
Int. J. Communications, Network and System Sciences, 2010, 3, 453-461 
doi:10.4236/ijcns.2010.35060 Published Online May 2010 (http://www.SciRP.org/journal/ijcns/) 
 
 

Copyright © 2010 SciRes.                                                                                IJCNS 

ASIP Solution for Implementation of H.264 Multi    
Resolution Motion Estimation 

Fethi Tlili, Akram Ghorbel 
CITRA’COM Research Laboratory, Engineering School of Communications(SUP’COM), Tunis, Tunisia 

E-mail: fethi.tlili@supcom.rnu.tn 
Received March 19, 2010; revised April 20, 2010; accepted May 15, 2010 

Abstract 

Motion estimation is the most important module in H.264 video encoding algorithm since it offer the best 
compression ratio compared to intra prediction and entropy encoding. However, using the allowed features 
for inter prediction such as variable block size matching, multi-reference frames and fractional pel search 
needs a lot of computation cycles. For this purpose, we propose in this paper an Application Specific Instruc-
tion-set Processor (ASIP) solution for implementing inter prediction. An exhaustive full and fractional pel 
combined with variable block size matching search are used. The solution, implemented in FPGA, offers 
both performance and flexibility to the user to reconfigure the search algorithm. 

Keywords: Motion Estimation, Half Pel, Quarter Pel, ASIP 

1. Introduction 
 
The fast growth of digital transmission services has cre-
ated a great interest in digital transmission of image and 
video signals. These signals require very high bit rates in 
order to guarantee good video quality. Therefore, com-
pression is used to reduce the amount of data needed for 
representing such signals. Compression is achieved by 
exploiting spatial and temporal redundancies in signals 
[1]. 

H.264 video coding standard currently allows an ap-
proximately 2:1 advantage in terms of bandwidth savings 
over MPEG-2, and it has the potential to allow further 
bandwidth savings of 3:1 and beyond. In other words, an 
H.264 coded stream needs roughly half of bit-rates to 
provide the same quality got by an MPEG-2 encoder. It 
also includes a video coding layer, which efficiently re- 
presents the video content independently of the targeted 
application. A network adaptation layer which formats 
the video data and provides header information in a 
manner appropriate to a particular transport layer is used. 
Finally, in order to decrease the decoder complexity, 
several application-targeted profiles and levels are de-
fined which enable its successful use in different video 
applications and markets [2]. 

Despite the fact that it has kept the same coding aspect 
as previous standards based mainly on prediction, trans-
form and entropy encoding, H.264 has introduced some 
key feature modules that have increased considerably the 

coding efficiency as well as more flexibility in most of 
the coding process. 

However, H.264 is also a substantially more complex 
standard than MPEG-2; and both the H.264 encoders and 
decoders are much more demanding in terms of compu-
tations and memory than their MPEG-2 counterparts [3]. 
This, coupled with the substantial amount of research 
needed to properly implement and optimize the entire 
relevant H.264 features, makes the development of 
high-quality H.264 encoders a daunting task. 

In addition to the complexity added by H.264 standard, 
low power consumption, high performance and scalabil-
ity are the major constraints imposed to designers in the 
development of video encoders and decoders [4]. In fact, 
with the diversity of configurations supported by this 
standard in terms of resolutions and applications, scal-
able architectures for video encoders are much appreci-
ated by service providers. In this context, neither hard-
ware implementation solutions are efficient since they 
lack flexibility, nor software solutions present good per-
formance since processors are no longer satisfying the 
high computational processing tasks [5]. 

To meet all these constraints, processor characteristics 
can be customized to match the application profile. Cus-
tomization of a processor for a specific application holds 
the system cost down, which is particularly important for 
embedded consumer products manufactured in high 
volume. Application Specific Instruction set Processors 
(ASIPs) are in between custom hardware architectures 
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offering good processing performance and commercial 
programmable DSP processors with high programmabil-
ity possibilities. They offer good programmability and 
performance level but are targeted to a certain class of 
applications as to limit the amount of hardware area and 
power needed [6]. 

