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ABSTRACT 

In this paper we present new numerical simulation approaches for determining the energy processes under periodic 
conditions caused by time-discontinuous forces in the wheel-rail contacts. The main advantage of the presented method 
is the total elimination of frequency analysis, which in effect introduces important simplifications in the identification of 
the effects in the contact. The second important feature is the fact that the method is based on the analysis of appropriate 
loops on the energy phase plane leading to an easy estimation of the rail strength through the evaluation of the loop’s 
area. That model based simulation in the applied dynamics relies on advanced methods for model setup, robust and ef-
ficient numerical solution techniques and powerful simulation tools for practical applications. Fundamental properties 
of contact displacements of the rail surface have been considered on the basis of the newly established method. The 
contact zone between railway wheels and the rail surfaces made of bulk materials is perceived as strong enough to re- 
sist the normal (vertical) forces introduced by heavy loads and the dynamic response induced by track and wheel ir- 
regularities. The analysis is carried out for a wheel running on an elastic rail rested on sleepers arranged on completely 
rigid foundation. The equations of displacement motion are established through the application of the Lagrange equa- 
tions approach. The established model of the wheel-rail contact dynamics has been applied to that same roll plane but 
with taking into account a nonlinear characteristic of the sleeper with respect to the ground. Attention then is focused 
completely on the modeling of the energy absorbed by the rail. The applied method employs the energy state variables 
as time functions leading to determine the susceptibility of a given contact on the strength induced by the rail roll. 
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1. Introduction 

In the analysis of wheel-rail contact several modeling 
methods can be applied and in the course of the last dec- 
ade new demands have emerged. They are mainly con- 
nected with the reduction of costs of maintenance, tech- 
nical diagnostics of the track and of railway vehicles, and 
elimination of negative effects on the environment. Many 
of the works have been related to the increase in train 
speed of railway vehicles without affecting safety and 
comfort [1-6]. 

Recently, the advanced technology is confronted in- 
creasingly with damping problems that do not address to 
issues of scaling. The contact zone (roughly 1 cm2) be- 
tween a railway wheel and rail is small compared with 
their overall dimensions and its shape depends not only 
on the rail and wheel geometry but also on how the 
wheel meets the rail influence. Thus, studying the com- 
plex motions of railway vehicles could give significant 
new insight into the defect properties of materials—a 

research domain where relatively little first-principles 
progress has been made. 

A hard problem arises when the wheel-rail contact is 
subject to an action of time-discontinuous forces. It is 
well known that in the contact zone between railway 
wheel and rail the surfaces and bulk material must be 
strong enough to resist the normal (vertical) forces in- 
troduced by heavy loads and the dynamic response in- 
duced by track and wheel irregularities. Thus, the inter- 
actions of the surface and the volume of a solid rail are 
important. It is not possible to materials grow without 
dislocations and/or other disturbances to crystalline order, 
such as vacancies, interstitials, or substitution impurities. 
In the case of polycrystalline materials, the memory fea-
tures of hysteresis may be important according to the 
methods of their fabrication. Long before defects escalate 
to the point of incipient failure, they still influence vibra- 
tions. In its simplest form the equations of dynamic mo- 
tion of a wheel-rail system are given by a non-linear  
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second order system of ordinary differential equations 
(ODEs) of moderate dimension that may be solved nu- 
merically by standard methods [7-17]. 

The goal of this paper is to assist the subject progress 
towards a healthier balance between these extreme fac- 
tors. The main attention is focused on modeling of the 
energy absorbed by the rail rested on an elastic sleeper 
and completely rigid foundation. To determine the su- 
sceptibility of a given contact to the strength induced by 
the rail roll, an approach employing the energy state 
variables (time functions) is established. Then, the estab- 
lished model of the wheel-rail contact dynamics has been 
applied to that same roll plane but with taking into ac- 
count a nonlinear characteristic of the sleeper with re- 
spect to the ground. We conclude that under operations 
of periodic discontinuous forces the energy absorbed in 
contact can be measured by loops of one-period energy 
in the energy phase plane. Several numerical examples 
are included. 

