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ABSTRACT 

This study presents a hybrid algorithm obtained by combining a genetic algorithm (GA) with successive quadratic se-
quential programming (SQP), namely GA-SQP. GA is the main optimizer, whereas SQP is used to refine the results of 
GA, further improving the solution quality. The problem formulation is done in the framework named RUNE (fRame-
work for aUtomated aNalog dEsign), which targets solving nonlinear mono-objective and multi-objective optimization 
problems for analog circuits design. Two circuits are presented: a transimpedance amplifier (TIA) and an optical driver 
(Driver), which are both part of an Optical Network-on-Chip (ONoC). Furthermore, convergence characteristics and 
robustness of the proposed method have been explored through comparison with results obtained with SQP algorithm. 
The outcome is very encouraging and suggests that the hybrid proposed method is very efficient in solving analog de-
sign problems. 
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1. Introduction 

Since their appearance, the EDA (Electronic Design Au-
tomation) tools have helped to minimize the cost of pro-
duction of very large scale integration (VLSI) elec- tron-
ics. This improvement is achieved thanks to the re- duc-
tion of development time and to the relationship be- 
tween sizes of circuits on the one hand and the complex- 
ity of performed functions on the other hand. EDA tools 
allow designing automatically digital circuits from speci- 
fications of design masks. However, the development of 
these tools dedicated to analog circuits is perceived as a 
very difficult activity.  

Analog components constitute an important part of in- 
tegrated electronic systems. This importance is mani- 
fested in terms of elements and area in mixed-signal sys- 
tems and also as a vital part in digital systems. The na- 
ture of analog circuits makes their design complex.  

It does not consist only of topology and layout synthe- 
sis but also of component sizing. This sizing is an itera- 
tive process, which, for analog circuits, is often manual 
and strongly relies on the designer’s intuition and ex- 
perience to succeed. In manual procedures, it is common 
that the designer varies only one parameter of the circuit 
while keeping all the others fixed until obtaining the de- 
sired solution. Optimizing the sizes of the analog com- 
ponents automatically is an important issue towards be- 
ing able to rapidly design true high performance circuits. 

The problem of sizing an analog circuit can, indeed, be 

formulated as an optimization problem. Evolutionary 
algorithms, as a general purpose optimization technique, 
have proven strong efficiency for solving complex opti- 
mization problems. In this family of evolutionary algo- 
rithms, we find the Genetic Algorithms (GA) [1-3]. It 
remains the most recognized and practiced form of Evo- 
lutionary Algorithms. These are stochastic optimization 
techniques that mimic Darwin’s principles of natural 
selection and survival of the fittest. The main strength of 
GA is its fast convergence. However, GA performs better 
in a global search than in a localized one. In the last pe- 
riod of the evolution and when reaching a near optimal 
solution, the convergence rate decreases considerably, 
the algorithm stops optimizing, and thus the achieved 
accuracy of algorithm becomes limited [4].  

This work deals with optimal sizing of the analog elec- 
tronic parts of an Optical Network-on-Chip (ONoC). We 
mention the example of a TransImpedance Amplifier 
(TIA) and that of an optical driver (Driver) to which we 
apply a hybrid optimization approach, namely GA-SQP. 
GA is the main optimizer, whereas SQP (Sequential Qu-
adratic Programming) [5] is used to fine tune the re- sults 
of GA. At first, GA searches the global optimum in the 
whole solution region in order to obtain a quasi-op- timal 
solution. It provides means to explore efficiently the de-
sign space. Then the global optimal solution can be ob-
tained by SQP. This SQP significantly increases the 
power of the GA in terms of solution quality and speed 
of convergence to the optimal. Therefore, we used a 

Copyright © 2012 SciRes.                                                                                   CS 



F. YENGUI  ET  AL. 147

framework, named RUNE (fRamework for aUtomated 
aNalog dEsign), to optimize a TIA and an Optical Driver 
circuits. 

The remainder of the paper is organized as follows: 
Section 2 gives an overview of the RUNE framework. In 
Section 3, we recall the working principles of genetic and 
SQP algorithms and propose our hybrid approach GA- 
SQP. In Section 4, two application examples are given. 
The first application is a mono-objective problem that 
deals with optimizing the sizing of an optical driver cir- 
cuit to meet fixed specifications. The second application 
is a multiobjective problem with two conflicting object- 
tives of a TIA circuit. Optimization results for the TIA 
circuit with proposed hybrid algorithm are compared 
with results obtained with SQP algorithm. Finally, we 
give a conclusion in Section 5. 