This paper is organized as follows: Section 2 presents 
a complexity analysis of the different encoder’s modules 
followed by the description of motion estimation stan-
dardized by H.264. In Section 3, we will present the pro-
posed algorithm for multi resolution motion estimation. 
Section 4 presents the proposed ASIP solution. In Sec-
tion 5 we will present implementation results. Finally, 
we enclose the paper by Section 6 in which we will con-
clude this work. 
 
2. H.264 Video Encoder Study 
 
2.1. Main Innovations of H.264 
 
To achieve the required performance, H.264 allows some 
key features that ensure good coding efficiency. The 
main innovations of this standard are: 

- Intra prediction process. 
- Tree structured motion estimation, weighted predic-

tion, multiple resolution search. 
- Spatial in loop deblocking filter. 
- Integer DCT like Transform.  
- Efficient Macro Block Field Frame coding  
- CABAC which provides a reduction in bit-rate from 

5% to 15% over CAVLC. 
 
2.2. Complexity Analysis of H.264 Video Encoder 
 
In order to analyze the complexity of the H.264 encoding 
procedure, some profiling tasks were done on the several 
modules of the encoder mentioned above. For this reason, 
some implementations were performed on single chip 
DSP using CIF resolution in baseline profile to get the 
most accurate results since we have to avoid inter-chip 
communication that can bother the profiling results. 
Figure 1 presents the profiling results of UBVideo en-
coder implemented on DM642 DSP of Texas Instru-
ments [7]. 

We can see that the most consuming video tasks are 
motion search which is using about 30% of the process-
ing time while the intra prediction, motion compensation 
and encoding (including transform, quantization and en-
tropy encoding) are using only 23% of the system re-
sources. Motion search includes only the best matching 
search while all load and store tasks are included in data 
transfer task which is using about 32% of system re-
sources. The remaining 15% of the resources are used by 
other tasks such as rate control, video effect detection 
and bitstream formatting. 

Hence, we can see that motion estimation is a bot-
tle-neck for video encoding algorithms which is taking 
most of system resources. However, motion estimation is 
the most important module in the compression procedure 
due to its efficiency. In this context, some video encoders 
are using FPGA solutions for implementing motion es-
timators as hardware accelerators since DSPs cannot 
handle the processing required by such tasks. 
 
3. Proposed Motion Estimation         

Implementation 
 
3.1. H.264 Motion Estimation 
 
Luminance component of each macro-block (16 × 16 
samples) may be split up in 4 ways: 16 × 16, 16 × 8, 8 × 
16 or 8 × 8 as shown in Figure 2. Each of the sub-divided 
regions corresponds to a macro-block partition. If the 8 × 
8 mode is chosen, each of the four 8 × 8 macro-block 
partitions within the macro-block may be split in a fur-
ther 4 ways: 8 × 8, 8 × 4, 4 × 8 or 4 × 4 as presented in 
Figure 3. Partitions and sub-partitions give rise to a large 
number of possible combinations within each macro- 
block. This method of partitioning macro-blocks into 
motion compensated sub-blocks of varying size is known 
as tree structured motion compensation. 

In addition to the variable block size matching, H.264 
defines multi resolution search process in order to pro-
vide better quality especially for non translational motion 
and aliasing caused by camera noise. Experimental ana- 
lysis shows that the half and quarter-sample-accuracy 
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Figure 1. UbVideo encoder profile. 
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motion search adopted by H.264/AVC provide a coding 
gain of 2 dB compared with MPEG-2 and H.263, which 
corresponds to a bit-rate savings of up to 30% [8]. Half 
pel search is performed on pixels interpolated using a 6 
tap low pass filter. Furthermore, a quarter pel resolution 
search is established using a bi-liner filter applied on half 
pel interpolated pixels. 
 