2. The Problem Description 

The contact between wheel and rail is the basic constitu- 
tive element of railway vehicle dynamics. For its model- 
ing two aspects have to be considered: 1) the geometric 
or kinematical relations of the wheel-rail contact, and 2) 
the contact mechanical relations for the calculation of the 
contact forces. Strictly connected to contact mechanics is 
the problem of formation of corrugations on the rail treat, 
which is now in the centre of attention of many research 
teams. The knowledge of railway vehicle dynamics al- 
lows us to predict with confidence what the values of 
contact stress, tangential creep forces and creep age in 
the wheel/rail contact patch are for a wide range of dif- 
ferent conditions. This gives a valuable insight into the 
influence of the many different factors that affect the 
incidence of rolling contact fatigue in rails due to the 
combination of these parameters [18-27]. 

At present, many scientific centers in the world are 
involved in research focused on different problems of 
railway vehicle dynamics. Increasing operational speeds 
and comfort demands require focusing on both riding 
qualities of railway vehicles, transport safety and comfort. 
Several factors have a negative influence on ride comfort, 
and emphasize the necessity of more advanced suspen- 
sions. As the challenges of higher speed and higher loads 
with very high levels of safety require ever more innova-
tive engineering solutions, better understanding of the 
technical issues and use of new computer based tools is 
required [27-35]. 

Usually, railway vehicles operating in modern coun- 
tries use wheel sets comprising two wheels fixed to a 
common axle (Figure 1). Wheels are rigidly connected 
with the axle and roll in the direction which they are 
heading for. As both wheels are rotating at the same  
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Figure 1. Schematic views: (a) Train vehicle; (b) Wheels, 
axle, rail and sleeper. 
 
speed, the contact forces ultimately are repartitioned 
symmetrically on both wheels. These forces are a major 
cause of the rails wear. 

A completely linear multi-body formalism must be 
taken into considerations and the kinematical nonlinear- 
ity can be replaced by quasi-linearization. Strictly con- 
nected to contact mechanics is the problem of formation 
of corrugations on the rail treat, which is now in the cen- 
tre of attention of many research teams [2,21]. 

The development of rolling contact fatigue in rails de- 
pends on the interplay between crack growth, which is 
governed by the contact stress and the tangential force at 
the contact patch. Moreover, the wear depends on the 
tangential force and the creep age at the contact patch 
(Figure 2). These parameters are dependent on a large 
number of inter-dependent factors, in particular: 
 Vehicle Configuration: wheelbase, axle load, wheel 

diameter, 
 Suspension design: in particular primary yaw stiff- 

ness, 
 Track geometric quality, 
 Wheel profiles: nominal profile and state of wear, 
 Rail profiles: nominal profile and state of wear, 
 Wheel/rail friction, 
 Cant deficiency (depending on speed, radius and 

cant), 
 Traction and braking forces, 
 Wheel and rail material properties. 

Copyright © 2012 SciRes.                                                                                 JTTs 



Z. TRZASKA 131

 

 
(a)                          (b) 

Figure 2. Spalling from high contact stresses of the: (a) Rail; 
(b) Wheel. 
 

The estimates have showed that in the case of the 
wheel-rail system, the elastic correlation length far ex- 
ceeds the length of the contact region (about 1 cm). Mul- 
tibody dynamics and wheel-rail contact models make 
detailed analysis possible not only for ride and handling, 
but also for determining their effects on rail non-uni- 
formities. Experimental studies have revealed that esti- 
mations of both the size of the contact region and pres- 
sure distribution in the contact depend on the accuracy of 
which the surface micro-relief was determined. 

The size and shape of the contact zone where the rail- 
way wheel meets the rail can be calculated with different 
techniques. The surfaces of railway wheels and rails, as 
many other technical surfaces, have micro-heterogenei- 
ties at many scale levels; by experimental studies it has 
been established that these are self-similar surfaces in the 
wide range of surface scales and can be referred to the 
class of fractal ones [9,10]. This suggests that both the 
size of the contact region and pressure distribution in the 
contact depend on the accuracy with which the surface 
micro-relief can be determined. 

Through mathematical analysis it is possible to build a 
deep and functional understanding of the wheel-rail in- 
terface, suspension and suspension component behavior, 
simulation and testing of mechanical systems interaction 
with surrounding infrastructure, noise and vibration. 

