the O-D 
pair. The variables are denoted 1 1,t ry y  in Table 2. 

4.2.3. Fuel Cost Variable 

lenging task and there is m
all the costs which contribute to the overall cost of 
freight movement precisely. The following formula (24)  
 
Table 2. Parameters and variables used in the binary logit 
m

Parameter Variable Description Type 

   Regression Constantconstant 

1a  1 1,t rx x  
Weight in tons of  
a shipment 

Generic 

2a  2 2,t rx x  Value in dollars of  
a shipment 

Generic 

1b  1 1,t ry y  Shortest network  
distance for an O-D pair 

ce/ 

 
ent 

Generic 

2b  2 2,t ry y  Travel time = distan
speed 

Generic 

1c  1 1,t rz z  
Fuel cost per ton-mile of
a shipm

Generic 

Copyright © 2012 SciRes.                                                                                 JTTs 



G. SHEN  ET  AL. 

Copyright © 2012 SciRes.                                                                                 JTTs 

180 

was used for estimating er s 
shipme

gallons of fuel per ton-mile. Similarly, Truck Fuel Cost 
per ton-mile = 5,104,160 billion/1,360,760 million = 
3750.96 BTU’s per ton-mile. 3750.96/138,700 = 0.027 
gallons of fuel per ton-mile. Here, 138,700 = Amount of 
British Thermal Units equal to one gallon of diesel fuel. 

the cost of fuel for c eal grain
nts. 

 j jF r b                 (24) 

where j = mode; jr  
red as th

di

= British th
ton-mile (measu e total BTU con

ermal units (BTU) per 
sumed for that A sample of the data input to the binary logit model is 

listed in Table 4. Here the origins and destinations are 
based on state MSAs and state reminders (rem). Com-
modity type is cereal grains, including Wheat, Barley, 
Oats, Corn, etc. The unit for shipment value is million 
dollars, for time hours, for fuel dollar per ton-mile, and 
for distance mile. 

year for the mode vided by the total ton-miles for the 
mode)1; b = Number of BTU’s equal to one gallon of fuel 
(138,700)2;   = Fuel cost ($/gallon) per gallon2; jF  = 
Fuel cost per ton-mile mode j. 

This meas rement was originally used for the pu ose 
of comparing the use of fuel

u rp
 in freight transportation 

am

 2002 data in Table 3. Rail Fuel Cost per 
to

 

ong modes and their relative energy efficiency [38]. 
This is done by taking the total amount of fuel consumed 
in BTU’s for the mode in the year 2002 and dividing this 
by the total amount of ton-miles for the mode in the year 
2002. The cost of fuel per gallon was averaged for the 
year 2002 for both railroad and highway [2]. These cal-
culations provided an estimate for the fuel cost in gallons 
per ton-mile for each mode. The variables are denoted in 
Table 2. 

Calculations for truck and railroad fuel cost are based 
on the following

5. Results and Analysis 

The binary logit model was tested in TransCAD 4.8. [33].  
 
Table 3. US truck and rail ton-miles, btus, and fuel con-
sumption in 2002. 

Mode
Ton-Miles in 

2002 in  
millions 

BTU consumed  
in 2002 in  
trillions 

Gallons of fuel 
used in 2002 in 

millions 

Rail 1,261,813 520 3751.413 

Truck 1,360,760 5104 36,800 n-mile = 520320.9831 billion/1,261,813 million = 
412.36 BTU’s per ton-mile. 412.36/138,700 = 0.00297 Source: [39] and [2] 

 
Table 4. A sample data input to the binary logit model. 

Origin Destination Commodity Mode Tons Dollar Time Fuel Cost/TM Distance

IL rem IN rem Cereal grains Truck 220,940 14.4 4.54 0.02700 223.0

IL rem OH rem Cereal grains 

1

1 1

a 1,4 17

a a 3,6 18

 

12.9

em rem eal grains  35,7 3. 24. 0.002 49

2,4 6

1 2.