3.2. Proposed Motion Estimation Algorithm 
 
The first step of the proposed ME algorithm consists in 
full pel resolution search. Current MB is searched in a 
predefined search area in the reference frame. In order to 
avoid unused computations and data load, the search is 
performed on 4 × 4 partitions base of the MB. For each 4 
× 4 block, we search for the best matching position in the 
reference area. Every 4 × 4 block is independently parsed 
in all reference area. After that, a merging process is 
started in order to determine the best partition to be used 
for the current MB based on the best position which is 
stored relative to the top left pixel of the 4 × 4 block. The 
merging process is first used to determine if the current 
MB can be coded in partitions above than 4 × 4. So, we 
compare the best positions of adjacent blocks for all 8 × 8 
partitions: if all blocks have the same best position, cur-
rent sub partition is 8 × 8, otherwise, it could be 8 × 4, 4 × 
8 or 4 × 4. If 8 × 8 mode is selected, a best position of the 
top left pixel is stored. 

After that, we determine the MB prediction type that 
can be 16 × 16, 16 × 8, 8 × 16 or 8 × 8. A merging process 
similar to the previous one is also used: if all 8 × 8 sub 
partitions have the same type and the same best position, 
MB prediction type is 16 × 16; otherwise it could be 16 × 
8, 8 × 16 or 8 × 8. After fixing the MB prediction type, a 
motion vector is stored for each partition. Obviously, the 
more we use sub partitions, more data to be transferred 
increases. We note that at least 40% of inter prediction 
data is used to code motion vectors. For this reason, it is 
better to use bigger partitions when possible. So, a pre-
diction cost can be added by making conditions for the 
merge process based on tolerance of one or two pixels in 
the best positions: for example, if two 8 × 8 blocks have 
the best positions displaced of 1 pixel, we can decide to 
merge them into one 16 × 8 partition. 

After searching for the best matching and the best par-
tition, we start fractional pel search. According to the 
best position, for each MB partition we interpolate the 
possible 8 half pixels positions around the selected parti-
tion as shown in Figure 4. The interpolation is equiva-
lent to an up-sampling of the frame pixels using 6 tap 
low pass filter. 

After that, a further search is performed in quarter pel 
accuracy using another interpolation process. Based on 
the best position obtained in half pel search, we generate 
pixels of all the 8 possible positions around the best loca-

tion. We note that motion vectors are multiplied by 4 in 
order to mention to the decoder if it has to interpolate 
pixels for motion compensation or not. 
 
4. Proposed ASIP Solution 
 
4.1. Analysis of the Proposed Motion Estimation 

Algorithm 
 
In our work, we will adopt instruction selection method-
ology based on hardware architecture: first the hardware 
architecture is fixed containing selected functional units 
(FU) and then, instruction set architecture is determined 
according to the FUs. For this purpose, proposed algo-
rithm is analyzed in order to pick up the most complex 
modules. These modules will be implemented in inde-
pendent hardware blocks (dedicated FUs). 

Proposed algorithm is composed mainly of 3 parts: 
full pel search, half pel interpolation and its associated 
search and finally quarter pel search with its final search. 

In full pel search, the MB parses the whole reference 
area and 4 × 4 SADs are computed. In this step, the most 
complex process is the SAD computation since it in-
cludes difference computation, absolute value determina-
tion and accumulation. In [9], an analysis was performed 
on a motion estimation algorithm using SAD as a distor-
tion measure; we found that SAD computation is using 
more than 97% of system resources. 

In addition, sub pel motion estimation is also complex. 
In fact, the interpolation process for half pel is using 
6-tap filter. Half samples are calculated through a 6-tap 
Wiener filter in both horizontal and vertical dimensions. 
The interpolation is processed as represented in Figure 5: 
dashed pixels correspond to full pixels in an 8x8 bloc. 
Non dashed pixels are half pixels that are calculated. For 
example, to interpolate half pixel ‘b’, we use E, F, G, H, 
I and J as full pixels. Calculation process is done as fol-
lows: b = Clip1 (((E − 5 × F + 20 × G + 20 × H − 5 × I + J) 
+ 16) >> 5); clip function is used to provide result in the 
interval [0 , 255]: if result is less than 0 we affect 0 to ‘b’ 
and if it is more than 255 we affect 255 to ‘b’. The same 
calculation process is done for vertical rows as ‘h’. 
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Figure 4. Fractional accuracy pixel search. 
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Figure 5. Half pel interpolation process. 