3. Dynamic Model of Wheel-Rail Contacts 

The contact between wheel and rail is the constitutive 
element of railway vehicle dynamics. The geometric or 
kinematical relations of the wheel-rail contact and the 
contact mechanical relations for the calculation of the 
contact forces are to be dealt with very careful attention. 
This can be done within a completely linear multi-body 
formalism taking into account kinematical nonlinearities 
by quasi-linearization. From the short-term dynamic cal- 
culations a periodic non-harmonic motion can be ob- 
tained in terms of the generalized displacements. For the 
subsequent calculation of stress only typical contact 
characteristics are of interest. As is well known the po- 
tential and success of vehicle-track dynamic simula- 
tions very much depends on how well the system is 
mathematically modeled and fed with pertinent input 

data. We use a simplified dynamic model for the wheel 
set and rail contact. The wheelset is running on straight 
track and the wheelset and track are considered as rigid 
bodies. Any contact stiffness is included. However, the 
contact stiffness is not the only one elasticity to be taken 
into account, and the track stiffness itself can be used to 
smooth out the load variation. 

A large part of the wheel-rail contact modelisation 
leads to the load transfer when flanging, and more gener- 
ally when there is a jump between two contact points on 
the profiles. We assume that the wheelset is rigid and in 
the rail model the discrete sleepers under the rail are 
resting on completely rigid foundation. The interface 
between the wheel and the rail is a small horizontal con- 
tact patch. The contact pressure on this small surface is 
closer to a stress concentration than in the rest of the 
bodies. The centre of this surface is also the application 
point of tangential forces (traction and braking Fx, guid- 
ing or parasite forces Fy, see Figure 3). The knowledge 
of these forces is necessary to determine the general 
wheelset equilibrium and its dynamic behavior. 

For the overall model we need to consider all specific 
phenomena occurring in the system during the train 
movement on the rail. To have a large set of information 
on the contact, as a function of the vertical relative dis- 
placement dz the study of a single wheel-rail pair is 
enough. The first modelisation of the flange contact has 
been presented to consider it as an elastic spring whose 
value comes from the track and the rail beam deforma- 
tion. For these purposes we consider a scheme presented 
in Figure 4. The rail is considered as Timoshenko beam 
which can be divided into small segments so that a 
sleeper is assigned to every segment. The sleeper has 
both a mass and the pad between rail and sleeper and the 
ballast are replaced by springs and dampers. As a natural 
improvement a more complex model is also considered. 
It takes into account the roll effect of the other wheel-rail 
pair of the wheelset. The lateral displacement and the yaw 
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Figure 3. Rail, wheel and contact frames. 
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Figure 4. Subdivision of the wheel-track set into segments. 
 

angle can be considered as two small displacements rela-
tive to the track and they do not exceed approximately 
±1%. Then we take into account the fact that the 
wheelsets are connected to the chassis of the bogies by a 
set of joints, which control the relative motion between 
wheels and chassis, and by a set of springs and dampers. 
In turn, the bogie chassis is connected to a support beam 
to which one of the carshell connecting shaft is attached. 
The connection between chassis and support beam is also 
done by a set of kinematic joints, springs and dampers, 
designated by secondary suspension [13,28]. Each train 
carbody is generally mounted in the top of two bogies. 
The attachment between the carbody and each bogie is 
done by a shaft rigidly connected to the carbody that is 
inserted in a bushing joint located in the support beam of 
the bogie. Moreover, the rail remains in its original 1in20 
or 1in40 inclined position. Measured values showed a 
maximum of about 0.3 and 0.95 degrees respectively for 
the UK and German sites. In light of this reason it is as- 
sumed for the developments that follow that the motion 
of each wheelset tracks exactly the geometry of the rail- 
way and lateral inclinations can simply be ignored during 
numerical simulation. 

The rail structure is particularly subjected to dynamic 
load, which is induced by moving wheels of the vehicles. 
This dynamics action can excite vibrations of the track, 
contribute to bad track conditions and consequently 
lower the comfort of traveling. The dynamic analysis of 
the rail structure subjected to a moving load is a very 
complex problem. Such models can be used for the 
simulation of real actions of vehicles and detailed re- 
sponse of the structure can be obtained. When an elastic 
body, such as a wheel, is pressed against another elastic 
body, such as a rail, so that a normal load is transmitted 
and a contact area is formed. As the elastic deformation 
in the vicinity of the contact area is small its effect on the 
stress response cannot be neglected. Then, assuming that 
in the vicinity of the contact patch the curvatures of the 
wheel and rail are constant, the imprinted contact patch is 

small compared with the radii of curvature and the di- 
mensions of the wheel and rails, the contacting bodies 
can be represented by elastic half-spaces and their shape 
can be approximated by quadratic surfaces. Usually it 
can be assumed that the material properties of wheel and 
rail are the same and in this case it can be shown that the 
tangential tractions do not affect the normal pressures 
acting between the bodies. Then with these assumptions, 
for the case where the wheels and rails are smooth, the 
dimensions of the contact area can be obtained from the 
theory of Kalker described in [28]. 