2. The Framework RUNE 

2.1. Overview of RUNE 

RUNE (fRamework for aUtomated aNalog dEsign) [6,7] 
is an Analog/Mixed-Signal (AMS) synthesis framework. 
As shown in Figure 1, the main inputs are the hierarchi- 
cal description of the system and associated system level 
performances. From the user’s point of view, there are 
two main phases leading to the synthesis of an (Intellec- 
tual Property) IP block:  
 Definition of AMS soft-IP, described in the Extended 

Markup Language (XML) format (directly into an 
XML file or through the graphical user interface, 
GUI). In this step, all information related to the sys- 
tem must be provided (hierarchy, models, variables, 
performances specifications, etc.). 

 Configuration of the AMS firm-IP synthesis method. 
In this step, the user must define an optimization 
strategy, i.e. a numerical method or algorithm and the 
formulation of the problem according to the specifi- 
cations.  

In RUNE, different kinds of models describing the 
whole or part of the system at a given representational 
abstraction level can be entered. These models are stored 
in a database allowing each soft-IP to be used as part of a 
system. Also, in order to evaluate the performance of 
these domain-specific models, a simulation Application 
Programming Interface (API) has been developed in or- 
der to plug in several external simulators. In this way, the 
user can select the external simulators to use in the speci- 
fication evaluation phase.  

2.2. Optimization Process 

The optimization process can be used at each abstraction 
level and for every structural (sub-)component. Three 
main steps are followed (Figure 2):  

 

Figure 1. RUNE block diagram functions. 
 

 

Figure 2. RUNE optimization steps. 
 
 A cost function is formulated from specifications and 

design parameters set and stored in XML files. 
 A design plan is set to define which optimization al- 

gorithms will be used to perform synthesis.  
 A model at a given abstraction level for each specifi- 

cation must be defined for the performance evaluation 
during optimization process. 

From the set of information provided by the designer, 
a multi-objective optimization problem is automatically 
formulated and run using the aggregation approach [8]. 
This is the formulation step, which consists in defining 
the objectives and the constraints of the problem, as well 
as the variables and parameters, their ranges and initial 
values. The implementation of this step is set up to use 
either Matlab or an algorithm directly implemented in 
RUNE such as genetic algorithms, simulating annealing, 
Hooke and Jeeves, sequential quadratic optimization and 
pattern search algorithm. The evaluation method called 
during the optimization process can use a model from 
any abstraction level, since RUNE can call various simu- 
lators to perform an evaluation through its standard API. 
For example in the electrical domain, a given block can 
be described at circuit level (schematic representation) 
and its performance metrics can be evaluated with elec- 
trical simulation tools such as Spectre or Eldo, with var-
ious target technologies. The ability to use different 
models and tools, and to manage heterogeneity, plays an 
important role in the definition of complex design, as 
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will be seen in the following section describing an appli- 
cation example.  

3. Hybrid GA-SQP Algorithm  

We have seen in the previous section that RUNE plat- 
form allows selection of several algorithms to perform 
optimization of complex circuits. We describe in the fol- 
lowing part the candidate algorithms that will be used in 
our hybrid approach. 

3.1. Genetic Algorithm 

Genetic Algorithms are based on natural genetic and 
natural selection mechanism and some fundamental ideas 
are borrowed from Genetics in order to artificially con- 
struct an optimization procedure. The GA acts over a 
population of potential solutions, applying intensification 
(crossover) and diversification (mutation) operators to 
explore the problem space. The fittest individuals are 
selected and give birth to a new population, in the hope 
of improving the solution quality. GA is extensively dis- 
cussed in the literature and details on its mechanisms can 
be found in [1]. The GA used in this study is part of the 
MATLAB optimization toolbox. The GA is configured 
to use heuristic crossover, roulette wheel selection and 
adaptive feasible mutation (detailed in the Table 1). The 
generation and the population values used for GA are set 
respectively to 5 and 10. 

3.2. Sequential Quadratic Programming (SQP) 

Sequential quadratic programming (SQP) [5,9] is one of 
the most popular and robust algorithms for nonlinear 
continuous optimization. It starts from a single point and 
finds a solution using the gradient information. SQP re- 
quires a reasonable starting solution to increase the op- 
portunity to achieve an acceptable solution and to avoid 
the local optima. This algorithm allows to closely mimic 
Newton’s method for constrained optimization just as is 
done for unconstrained optimization. Each iteration con- 
tains an approximation made of the Hessian of the La- 
grangian function which uses a quasi-Newton updating 
method. This is then used to generate a Quadratic Pro- 
gramming (QP) subproblem whose solution is used to 
form a search direction for a line search procedure. Se- 
quential Quadratic Programming is an iterative method. 
It allows solving at the kth iteration a QP of the follow- 
ing form: 
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i p
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d is defined as the search direction and Hk is a positive  

Table 1. GA configuration. 