 
Hence, half pel interpolation, as any filtering process 

is a very time consuming task and needs a lot of data 
load and store. Similarly, quarter pel interpolation is us-
ing bilinear filter to generate quarter pixels. Although the 
simplicity of the filter, this process also needs a lot of 
timing since it is applied to a large number of data. 

In conclusion, the main complex modules in our pro-
posed algorithm are the motion search, half pel interpo-
lation and quarter pel interpolation. In our architecture, 
we will use hardware accelerators for these modules for 
better performance for our ASIP. 
 
4.2. Functional Unit Selection 
 
In our proposal, 3 hardware accelerators are used: SAD 
calculator, half pel interpolator and quarter pel interpo-
lator. 

The SAD calculator will be used to handle all SAD 
computation process including data load from internal 
memory and SAD calculation. The result is stored in a 
general purpose register. 

Half pel interpolator module is used to interpolate half 
pixels according to the standardized filter. This module 
loads data from internal memory and interpolates pixels. 
Due to the complexity of interpolation, half pixels are 
stored in an internal memory to be used in further pos-
sessing tasks such as quarter pel interpolation or even 
half pixels. Finally, quarter pel interpolator loads data 
from internal memory and applies bilinear filter to gen-
erate quarter pixels. In order to avoid storing quarter pix-
els in memory, a SAD calculator is integrated in this 
module: reference pixels are loaded and quarter pel 
resolution SAD is computed. In motion compensation 
process, these pixels are re-computed since their compu-
tation is not as complex as half pixels. 

In addition to the hardware accelerators for video 
processing, an Arithmetic and Logic Unit is used in the 
solution in order to accumulate SADs, generate pixel 
locations and memory addresses. 

4.3. Instruction Set Selection 
 
4.3.1. Video Instructions 
• SAD4Pix(DestReg,Curr_Pix_Addr,Ref_Pix_Add
r,Pitch): this instruction is used to compute SAD of 4 
pixels based on current and reference pixel location and 
Pitch value. The choice of the 4 pixels size is based on 
the fact that the smallest partition allowed is 4 × 4; so to 
avoid using SAD instructions for all partitions, we call 
this instruction as much as the current partition contains 
4 pixel lines. Since we adopt RISC (Reduced instruction 
Set Computer) architecture, current and reference pixel 
locations as well as Pitch value are stored in Special 
Purpose Registers (SPR). These registers are used only 
for video instructions since they need more than 2 input 
operands. Output of this instruction is stored in a General 
Purpose Register (GPR), DestReg in order to be accu-
mulated to constitute the required SAD. The choice of 
the SAD computation size offers the flexibility to the 
user to choose block lines to be compared. In fact, we 
can compute only some specific lines in order to mini-
mize the processing (for example odd lines or even 
lines).  

• Interp4HafPix(RefPixAddr,Pitch): interpolates 4 
half pixels and stores the result in internal memory. Input 
operands include the reference pixel address which refers 
to the first full pixel from which we start interpolation 
and a pitch value that is used for data load in case of ver-
tical interpolation. This value is used to give the pro-
grammer the flexibility of modifying the search window 
size. These operands are loaded from SPRs while output 
interpolated pixels are stored in half pel memory since 
there is no need to store them in registers. In our motion 
estimation algorithm, after calling this instruction to in-
terpolate half pixels of 1 MB, SAD4Pix instruction can 
be called in order to compute SAD in half pel resolution. 
For this reason, the pitch value is used in this instruction 
since the loading step in half pel memory is equal to 2. 
Hence, we avoid the use of 2 SAD instructions (one for 
full pel SAD and the other for half pel SAD).  