3 3 6

1 1

a 

a a 

  … … 

Truck 2800 0.14 9.46 0.02700 464.3

IN rem IL rem Cereal grains Truck 354,090 8.13 4.54 0.02700 223.0

IN rem IL St Lo Cereal grains Truck 7620 0.38 4.81 0.02700 236.0

IN rem KY rem Cereal grains Truck 465,660 23.49 3.12 0.02700 153.3

IN rem PA rem Cereal grains Truck 4,910 1.64 1.84 0.02700 581.4

IN rem VA rem Cereal grains Truck 18,220 1.09 9.20 0.02700 451.9

KS Kans KS rem Cereal grains Truck 96,610 9.54 4.18 0.02700 205.4

KS Kans MO Kans Cereal grains Truck 00,390 5.07 1.04 0.02700 51.1

KS Kansa TX Dalla Cereal grains Truck 31,820 11.85 9.61 0.02700 471.8

… … … … … … … … …

IL rem IN rem Cereal grains Rail 21,170 1.63 4585 0.00297 265.4

IL r OH Cer Rail 40 84 06 97 3.2

IN rem IL rem Cereal grains Rail 70,530 4.04 12.94585 0.00297 265.4

IN rem IL St Lo Cereal grains Rail 28,910 3.55 67561 0.00297 54.9

IN rem KY rem Cereal grains Rail 91,450 31.57 7.149756 0.00297 146.6

IN rem PA rem Cereal grains Rail 310,500 3.09 2.16976 0.00297 59.5

IN rem VA rem Cereal grains Rail 94,410 08.14 25.88878 0.00297 530.7

KS Kans KS rem Cereal grains Rail 44,860 11.24 9.596098 0.00297 196.7

KS Kans MO Kans Cereal grains Rail 266,870 21.09 3.368293 0.00297 69.1

… … … … … … …       
 

1The computation for British thermal units per ton-mile was confirmed by Eastman (1981). 
2These measurements were given in the Transportation Energy Data Book [39]. 
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T le screen shots are gure nd 2. 

Th bserved m  split proba ties and prob-
l 

e m

 t ir

e sp uch  to10% r uck or  
ersa, th logit an gression e ates are relatively 

wo samp shown in Fi s 1 a
e o ode bili the 

abilities estimated from the binary logit model for rai
an Tables 5 6d truck are listed in  and . It is interesting to 
see that some observed ( ,t rP P  = observed probabilities) 
and estimated probabilities ( ˆ ˆ,t rP P  = probabilities from 
the logit model, ,t rP P   = probabilities from the regres-
sion model) are very close for some O-D pairs for the 
truck mode, such as OD28, OD27, and OD20 ( tP  = 0.52, 

t̂P  = 0.56, tP  = 0.52), but are quite off for OD21, OD12, 
and OD1( tP  = 0.09, t̂P  = 0.47, tP  = 0.47), while most 
o her O-D pairs, such as OD30, OD16, and OD2 ( tP  = 
0.93, t̂P  = 0.73, tP  = 0.58) are neither too much close 
or off. Similar results can be found for the rail mode. 

Inter stingly, so e O-D pairs with relatively good 
logit and regression results for one mode are not neces-
sar

t

ily good for the other mode, such as OD22 for truck  
( tP  = 0.98, t̂P  = 0.71, tP  = 0.55) and OD22 for rail  
( rP  = 0.02, r̂P  = 0.29, rP  = 0.45), while certain O-D  

airs are relative goo  op d for th models, such as OD23. It  
h s

b
seems that for e O-D pa  with extremely unbalanced 

mod lits, s  as 90% ail to tr  vice
v eir d re stim
worse than those nodes with more balanced modal splits, 
such as 40% to 60% rail to truck or vice versa. Indeed, 
Tables 5 and 6 both have the last two columns showing 
the absolute changes between the estimated vs. the ob-
served probabilities. Those O-D pairs with large changes 
(i.e., larger than 2.0) have their estimates off 3 times 
more or less than their observed probabilities with some 
O-D pairs fair better with rail and others with truck. 
However, the overall averages (1.38 vs. 2.14 for rail and 
0.74 vs. 1.75 for truck) indicate that the logit model per-
forms better. 