Option Type Description 

Crossover Heuristic 

Returns a child that lies on the line containing 
the two parents, a small distance away from 
the parent with the better fitness value in the 
direction away from the parent with the worse 
fitness value. We specify how far the child is 
from the better parent by the parameter Ratio. 
In our configuration Ratio is set to 1,2.  

Selection
Roulette 

wheel 

Roulette selection chooses parents by  
simulating a roulette wheel, in which the area 
of the section of the wheel corresponding to 
an individual is proportional to the  
individual’s expectation. The algorithm  
uses a random number to select one of the 
sections with a probability equal to its area. 

Mutation
Adaptive 
Feasible 

Randomly generates directions that are  
adaptive with respect to the last successful or 
unsuccessful generation. The feasible region 
is bounded by the constraints and inequality 
constraints. A step length is chosen along 
each direction so that linear constraints and 
bounds are satisfied. 

 
definite approximation to the Hessian matrix of Lagran- 
gian function of the problem. The Lagrangian function 
can be described as:  

       11
, ,

p p

i i j jj pi
hL x y f x x g x  

  
   

1k k k kX x d
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where γ, β are the Lagrangian multipliers. The active set 
strategy allows to solve the developed QP.  

According to Equation (3), the solution xk is updated at 
each iteration.  

                 (3) 

α is defined as the step size and takes values in the inter- 
val [0, 1]. After each iteration the matrix Hk is updated 
based on the Newton Method. The SQP used in this 
study is part of MATLAB tools.  

3.3. Proposed Hybrid Approach: GA-SQP 

Most of the studies on analog design automation process 
have focused on many optimization algorithms that have 
insisted on global search heuristics. However, the simul- 
taneous use of local and global search techniques con- 
siderably improve the accuracy of results while reducing 
computational effort. Our proposed method therefore is 
an optimization algorithm combining a GA with a SQP 
algorithm, in order to solve analog circuit sizing prob- 
lems. The GA algorithm is a global algorithm, which is 
well for a global search but performs very slow and very 
poor in a localized search. The SQP algorithm, on the 
contrary, has a strong ability to find local optima for con- 
strained nonlinear optimizations problems, but it cannot 
guarantee that the solution is the global optimum of the 
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problem. It ensures computational robustness when it 
starts from a feasible initial solution. By combining the 
GA with SQP, a new algorithm referred to as GA-SQP 
hybrid algorithm is formulated in this paper. First, GA 
searches the global optimum in the whole solution region 
in order to obtain a quasi-optimal solution. Then the 
global optimal solution can be obtained by SQP. This 
SQP significantly increases the power of the GA in terms 
of solution quality and speed of convergence to the best 
solution. The proposed hybrid method allows eliminating 
the need to provide a suitable starting point and allows 
ensuring a faster convergence speed and a higher con- 
vergence accuracy to find the optimal solution. The flow 
chart of the proposed GA-SQP algorithm can be summa- 
rized as follows (Figure 3). 

4. Optimization Results of the TIA and 
Driver Circuits 

Optical Network-on-Chip (ONoC) is a technology for  
 

 

Figure 3. Flow chart of the proposed hybrid method. 

high speed communication inside a single chip (a system- 
on-chip) [10]. Instead of transmitting data via metallic 
routes, an ONoC converts electrical signals to light 
pulses and transmits them through a dedicated network 
of optical waveguides (λ-router). An ONoC is a multi- 
domain system, composed of digital elements for data 
flow control and analog and optical blocks to convert and 
modulate data as light impulsions. Together, these blocks 
compose transmission and reception interfaces with 
whom processors, memories and other intellectual prop- 
erty (IP) blocks can communicate.  

In this paper we are interested only in the synthesis of 
the analog circuits of ONoC such as a transimpedance 
amplifier (TIA) used for reception and an optical driver 
(Driver) used in transmission, as illustrated in Figure 4. 
We used RUNE to optimize these circuits. The type of 
evaluation used for each performance, is based on equa- 
tions and electrical simulations. The technology used for 
the design of both the circuits is a CMOS 0.35 µm.  