Thus, we can consider the stationary rolling contact of 
elastic bodies and suppose that material properties of 
wheel and rail are the same, i.e. the bodies in contact are 
quasi-identical. In this case the contact problem trans- 
lates to the normal action between the wheel and rail. It 
means that the normal pressure at a point of the contact 
patch is proportionate to the interpenetration of the con- 
tact bodies at the point. 

In this system, inertial, stiffness and damping proper- 
ties vary piecewise-continuously with respect to the spa- 
tial location. A continuously vibrating system may be 
approximately modeled by an appropriate set of lumped 
masses properly interconnected using discrete spring and 
damper elements (Figure 5). An immediate advantage 
resulting from this lumped-parameter representation is 
that the system governing equations become ordinary 
differential equations. A linear model is usually justified 
on the basis of small corresponding deflections. 

For each of such segments as that shown in Figure 5 a 
system of equations can be formulated as follows 

 
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Figure 5. Elementary section of the loaded rail. 
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The system vibrations are excited by the loading force 
F(t) exhibiting variations in time shown in Figure 6. It is 
worth noticing that the short duration pulses correspond 
to small dimensions of the contact areas. The duration 
and intensities of these pulses depend on the vehicle 
mass and the speed of the train. 

(1). The most of up-to-date used approaches of these is 
an eigenvalue calculation on the matrices that represent 
the equations of vibration (1). In the time-domain a peri- 
odic solution of (1) can always be found by integrating (1) 
after the transient responses die out [23,24]. Such an ap- 
proach, known as the “brute force method”, is a rather 
time-consuming task and computationally expensive, 
particularly for the slowly varying systems. The fre- 
quency domain approach, known as the harmonic bal- 
ance technique (HBT), is an iterative method which 
matches the frequency components (harmonics) of a set 
of variables defined for the two sides of (1). Although the 
HBT avoids the computationally expensive process of 
numerical integration of (1), its serious drawback is the 
large number of unknown variables that must be deter- 
mined. 

The model (1) has a two-fold purpose: first, it can ac- 
count all the facts discovered experimentally, and second, 
it can predict the system behavior under various condi- 
tions of operations. Therefore, it is important to “explic- 
itly” analyze the role of the material structure, in particu- 
lar the formation of discontinuities and crack growth at 
the interfaces of contact elements. In this work we focus 
on a theoretical study of the effect of impulse load on the 
rail and wheel strength, strain parameters and other 
characteristic of the wheel-rail contact. 

Accordingly, we are required to find the proper frame 
in which it is possible, in an easy way, to determine the 
periodic non-harmonic response of this multivariable 
linear dynamical system. The interaction between wheel 
and rail is determined by normal (along a line connecting 
the centers of mass) and tangential forces, each being the 
sum of potential and dissipative components. Especially, 
the introduction of geometric tools like hysteresis loops 
on energy phase plane greatly advances the theory and 
enables the proper generalization of many fundamental 
concepts known for computer aided geometric designs to 
the world of periodic non-harmonic waveforms. The 
main problem in the hysteresis loop method is to specify 
the energy absorbed by the rail during its periodic load- 
ing. According to the issue posed in the work, the calcu- 
lations were performed using a model based on the de- 
formation theory of plasticity with unloading by the elas- 
tic law. 

In principle, this leads usually to indications of the 
natural frequencies of the various modes of vibrations. 
But because the loading force F(t) is periodic non-har- 
monic excitation such a classic approach needs an appli- 
cation of Fourier series that appears as the traditional tool 
for analysis of periodic non-sinusoidal waveforms 
[30-33]. It should be emphasized that a discontinuous 
signal, like the square wave, cannot be expressed as a 
sum, even an infinite one, of continuous signals. The 
extraneous peaks in the square wave’s Fourier series 
never disappear; they occur whenever the signal is dis- 
continuous, and will always be present whenever the 
signal has jump discontinuities. Thus, it is evident that 
for accurate analysis of large systems and complicated 
harmonic producing terms; more formal time-domain 
mathematical tool is needed. 