Figures 3-8 illustrate the observed and estimated truck 
and rail flows assigned to the national truck and rail net-
works in 2002. In these figures, the truck or rail 
links/paths with assigned cereal grains flows are high-
lighted and scaled in back color. The highway and rail 
segments without carrying cereal grains flows are shown 
in gray color. These figures are referenced with state 
boundaries. 

 

 

Figure 1. A sample of input data screen. 
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Figure 2. A sample of output probability screen. 
 

As visually shown in these figures, the cereal grains 
movement spread out within the US, but more concen-
trated in the middle of US or America’s plain region cen-
tered around Kansas from which cereal grains were 
moved to north-south and east-west in the US Comparing 
these figures and checking the observed and estimated 
mode splits in Tables 5 and 6 also show that overall both 
binary logit model and linear regression estimates work 
well with just the usage of few generic variables. How-
ever, the binary logit model performs better, as shown in 
Figures 9 and 10, that binary logit model estimates 
(green color) are more in line with the values and varia-
tions of actual percentages or probabilities (black color) 
than the regression estimates (brown color) for the two 
modes for cereal grains movement in the US Regression 
estimates are generally less fluctuated among the origin 
and destinations pairs 

Scatter plots of Figures 11 and 12 of actual mode 
splits vs. logit or regression estimates further indicate 
that the logit model (green color), with higher R-square 
or correlation values, generally outperforms the regres-
sion model (brown color). 

6. Conclusions and Remarks 

This paper concisely reviewed relevant literature on 
mode splits for freight movement, developed a binary 
logit model for truck and rail, tested the model for cereal 
grains movement in the United States in 2002 using 
TransCAD, and compared the model results with those 
from a comparable linear regression model. The overall 
probability estimates from the binary logit model and the 
regression model, as compared with the observed mode 
splits of truck and rail, are better for some O-D pairs than 
others. However, the logit model outperforms the linear 
regression model in general in terms of smaller average 
absolute percentage changes and better correlations be-
tween estimated and observed mode probabilities. 

The binary logit model also can be applied to other 
commodities as long as they are transported predomi-
nantly by two modes, such as rail and water or truck and 
water. The input data are at the levels of state MSAs and 
reminders, but better results, particularly for flow as-
signments, can be achieved if finer geographic units, 
such as traffic analysis zones, are used. A specific index 
may be designed to measure the aggregated deviations  
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Table 6. Sample observed and estimated probabilities for 
truck, 2002. 

OD Pt 

Table 5. Sample observed and estimated probabilities for 
rail, 2002. 

OD Pr r̂P  rP  r̂ r

r

P P

P


 r̂ r

r

P P

P


 