These two examples of application are given in order 
to show the effectiveness of the proposed GA-SQP to 
solve analog circuits design problems. The first applica- 
tion concerns a mono-objective problem. That issue deals 
with optimizing the sizing of driver circuit to meet fixed 
specifications with two nonlinear equality constraints. 
The second application is about a multi-objective prob- 
lem using the aggregation approach, and consists of siz- 
ing a TIA circuit with nonlinear inequality and nonlinear  
 

 

Figure 4. Multi-domain ONoC description [10].  
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equality constraints. Then, the performance of the pro- 
posed GA-SQP algorithm is compared to SQP. All the 
experiments were run under a Linux environment on an 
Intel Xeon machine (2.6 GHz, 8 GB of RAM, 4 CPU).  

4.1. Optical Driver  

An optical driver is a circuit used to modulate informa- 
tion as a light signal. In the case of our ONoC system, 
the driver circuit (Figure 5) converts binary data into two 
current intensities, which in turn drive a laser beam. 

The design problem of this circuit consists of mini- 
mizing the area of the transistors, while keeping the out- 
put current at levels required by the laser (bias and 
modulation currents). The optimization variables are the 
width (Wi) and length (Li) of each transistor (Mi), which 
dictate their electrical behaviour. The area objective can 
be calculated by the product of the widths and lengths of 
each transistor, while the output current values come 
from the electrical simulator. In this case study, the 
problem is formulated as follows, with two equality con- 
straints and that ensure proper functioning of the circuit 
in our target technology.  

 

 
100 μA

1 mA



X

 Bias

Modulation

min : Area

. :
I

s t
I





X

X  

where X is the vector composed by the input variables 
(W1, L1, W2, L2, W3, L3, W4 and L4). The variation 
range of the optimization variables of the vector X are set 
as shown in Table 2.  

The results obtained with GA-SQP are shown in Table 
3. The transistor sizes for this optimal solution are listed 
in Table 4. Results show that the algorithm allows reach- 
ing the objective while respecting the nonlinear equality 
constraints. 

4.2. Transimpedance Amplifier (TIA) 

The Transimpedance Amplifier (TIA) is used in the re- 
ceiver side of the ONoC. The incoming light signal is  
 

 

Figure 5. Circuit of the optical driver. 

Table 2. Parameters values of the driver.  

Variable parameters Variation range 

W1 [0.45 µm, 50 µm] 

L1 [0.35 µm, 30 µm] 

W2 [0.35 µm, 30 µm] 

L2 [0.45 µm, 50 µm] 

W3 [0.45 µm, 50 µm] 

L3 [0.35 µm, 30 µm] 

W4 [0.45 µm, 50 µm] 

L4 [0.35 µm, 30 µm] 

 
Table 3. Driver specifications and results. 

Performance Area (μm2)
Bias current 

(µA) 
Modulation 

current (mA) 
CPU Time 

(mn) 

Specification Min. =100 =1 - 

GA-SQP 
results 

4.3559 100 1 42 

 
Table 4. Results of parameters sizing. 

Parameters Size 

W1 9.37 µm 

L1 0.35 µm 

W2 1.9 µm 

L2 0.35 µm 

W3 0.45 µm 

L3 0.523 µm 

W4 0.494 µm 

L4 0.35 µm 

 
converted to current by a photodetector, and the role of 
the TIA is to convert this weak current signal to a voltage 
level that can be used in a digital circuit. The structure of 
the TIA, with its internal inverter amplifier, is illustrated 
in Figure 6. 

The desired TIA performance criteria are: the tran- 
simpedance gain Zg, the bandwidth BW, the quality fac- 
tor Q, the power consumption pwr and the transistors 
surface Area. Zg, BW and pwr are evaluated with the 
electrical simulator “Spectre”. Q and Area are evaluated 
with respectively the Equations (4) and (5).  

 * * 1
out

1 * 1
out

Rf Cd
Av

R ClQ
Cd Rf

Cl R




   
 

           (4) 
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Figure 6. Circuit of the TIA. 
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


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       (5) 

where, Rout and Av are, respectively, output resistance 
and gain of internal amplifier. They are evaluated with 
electrical simulations.  

The purpose consists in optimally sizing TIA circuit 
with maximizing Zg and BW. We transformed these 
multi-objective problems into a mono-objective using the 
aggregation approach. There are two nonlinear inequality 
constraint such as pwr and Area and one nonlinear equal- 
ity constraint such as Q.  

The problem can be formulated as follows: 

 

Max :

. :

Area

Zg

Q

s t Pwr





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X
X X

X

X

X
 

where X is the vector composed by the input variables 
(W1, W2, W3, Rf, Cd and Cl). The transistor length is 
fixed at 0.35 µm for all transistors and the variation 
range of the optimization variables of the vector X are set 
as shown in Table 5.  

Table 6 presents TIA specification and best results of 
GA-SQP algorithm for 52 runs. Results of parameters 
sizing with GA-SQP algorithm are shown in Table 7. 
Results show that the algorithm allows reaching the ob- 
jectives while respecting the nonlinear inequality and 
equality constraints. 