In this work an attempt is put on description of a new 
method which takes into account the activation energy 
and effects of loading force transfers. It is related to 
non-sinusoidal periodic excitations of the wheel-rail 
contact and integrations leading to the identification of 

4. Exact Periodic Solutions 

There are several methods available to analyze Equations  
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Figure 6. Variations in time of the loading force.  
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response waveforms. Taking into account the above re- 
quirements and insufficiencies of the methods based on 
Fourier series, which are up-to-date most commonly used 
for studies of periodic non-harmonic states of linear sys- 
tems we propose in the sequel new method for obtaining, 
in closed form, the response of any linear system corre- 
sponding to piecewise-continuous periodic non-harmonic 
forcing terms. This newly involved approach is based on 
the exact solution of (1), segment concatenation and pe- 
riodizer functions. In our approach, the solution is exact, 
and by means of suitable unification of its piecewise 
representation, we can get with ease the exact expres- 
sions for its time derivatives. The method presented here 
depends on a “saw-tooth waveform” and a scheme used 
for unified representation of composite periodic non- 
harmonic waveforms. We discuss properties of linear 
systems with periodic non-harmonic excitations and de- 
velop a systematic Fourier series-less method for their 
studies. From this basis, more advanced theoretical re- 
sults are developed. 

The main feature of this method is the complete 
elimination of the frequency analysis what leads to 
significant simplifications in the process analysis. The 
second important feature is that that method is based on 
appropriate loops on the energy phase plane leading to an 
easy estimation of the energy delivery to the wheel-rail 
contact process through the evaluation of the loop’s area. 
Taking into account the periodic supplying force F(t) 
with pulses within each period we can represent it by 
more suitable form shown in Figure 7. 

T = T1 + T2 + T3 + T4 

The supplying force F(t) = F(t + T) with two pulses 
within each period can be represented as follows 

   

1   

1

2 3
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      for      0   

0      for       

      for       

0       for       
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     (2) 

where A and Tk, with k = 1, 2, 3, denote the magnitude 
and moments, respectively, describing the pulses in the 
supplying force. 

The pulsed supplying force (2) can be represented by 
more convenient formula when introducing the unit 
Heaviside functions Hk(t, Tk), k = 1, 2, 3 which are 
shifted at the portions of period with respect to the origin 
point t = 0, namely 
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1
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       (3) 

A steady-state periodic solution of Equation (1) de- 
pends on system eigenfrequencies 

1 2 1 1 3 4 3ands s j s s j                (4) 

where 1j   and the real and imaginary components 
of the system eigenfrequencies are determined by system 
parameters. It is easily seen from (1) and (3) that the re- 
sulting steady state coordinate z(t) can be expressed as 
follows 

           
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1 1
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, k k k
k

z t z t T z t H t T z t z t
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where zk(t), k = 1, 2, 3, 4 denote the coordinate compo- 
nents in the successive parts, respectively, of the supply- 
ing force period. 

When t(Tk, Tk + 1) and the supplying force is equal to 
A or 0 with k = 1, 2, 3, 4 we obtain 
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Figure 7. Loading force with ideal pulses within the period.    
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where Zf,k denotes the steady state term forced by Fk and 
Bm,k , m = 1, 2, 3, 4, are constants to be determined from 
continuity and periodicity conditions fulfilled by respect- 
tive components of the system whole response. 

The steady state forced term Zf,k follows from Equa- 
tions (1) when successively substituting Fk, respectively. 
In result we get 

,
r s

f k
r s

k k
kZ F

k k


               (7) 

To determine integration constants Bm,k we take into 
account the continuity and periodicity conditions which 
must be fulfilled by the coordinates z(t) and zs(t) [10]. 

For the sake of compactness of presentation we trans- 
form Equation (1) into standard state variable equation 

     1t t x A x g t              (8) 

where vectors x(t) and g(t) as well as constant element 
matrix A1 have appropriate dimensions. 

Here it is worth noticing that A1 must be non-critical 
with respect to T, i.e. the relation 

 1det 0Te AI               (9) 

must be fulfilled. 
Since all eigenvalues of the studied system have nega- 

tive real parts, it is clear that A1 is non-critical and the 
condition (9) is satisfied. We now turn to describe an 
algorithm to compute a periodic solution for (8). The 
procedure for obtaining the steady state solutions of (8) is 
as follows. 

The periodizer function 
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arctan cot
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T T
p t t

T

      
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is established to have period T. In the presented proce- 
dure we construct the solution for one period [0, T) and 
then extend that solution to be periodic on the whole t 
line. This process is called the segment concatenation. 