• Interp4QpixSAD(DestReg,Ref_pix,Curr_pix,Pitch): 
used to interpolate 4 quarter pixels and compute quarter 
pel resolution SAD. We have chosen to separate half pel 
interpolation from quarter pel interpolation in order to 
give the user the flexibility to stop the search at any 
resolution according to the complexity of the algorithm. 
However, quarter pels are not stored and the corre-
sponding SAD is immediately computed. In fact, quarter 
pels are no longer used by the system except the best 
match that is used for motion compensation where the 
best matching pixels are used. So, to avoid using huge 
memory size corresponding to store all interpolated pix-
els, we made the choice not to store them and to recom-
pute the best matching pixels when required in motion 
compensation since their re-computation is easy as op-
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posed to half pels. This instruction returns the SAD of 
the current position and the ALU decides for the best one 
to be used in motion compensation. Input operands to 
this instruction, reference and current pixels positions as 
well as pitch value are stored in SPRs. The output is 
stored in GPR, DestReg to be processed by the ALU for 
further decisions.   
 
4.3.2. Memory Instructions 
Memory instructions are used to transfer data between 
memory and registers or inter register transfer. Four in-
structions are used for this purpose: 

• MOVSG(Src,Dest) is used to move data from spe-
cific to general purpose register. The operands of this 
instruction are formed by the addresses of registers to be 
manipulated.   

• MOVGS(Src,Dest) is used to perform the inverse 
operation performed by MOVSG.   

• LOAD(SrcAddr,DestReg) is used to load data from 
data memory to general purpose register. SrcAddr is the 
source address of data to be loaded while DestReg in the 
destination register ID. 

• STORE(SrcReg,DestAddr) is used to store the 
content of a general purpose register in memory. The 
operands are SrcReg corresponding to the source register 
ID and DestAddr is the destination memory address.  
 
4.3.3. Arithmetic and Logic Instructions 
The main goal of these instructions is the accumulation 
of SAD values computed for each 4 pixels, computing 
pixel addresses, compare MB SADs and provide data for 
conditional jump. ALU instructions are processing only 
data from general purpose registers. We defined 3 arith-
metic instructions: 

• ADD, SUB and MUL are used respectively for addi-
tion, subtraction and multiplication operations. These 
instructions have 3 operands: the first one is the destina-
tion register ID containing the operation result while the 
2 remaining operands are the IDs of registers containing 
source data to be processed. 

• SHIFT(SrcReg1,SrcReg2,SrcReg3) is used for shi- 
fting data contained in SrcReg1 by the number of bits 
contained in SrcReg2. The shift direction is indicated by 
SrcReg3.  
 
4.3.4. Control Instruction 
The instruction JUMP introduces a change in the control 
flow of a program by updating the program counter with 
an immediate value that corresponds to an effective ad-
dress. The instruction has 2 bits condition field (cc) that 
specifies the condition that must be verified for the jump: 
in if case the outcome of the last executed arithmetic is 
negative, positive or zero. Not only this instruction is 
important for algorithmic purposes, but also for improv-
ing code density, since it allows a minimization of the 
number of instructions required to implement a ME al-

gorithm and therefore a reduction of the required capac-
ity of the program memory. 
 
4.4. Architecture of the Proposed ASIP 
 
4.4.1. Data Word Length 
Data word length is a tradeoff between performance and 
complexity. In fact, the data word length corresponds to 
the instruction word length which is stored and manipu-
lated by the processor. Hence, in case of longer instruc-
tion word length, we have the possibility of using more 
instructions and more registers which will accelerate the 
processing since memory access will be reduced. How-
ever, the instruction decoder will be more complex as 
well as the interconnection between components; there-
fore, the processor area will be larger. 

In our proposal, we have only 12 instructions which 
can be coded on 4 bits. In order to simplify the hardware 
architecture, we have chosen to use 16 bits to code all 
instructions. So, 12 bits can be used to address the regis-
ter file. 
 
