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ABSTRACT 

Necessary and sufficient conditions for a schur complement of a con-s-k-EP matrix to be con-s-k-EP are determined. 
Further it is shown that in a con-s-k-EPr matrix, every secondary sub matrix of rank “r” is con-s-k-EPr. We have also 
discussed the way of expressing a matrix of rank r as a product of con-s-k-EPr matrices. Necessary and sufficient condi-
tions for products of con-s-k-EPr partitioned matrices to be con-s-k-EPr are given. 
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1. Introduction 

Let  be the space of n × n complex matrices of order n. 
Let  be the space of all complex n-tuples. For 

n n

n nC 

nC
A C  , let A , AT, A*, AS, 

S
A , A† , R(A), N(A) and 

ρ(A) denote the conjugate, transpose, conjugate transpose, 
secondary transpose, conjugate secondary transpose, Moo- 
re-Penrose inverse, range space, null space and rank of A, 
respectively. A solution X of the equation AXA = A is called 
generalized inverses of A and is denoted by A . If 

n nA C  , then the unique solution of the equations AXA 
= A, XAX = X, *[ ] ,AX AX *[ ]  [2]XA XA  is called 
the moore penrose inverse of A and is denoted by †A . 

A matrix A is called con-s-k-EPr if  A r  and 
N(A) = N (ATVK) or R(A) = R (KVAT).

 
Throughout this 

paper let “k” be the fixed product of disjoint transposi-
tion in Sn = {1, 2, ···, n} and K be the associated per-
mute- tion matrix. Let us define the function  

. A matrix A = (aij)        , , ,k 1 k 2 k nk x x x x   Cnxn is 
s-k symmetric if    ij n k j 1,n k i 1   

for i, j = 1, 2, ···, n. 
A matrix ACnxn is said to be con-s-k-EP if it satisfies 
the condition  or equivalently N(A) 
= N (ATVK). In addition to that A is con-s-k-EP

a a  

0 sAx A k  ( )x  0
 KVA 

is con-EP or AVK is con-EP and A is con-s-k-EP   AT 
is con-s-k-EP. Moreover A is said to be con-s-k-EPr if A is 
con-s-k-EP and of rank r. For further properties of 
con-s-k-EP matrices one may refer [1]. 

In this paper we derive the necessary and sufficient 
conditions for a schur complement of a con-s-k-EP ma-
trix to be con-s-k-EP. Further it is shown that in a con- 
s-k-EPr matrix, every secondary submatrix of rank r is 
con-s-k-EPr. We have also discussed the way of express-
ing a matrix of rank r as a product of con-s-k-EPr matri-
ces. Necessary and sufficient conditions for products of 
con-s-k-EPr partitioned matrices to be con-s-k-EPr are 

given. In this sequel, we need the following theorems. 
Theorem 1.1 [2] 

Let nxnA,B C , then 

1)        
for all {1}

T TN A N B R B R A B BA A

A A





    


 

2)        
for all {1}





    


T TN A N B R B R A B AA B

A A  
Theorem 1.2 [3] 

Let, 
A B

M
C D

 
  
 

, then 

   
   

† †† † †
†

† ††

A A B M A CA A B M A
M

M A CA M A

  
 
  

 

       
      

, ,

and .

  

 

T T

T T

N A N C N A N B

N M A N C N M A N B
 

Also, 
   

   

† ††
†

† ††

 
 
  

M D A B M A
M

D C M D M A
 

   
       
      
   


   

   

, ,

and ,

, ,

.

 

 

  

 



TT T T

TT T T

N A N C

N A N B N M A N C

N M A N B N D N B

N D N C N M D N B

N M D N C

 

When    M A  , then  and 
A B

M
C CA B
 

  
 

T T T T

T T T T

A PA A PC
M

B PA B PC

 
  
 

, 
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where,   T T T T P AA BB A A A C C
 

   . 

Theorem 1.3 [4] 
Let , n nA B C   and n nU C   be any nonsingular ma-

trix, then,  
1)    ( ) ( )

T T
R A R B R UAU R UBU  

   T T  


2)  ( ) ( )N A N B N UAU N UBU

2. Schur Complements of con-s-k-EP Matrices 

In this section we consider a 2r × 2r matrix M Partitioned 
in the form, 

A B
M

C D


 
 


               (2.1) 

where A, B, C and D are all square matrices. If a parti-
tioned matrix M of the form 2.1 is con-s-k-EP, then in 
general, the schur complement of C in M, that is (M/C) is 
not con-s-k-EP. Here, necessary and sufficient conditions 
for (M/C) to be con-s-k-EP are obtained for the class 
   M C   and    M C  , analogous to that 

of results in [5] . Now we consider the matrix 

   
   
M A M B

S
M C M B

 
 
 

           (2.2) 

the matrix formed by the Schur complements of M over 
A, B, C and D respectively. This is also a partitioned ma-
trix. If a partitioned matrix S of the form 2.2 is con-s- 
k-EP, then in general, Schur complement of (M/C) in S, 
that is [S/(M/C)] is not con-s-k-EP. Here, the necessary and 
sufficient conditions for [S/(M/C)] to be con-s-k-EP 

are obtained for the class   S M  C  and 
  S M  C







, analogous to that of results in [5]  

As an application, a decomposition of a partitioned 
matrix into a sum of con-s-k-EPr matrices is obtained. 
Further it is shown that in a con-s-k-EPr matrix, every 
secondary sub matrix of rank r, is con-s-k-EPr. Through-
out this section let k = k1k2 with. 