Generalizing (3) to the case of forcing term in (8) we 
represent g(t) by a set of continuous terms gk(t) in the 
subintervals of [0, T). Such a division yields the respect- 
tive solutions xk(t) of x(t) that are determined as 

  1
,

t
k k f kt e Ax J X            (11) 

for k = 1, 2, 3 ,4, where Xf,k is a forced steady state (index 
f) solution of (8) and has the same waveform shape as 
that of gk(t) in the corresponding subinterval, and Jk is a 
constant vector to be determined. We can find vectors Jk 
by analyzing the periodicity condition for the total solu-
tion as follows 
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and from the continuity conditions it follows that 
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for k = 1, 2, .3. 
Because the period [0, T) is divided into subintervals 

[tk, tk+1), k = 0, 1, 2, 3, then (12), (13) yield the block 
matrix equation 
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  (14) 

From the Kronecker-Weierstrass form [35] it follows 
that the system (14) has a unique solution {J1, ··· , J4} 
for any T, t1, ··· , t3, and A1 Using the periodizer function 
p(t) we sew on continuous solutions in all subintervals 
during the concatenation process yielding periodic steady 
state solutions. Because the solutions are exact, the typi-
cal drawbacks of classical methods, such as the Gibbs 
effect [5], are avoided 

5. One-Period Energy Conception 

The approach presented in the previous sections can be 
applied to compute energy delivered by the independent 
supplying force to the load elements. Under periodic 
conditions the delivered energy is measured by one pe- 
riod energy loops on the energy phase plane. This new 
concept has been discussed in more details in the recent 
papers [32-34]. Then the total energy, WT delivered by 
supplying force F(t) = F(t + T) in one period equals 

       
 

0 (0)

d d
z TT

T
z

W F t v t t F t z t          (15) 

where    v t z t   denotes the velocity of the rigid rail 
oscillations. The above integral is of the Riemann- 
Stieltjes type. The solutions obtained by using the perio- 
dizer and concatenation procedure can be easily used in 
(15) to find WT. We illustrate the concatenation proce- 
dure with two numerical examples. 

Example 1. Consider a particular case of the system 
shown in Figure 5 with forcing term F(t) characterized 
by A = 110 kN, T1 = 0.15 s, T2 = T3 = T = 2 s and M = 
110 kg. The rigid sleeper is directly incorporated to the 
rigid foundation. We take into account the remaining 
parameters: br = 632 Ns/m and kr = 2.5 kN/m. Perform- 
ing computations in accord to the above presented algo- 
rithm yields the one-period energy loop that is presented 
in Figure 8. It can be easily found that the energy deliv- 
ered by the loading force F(t) equals WT = 110 kN·0.6 
cm = 0.66 kJ. 
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For the comparison purposes we have considered the 
same as the above system but with F(t) =110 sin(20 πt) 
kN. The result of computation is presented in Figure 9. 
Note, that sinusoidal loading force of the same magni- 
tude excites vibrations exhibiting much smaller magni- 
tude and delivers smaller one-period energy than in the 
case of pulsed force. Figure 9 shows the one period en- 
ergy loop involved by sinusoidal loading force. The 
one-period energy was computed by using the Matlab 
function quad.m to yield WTsin = 0.124 kJ. 

Example 2. Let us consider the system shown in Fig- 
ure 5 with an elastic sleeper that is connected with the 
rigid foundation with a spring and a damper. The data 
given in Example 1 are supplemented with the sleeper 

mass Ms = 156 kg and remaining parameters: bs = 520 
Ns/m and ks = 1.5 kN/m. For the above taken data we 
have determined the one-period energy loop that is 
shown in Figure 10. The computed one-period energy 
equals WT2 = 1.485 kJ. 

It has to be noted that for the loading force exhibiting 
two identical pulses within the period the magnitude of 
the rail vibrations is much greater and the one-period 
energy delivered to the system is more than five times 
greater with respect to the case of one pulse within the 
period. If the loading force F(t) takes sinusoidal form 
with the same magnitude and frequency f = 10 Hz then 
the one period energy delivered to the system has the 
form shown in Figure 11. The area of this loop equals 
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Figure 8. One-period energy loop for loading force with one pulse within the period and rigid sleeper. 
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Figure 9. One-period energy loop for sinusoidal loading force. 
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Figure 10. One-period energy loop for loading force with two pulses within the period and elastic sleeper. 
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Figure 11. One-period energy loop for sinusoidal loading force and elastic sleeper. 
 