4.4.2. Register File Size 
Since the instruction length is 16 bits and 4 bits are used 
to code instructions, the 12 remaining are used to code 
the different registers used. Since arithmetic instructions 
are using 3 GPPs, we will code each register on 4 bits, so 
16 GPPs can be used in our architecture. On the other 
side, video instructions are using both GPPs and SPPs. 
So, 8 bits only can be used to code 3 registers in the in-
struction call: each register is addressed on 2 bits. So, 4 
SPPs are used. At this stage, we can see the importance 
of the use of GPPs and SPPs: if we use only one register 
type, when calling video instruction, 12 bits are used to 
code 4 registers: 3 bits are used per register as a conse-
quence. Therefore, only 8 registers are used in this case 
while in our design we are using 20 registers with the 
same instruction length. Table 1 presents the different  
 
Table 1. Instruction set architecture of the proposed ASIP. 

Instrution 15  12  11  10  9  8 7  6 5  4 3  2 1  0 

SAD4Pix 0000 RestReg R1 R2 R3 - 
Interp4HafPix 0001 - R1 R2 - 
Interp4QpixSAD 0010 DestReg R1 R2 R3 - 

MOVSG 0010 - Src DestReg 
MOVGS 0011 SreReg  Dest 
LOAD 0100 #addr DestReg 

STOR 0101 SreReg #addr 
ADD 0110 DestReg SreReg1 SreReg2 
SUB 0111 DestReg SreReg1 SreReg2 

MUL 1000 DestReg SreReg1 SreReg2 
SHIFT 1001 SreReg1 SreReg2 SreReg3 
JUMP 1010 CC #addr 
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instructions with the corresponding codes, operands with 
their corresponding size. 
 
4.4.3. Micro Architecture 
Figure 6 presents the micro architecture of the proposed 
ASIP. 

The solution is composed of an instruction fetch mod-
ule to load instructions from program memory, instruc-
tion decoder to enable the several functional units and a 
register file to store processed data. Video functional 
units are connected to the internal data memory and the 
ALU. Data load from external memory to internal mem-
ory is handled by a direct memory access controller. 
 
5. Implementation Solution and Results 
 
The proposed ASIP was implemented and synthesized on 
Virtex II Pro FPGA. 
 
5.1. Memory Management 
 
In our motion estimation algorithm, the search region 
area is fixed to 31 × 23 pixels. We note that we need to 
extend this search region by 16 pixels in both sides (right 
and bottom) since the last right-bottom position must be 
displaced of a (15, 12) vector from the centre. Further-
more, to interpolate boundary pixels, an extension of 
three pixels is needed for each side. Figure 7 describes 
the search area with the several extensions. 

Hence, the total search area has to be 53 × 45; so 2385 
pixels have to be loaded from external to internal mem-

ory. Internal memory is designed to be 2 × 18 Kb block 
RAM integrated in Virtex II FPGA. We note also that a 
further 1 × 18 Kb block RAM is also needed to store the 
current MB. Internal memory is 8 bits width for imple-
mentation constraints: since we adopt exhaustive search, 
the whole reference area is parsed in order to search for 
the best matching MB; so, if we load more than one pixel 
from reference area, we will be faced to an alignment 
problem. To avoid such problems, we have chosen to 
load one pixel in each cycle assuming that this procedure 
is more consuming in time. Data load to internal memory 
is ensured by Direct Memory Access controllers which 
handles the transfer process while the CPU is running. 
When transfer is finished, an interrupt signal is men-
tioned. 

Synthesis results of the DMA controller shown in Ta-
ble 2 presents that this module using roughly 10% of the 
available FPGA resources and can be run at 205 Mhz 
clock frequency. 
 
5.2. SAD Engine 
 
This engine is used to compute the SAD of 4 pixels. This 
module loads reference and current pixels from the in-
ternal memory and performs the SAD of 4 pixels in one 
call. The SAD module can be used in the SAD computa-
tion of the full pel or half pel search. 

As described in Figure 8, the SAD engine is providing 
the output after 9 cycles from the start signal. The output 
is finally returned to the register file. We note that 
TMS320C64 DSP is providing SAD of 4 4 × 4 blocks 

 

 
Figure 6. Architecture of the proposed ASIP. 
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Figure 7. Search area organization. 