OD1 0.91 0.53 0.53 0.42 0.42 

OD2 0.07 0.27 0.42 2.86 5.01 

OD3 0.13 0.62 0.59 3.77 3.54 

OD4 0.06 0.39 0.59 5.50 80.87 

OD5 0.84 0.72 0.61 0.14 0.27 

OD6 0.05 0.22 0.37 3.40 6.36 

OD7 0.09 0.28 0.49 2.11 4.48 

OD8 0.97 0.94 0.60 0.03 0.38 

OD9 0.93 0.99 0.68 0.06 0.27 

OD10 0.15 0.26 0.44 0.73 1.90 

OD11 0.63 0.73 0.46 0.16 0.27 

OD12 0.89 0.57 0.48 0.36 0.46 

OD13 0.87 0.99 0.70 0.14 0.19 

OD14 0.94 0.86 0.60 0.09 0.36 

OD15 0.59 0.77 0.51 0.31 0.14 

OD16 0.64 0.41 0.40 0.36 0.38 

OD17 0.45 0.77 0.54 0.71 0.21 

OD18 0.51 0.23 0.34 0.55 0.34 

OD19 0.53 0.6 0.33 0.13 0.39 

OD20 0.48 0.44 0.48 0.08 0.00 

OD21 0.85 0.57 0.59 0.33 0.31 

OD22 0.02 0.29 0.45 13.5 21.35 

OD23 0.25 0.29 0.42 0.16 0.69 

OD24 0.96 0.96 0.60 0.00 0.38 

OD25 0.74 0.45 0.43 0.39 0.42 

OD26 0.85 0.58 0.60 0.32 0.29 

OD27 0.04 0.03 0.05 0.25 0.32 

OD28 0.5 0.44 0.55 0.12 0.11 

OD29 0.31 0.48 0.61 0.55 0.98 

OD30 0.09 0.43 0.56 3.78 5.25 

Average 0.51 0.54 0.50 1.38 2.14 

t̂P  tP  t̂ t

t

P P

P


 t̂ t

t

P P

P


 

OD1 0.09 0.47 0.47 4.22 4.24 

OD2 0.93 0.73 0.58 0.22 0.38 

OD3 0.87 0.38 0.41 0.56 0.53 

OD4 0.94 0.61 0.41 0.35 0.57 

OD5 0.16 0.28 0.39 0.75 1.42 

OD6 0.95 0.78 0.63 0.18 0.33 

OD7 0.91 0.72 0.51 0.21 0.44 

OD8 0.03 0.06 0.40 1.00 12.26 

OD9 0.07 0.01 0.32 0.86 3.55 

OD10 0.85 0.73 0.56 0.14 0.34 

OD11 0.37 0.27 0.54 0.27 0.46 

OD12 0.11 0.43 0.52 2.91 3.75 

OD13 0.13 0.01 0.30 0.92 1.28 

OD14 0.06 0.14 0.40 1.33 5.59 

OD15 0.41 0.23 0.49 0.44 0.21 

OD16 0.36 0.59 0.60 0.64 0.67 

0.46 0.58 0.17 

0.57 0.35 

OD17 0.55 0.23 

OD18 0.49 0.77 0.66 

OD19 0.47 0.40 0.67 0.15 0.43 

OD20 0.52 0.56 0.52 0.08 0.00 

OD21 0.15 0.43 0.41 1.87 1.75 

OD22 0.98 0.71 0.55 0.28 0.44 

OD23 0.75 0.71 0.58 0.05 0.23 

OD24 0.04 0.04 0.40 0.00 9.06 

OD25 0.26 0.55 0.57 1.12 1.20 

OD26 0.15 0.42 0.40 1.80 1.65 

OD27 0.96 0.97 0.95 0.01 0.01 

OD28 0.50 0.56 0.45 0.12 0.11 

OD29 0.69 0.52 0.39 0.25 0.44 

OD30 0.91 0.56 0.44 0.38 0.52 

Average 0.49 0.46 0.50 0.74 1.75 
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Figure 4. Observed cereal grains flows by rail, 2002. 
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Figure 5. Estimated flows by truck, binary logit model. 
 

 

Figure 6. Estimated flows by rail, binary logit model. 
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Figure 7. Estimated flows by truck, regression model. 
 

 

Figure 8. Estimated flows by rail, regression model. 
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Figure 9. Truck probability comparisions: Actual, binary 
logit, and regression. 
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Figure 12. Rail scatter plots of actual vs. logit or regression 
mode shares. 
 
based on the observed and estimated mode choice prob-
abilities for each mode to further understand the model 
behaviors. Finally, using more clearly defined generic 

ng some mode specific variables 
will certainly improve the utility of this model for mode 
share studies in freight transportation planning. 
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