WTsin2 = 1.125 kJ. Because the frequency range of interest 
is very limited in the involved model of the wheel-rail 
contact a linear spring in parallel with a linear viscous 
damper (dashpot) is sufficient here. For larger frequency 
ranges this model can be easily transformed into appro- 
priate one that provides strong frequency dependence, 
giving a very significant stiffness and damping at high 
frequencies. The presented methodology can be applied 
to predict the durability of wheel rail systems subject to 
wear and crack growth. Under the action of the cyclic 

load obtained from the contact calculation the growth of 
the crack can be predicted. All eigendamping properties 
of rubber elements, as well as other parasitic damping 
must be considered in the model parameters for correct 
modeling. 

Some unfavorable conditions that are particularly det- 
rimental for ride comfort are: 
 low damping or even instability of the car body mode 

initiated through the coupling of the self-excited si- 
nusoidal wheel movement with rail and sleeper ei- 
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genmodes; 
 resonance from the eigenmode of the vehicle compo- 

nents with the periodic excited loading force. 
To study the influence of vehicle speed, we have to 

consider the excitation by track unevenness. This prob- 
lem is not considered in this paper for the sake of pres- 
entation compactness. In the next Section influences of 
nonlinear characteristics of the elastic support will be 
considered. 

6. Sleeper Nonlinear Characteristics 

In order to check the efficiency of the proposed method 
which completely eliminates the Fourier series approach 
as well as to exhibit its advantages in applications the 
above established model of the wheel-rail contact dy- 
namics has been applied to that same roll plane but with 
taking into account a nonlinear characteristic of the 
sleeper with respect the ground. It is represented by the 
relation 

   2
2 2

3
s s sf z k z z             (16) 

where constant parameters k2, α and β can be considered 
as bifurcating values. For α = 1.75, β = –1 the plot of the 
relative value f2/k2 is shown in Figure 12. 

In our approach, periodic solutions were determined 
by appropriate modifications of standard numerical solver  

used for solutions of nonlinear ordinary differential 
equations [36]. They appear as computationally not ex- 
pensive alternatives to the traditional harmonic balance 
approach and lead to quite satisfactory results. For a set 
of system parameters and the forcing term shown in 
Figure 7 and nonlinearity presented in Figure 12 the 
calculated time variations of the wheel-rail contact de- 
formations are depicted in Figure 13. Then using the 
alternative expression for the one-period energy, 

       
 

 

0 0

d d
P TT

T
P

W F t v t t v t P t        (17) 

where    0 dtP t F     denotes the force impulse we 
can determine the energy absorbed by the rail during 
one-period of the applied force. The corresponding loop 
of one-period energy is presented in Figure 14. Applying 
suitable numerical procedure we can evaluate the loop 
surface which determines the energy absorbed by the rail 
during one-period of the force action. It takes value of 
3.0 kJ. Observe that the nonlinearity influences the en- 
ergy absorbed by the rail at the contact of the wheel and 
rail in an important way. However, one can notice that 
the nonlinearity increases the absorbed energy in the 
contact. This is mainly due to the fact that, in these for- 
mulations, the motion of the wheel is assumed to travel 
with a constant forward velocity. Moreover, parameter 
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Figure 12. Nonlinear characteristic of the sleeper stiffness. 
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Figure 13. Deformation of the wheel-rail contact. 
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estimation is an important problem, because many pa- 
rameters simply cannot be measured physically with 
good accuracy, especially in real-time applications. One 
of the advantages of the one-period energy approach 
used in this study is that when the number of nonlinear 
elements is increased, the form of the input force impulse 
remains unchanged and results of computer simulations 
can be used directly to estimate the energy absorbed by 
the rail. 

It can be noticed that when using the minimum num- 
ber of input force pulses required to perform the estima- 
tion of the absorbed energy, i.e. a number of excitation 
points equal to the number of wheels in one side of the 
bogie, it leads to decreasing the number of particular 
areas in the resulting loop of one-period energy and add- 
ing extra information into an algorithm for whole loop 
surface evaluations. 

Although the proposed technique has been applied in 
order to identify parameters of a real mechanical system 
its use to solve analogous problems in other fields of 
human activities is recommended. 