4.3. Comparing GA-SQP to SQP 

To show the effectiveness of hybrid optimization method, 
the proposed GA-SQP algorithm is compared to SQP. 
For this analysis we have collected, for both algorithms, 
runtime and fitness data over several independent runs of 
the TIA circuit optimization problem. A random multi 
start approach is used with the SQP algorithm to make 
comparison with GA-SQP which does not depend on its 
starting point. In all experiments, the stopping criteria of 
both algorithms are set to the same value. It takes into  

Table 5. Parameters values of the TIA. 

Variable parameters Variation range 

W1 [1 µm, 20 µm] 

W2 [1 µm, 20 µm] 

W3 [1 µm, 20 µm] 

Rf [1 kΩ, 3 kΩ] 

Cd [100 fF, 500 fF] 

Cl [100 fF, 200 fF] 

 
Table 6. TIA specifications and results. 

Perf. Zg (Ω)
BW  

(GHz) 
Area  
(µm2) 

pwr  
(mW) 

Q 

Spec. Max. Max. <17  <4 =0.707

GA-SQP 
results 

966 0.713 15.78 3.79 0.707 

 
Table 7. Results of parameters sizing with GA-SQP. 

Parameters size 

W1 (µm) 11.3 

W2 (µm) 33.3 

W3 (µm) 0.5 

Rf (kΩ) 1.5 

Cl (nF) 0.1 

Cd (nF) 0.4 

 
account the maximum number of iterations, the termina- 
tion tolerance for the objective function value and the 
termination tolerance for the nonlinear constraints. The 
main input parameters of SQP and GA-SQP are indicated 
in Table 8.  

GA-SQP and SQP algorithms have been executed 52 
times. As shown in Table 9, GA-SQP algorithm allows 
to obtain 82.76% success solution and SQP algorithm 
allows to obtain only 18.29% success solution. Table 10 
shows that the GA-SQP outperforms SQP in terms of the 
best and mean cost for success solution obtained during 
our tests. The gain of GA-SQP compared to SQP in 
terms of mean and minimum are respectively 25% and 
13%. It clearly shows that the GA provides a good start- 
ing point to the SQP method more efficiently than a sim- 
ple random start. Moreover, Table 11 shows that the 
GA-SQP consumes less time compared to SQP, because 
it requires less iteration to find the optimal solution.  

In the hybrid GA-SQP, the initial search based on the 
use the GA does not require the user to provide such a 
starting value as the search is performed automatically. 
The results demonstrate that the proposed hybrid method  
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Table 8. SQP and GA-SQP input parameters. 

Algorithms Input parameters Value 

Population size 10 

Generations 5 GA-SQP 

Max SQP iterations 50 

SQP Max SQP iterations 50 

 
Table 9. Success rate of GA-SQP and SQP. 

Algorithms 
Run 

numbers 
Success 

solution numbers 
% Success rate

GA-SQP 52 42 80.76% 

SQP 52 12 18.29% 

 
Table 10. Minimum and mean cost comparison. 

Performances SQP GA-SQP GA-SQP Gain

Mean cost 6.68 5.03 25% 

Minimum cost  1.94 1.68 13% 

 
Table 11. Mean execution time comparison. 

 SQP GA-SQP 

Mean time (second) 866 749 

Mean evaluation number 255 236 

 
outperforms the SQP in terms of better optimal solution 
and significant reduction of computing times. The result 
for computational run time is impressive, because the 
combination of two algorithms consumes less than one. 
This explains that the genetic algorithm converges quickly 
to a near optimal solution, which allows to the SQP algo- 
rithm to find the optimum result with less effort.  

5. Conclusion  

We proposed a method based on a combination of GA 
algorithm and successive SQP algorithm, namely GA- 
SQP. It is implemented in the framework RUNE to opti- 
mize performances of analog circuits. GA-SQP seems to 
be suitable for solving both nonlinear mono-objective 
and multiobjective optimization problems. The results of 
the proposed hybrid method were compared with SQP 
algorithms to solve a TIA sizing problem. The results 
show that the proposed hybrid method outperforms the 
SQP in terms of better optimal solutions and signficant 
reduction of computing time. Furthermore, the hybrid 
GA-SQP algorithm does not require the user to specify 
he starting point. Finally, the proposed approach let us 

conclude that depending on the nature of our analog siz- 
ing problem (degrees of freedom, number of perform- 
ances), efficient hybrid combination between an evolu- 
tionary approach and a direct search can be found.  

t
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