Table 2. Synthesis results of DMA controller. 

Device utilization summary 
Number of Slices 190 out of 1408 13% 
Number of Slices Flip Flops 178 out of 2816 6% 
Number of 4 input LUTs: 300 out of 2816 10% 
Number of GCLKs 1 out of 16 6% 

Timing Summary: 

Minimum period/Maximum Frequency 4.877 ns/205.025 MHz 
Minimum input arrival time before clock 5.294 ns 
Maximum output required time after clock 4.968 ns 
Maximum combinational path delay No path found 

 

        
Figure 8. Timing diagram of SAD engine. 

 
(split_sad8 × 8) in 200 cycles in the best case: when all 
data paths are fully used [10] while our system can pro-
vide the same result after 144 cycles without using pipe-
line. 
 
5.3. Half Pel Interpolator 
 
In our implementation, the proposed algorithm is derived 
by minimizing the number of memory access. The for-
mulas to compute half-pixel interpolations are proposed 
by using the symmetry of the 6-tap FIR filter coefficients, 
resulting in significant reduction of the multiplications 
[11]. 

This engine is providing 4 interpolated pixels in each 
call. Input pixels are stored in 6 registers; the size of each 
one is 32 bits as described in Figure 9: 

We note that pixels P3 to P6 form a line of a selected 4 
× 4 block to be interpolated. The output pixels are H0 to 
H3. A Single Instruction Multiple Data scheme is ado- 
pted in our implementation. In this mode, adders and 
multipliers are applied simultaneously to the pixels of 
registers in order to get all interpolated pixels at the same 
time. All control signals are provided by an FSM. 

We note that the interpolation takes 15 cycles includ-
ing the load process from internal memory. Synthesis 
results are shown in Table 3. 

 
Figure 9. Input registers for halfpel interpolation. 

 
Table 3. Synthesis results of half pel interpolator. 

Device utilization summary 

Number of Slices 354 out of 1408 25% 
Number of Slices Flip Flops 460 out of 2816 16% 
Number of 4 input LUTs: 343 out of 2816 12% 
Number of MULT18X18s 4 out of 12 33% 
Number of GCLKs 1 out of 16 6% 

Timing Summary: 

Minimum period/Maximum Frequency 5.504 ns/181.689 MHz 
Minimum input arrival time before clock 4.679 ns 
Maximum output required time after clock 3.638 ns 
Maximum combinational path delay 3.802 ns 
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Figure 10. Timing diagram of Quarte pel interpolator. 

 
5.4. Quarter Pel Interpolator 
 

When receiving Interp4QpixSAD(Ref_pix,Curr_pix,Pitch) 
instruction, quarter pel interpolation and SAD computa-
tion are started. First, pixels loaded from half pel mem-
ory are fed into the interpolator module, then, the result-
ing quarter pixels are transmitted to the SAD module to 
be compared to the current pixels. We note that QP in-
terpolator interpolates and generates the SAD of 4 pixels 
in each call. 

Quarter pel SADs are returned after 14 cycles as 
shown in the timing diagram shown in Figure 10. 
 
6. Conclusions 
 
This paper has presented efficient instructions for im-
plementing motion estimation process using most of the 
key features standardized in H.264. First, we analyzed 
the complexity of typical H.264 encoder. From this step, 
we concluded that ME is a bottle neck for the implemen-
tation. Then, we presented and analyzed an algorithm for 
ME. Based on the analysis, we proposed efficient accel-
erators for some modules which need most of the proc-
essing time. Based on the suggested hardware architec-
ture, we fixed the instruction set architecture providing to 
users large coding flexibility ensuring scalability and 
multi-standard support. Proposed ASIP was implemented 

on Virtex II pro FPGA with a total area use about 61% of 
the FPGA Slices and 43% of the total LUTs. The imple-
mented modules can be run on 172 MHz clock. 
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