The problem may find applications in multi-body dy- 
namics as well, including dynamic vibration absorbers, 
while other applications include bridges, aircraft struc- 
tures, and turbo-machinery blades. 

7. Discussion and Conclusions 

The introduction of damping elements into the model 
might well result in a change in the computed critical 
speed. The elementary analysis given in this chapter 
gives a good idea of the complexities involved in the 
stability analysis for rail vehicles but also shows that 
there are some similarities between the stability problems 
of railcars and other vehicles. 

The dynamics of the situation when the wheelset is not 
exactly centered and has a small yaw angle with respect 
to the rails will be subsequently studied. The interaction 
between steel wheels and steel rails is actually quite 
complex but for a linear stability analysis, a simplified 
treatment is adequate. 

When there are lateral and longitudinal forces between 
the wheel and the rail, the contact point on the wheel will 
exhibit rather small apparent relative velocities with re- 
spect to the rail in the lateral and longitudinal directions. 
The existence of a creepage does not imply a sliding ve- 
locity between the wheel and the rail. 

The introduction of damping elements into the model 
might well result in a change in the computed critical 
speed. 

The dynamics of the situation when the wheelset is not 
exactly centered and has a small yaw angle with respect 
to the rails will be subsequently studied. It seems that the 
existence of a creepage does not imply a sliding velocity 

between the wheel and the rail. The formation of non- 
elliptical contact patches for real profile combinations 
and the so-called transient contact problem, which is 
important for high frequency vibration of wheel and rail, 
may give an attempt leading to a general view of the 
problems of contact mechanics concerning complete as- 
pects of wheel-rail contact. 

The results may predict how many cycles are required 
for the crack to grow to a critical size and the crack 
growth rate. The methods and tools presented can be 
applied to provide critical design information for engi- 
neers responsible for railway system durability. 

Theoretical models describing the interaction between 
a railway wheel and the track were used for studying the 
wheel and track vibrations. The main emphasis has been 
put on one-period energy delivered to the rail by the 
loading force exerted by the railway vehicle. This is in 
response to modern technological demands where the 
couplings and interactions between various components 
of the model is a central mechanism in controlling the 
system. Accordingly, the proper frame in which it is pos- 
sible, in an easy way, to determine the periodic non- 
harmonic response of multivariable linear dynamical 
systems was presented. The load transfer has been calcu- 
lated on the basis of the elastic deformation in the 
neighborhood of each contact. In practice, the dynamic 
response of vehicles also has a significant influence on 
the rolling contact fatigue behavior. It has been shown 
that the time domain representation of a system by means 
of the concatenation procedure, as opposed to the fre- 
quency domain representation by means of the system 
transfer function, has become more advantageous ap- 
proach to the exhibition of system dynamics in periodic 
non-harmonic states. Especially, the introduction of 
geometric tools like hysteresis loops on energy phase 
plane greatly advances the theory and enables the proper 
generalization of many fundamental concepts known for 
computer aided geometric designs to the world of peri- 
odic non-harmonic waveforms. The fatigue damage and 
rail corrugation can be treated as a further development 
of this research. 

For the comparative purposes we have considered the 
case presented in Example 1 (see Section 5) by up-to- 
date widely used approach based on the Fourier series. In 
this case, the periodic forcing term F(t), which exhibits 
jump discontinuities, takes the form presented in Figure 
15(a). 

The 25th partial sum of the Fourier series has large os- 
cillations near the jump, which decrease the maximum of 
the partial sum above of the function itself. The over- 
shoot does not die out as the number of frequency com- 
ponents increases, but approaches a finite limit. This is 
one of causes of insufficiency of the Fourier approach. 
As a result, the Fourier series computations give the 
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variations in time of the system response x(t) which is 
shown in Figure 15(b). Using the Fourier series ap- 
proximations of both F(t) and x(t) we can present the 
one-period energy loop on the energy phase plane in the 
form presented in Figure 15(c). Thus, it is clear that 
there are important discrepancies with respect to exact 

results presented in Section 5. 
Hysteresis energy loops are viable alternatives to ac- 

tive, reactive, distortion and apparent powers. The pro- 
posed method exhibits several advantages. Simulations 
using one-period energy loops are exact and much faster 
than Fourier series simulations. 
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Figure 15. Results of the fourier series computations: (a) Forcing term exhibiting Gibbs effect; (b) Variations in time of the 
system response; (c) Fourier series representation of the one-period energy loop. 
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