1

2

0
0
K

K
K



 

              (2.3) 

where K1 and K2 are the permutation matrices relative to 
k1 and k2 and let “V” be the permutation matrix with 
units in its secondary diagonal of order 2r × 2r parti-
tioned in such a way that 

0

0

v

v
V



 

                (2.4) 

Theorem 2.5 
Let S be a matrix of the form 2.2 with 
   N NM C M A  and  N S/ N( )M C M   D , 

then the following are equivalent: 

1) S is a con-s-k-EPr matrix with k = k1k2 and V=
0

0
ν

ν
 
 
 

. 

2) (M/C) is a con-s-k-EP, S/ M C   is con-s-k2-EP. 

  T TM C MN N D  and 

   T T
S M C M AN N    . 

3) Both the matrices 

 
   

0M C

M A S M C

 
     

 and 
   

 0

M C M D

S M C

 
     

 

are con-s-k-EPr. 
Proof: 

Since S is con-s-k-EPr with k=k1k2, KVS is Con-EP 

and  where K1 and K2 are permutation 

matrices associated with k1 and k2 and . 

1

2

K
K o
o K


 
 




o ν
V

ν o
 

  
 

Consider   I M A M CP
O I

 
   
 

,  

   S M C

I O
Q

M D I


 
 
    

 and 

 
 

O S M C
L

M C O

      
 

. 

Clearly P and Q are non singular. 
Now, 

 

  
   

 
 

         

   
 

 

     

1

2

1

2

1 1

             

             

I O O S M CK O O ν I M A M C
KVPQL

O K ν O M D S M C I M C OO I

I M A M C M D S M C M A M C O S M CO K ν

K ν O M C OM D S M C I

K ν M C K ν M D S M C





 



                             

                         




 

                2 2

S M C

K ν M A M C M C K ν S M C M A M C M D S M C S M C
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Since,   N M C N M A 

have 

, by Theorem 1.1 we 

      -
M A = M A M C M C , 

that is,       2 2

-
K ν M A =K ν M A M C M C . 

Since,    N S M C N M D   , 

we have by Theorem 1.1 

       M D M D S M C S M C


       . 

That is, 

       1 1K ν M D K ν M D S M C S M C


        . 

Also, 

 

        
 

2

2 .

K ν S M C

M A M C M D S M C S M C

K ν M B



  

       


 

Since,

         S M C M B M A M C M D
    ,  

therefore, 

   
   

   
   

   
   

1 1

2 2

1

2

1

2

K ν M C K ν M D
KVPQL

K ν M A K ν M B

O K ν M A M B
           

K ν O M C M D

K O M A MO ν
           

O K M C M Dν O

           KVS

 
  


  
   
  

   
   

   


B






) ).

)

L

 

  as 
 

 
O M C

L
S M C O






 
 
    

 

Thus KVS is factorized as KVS = KVPQL. 
Hence  and  ( ) (ρ KVS ρ L ( ) (N KVS N L
But S is con-s-k-EP. Therefore, KVS is con-EP (By 

Theorem 2.11 [1]). 
( ) ( ) ( ) (T TN KVS N KVS N L N S VK    

Therefore, by using Theorem 1.1 again we get, 
T TS VK S VKL L  holds for every . L

We choose 

   
   

   
   

   
   

1

2

2

1

1 2

1 2

T

T

TT T

T T

T T

T T

M A M B K OO ν
S VK

M C M D O Kν O

M A M C O νK
        

νK OM B M D

M C νK M A νK
        

M D νK M B νK

    
     

   

          

 
 
 
 

 

As the equation (at the bottom of this page). 
and since 

   

   

   

1 1

1

1

T

T

T

ρ K ν M C ρ K ν M C

ρ M C νK ρ M C

N M C N M C νK

      
   

    

 

Hence, (M/C) is con-s-k-EP. 

From        1 1 ,
T T

M D νK M D νK M C M C
  

is follows that 

 

   

1

1 1

( )
T

T T

N M C N M D νK

N M C νK N M D νK

   
    
   

 

(using (M/C) is con-s-k-EPr). 

Therefore    T T
N M C N M D . 

After substituting 

        M B M C M A M C MS     D  

and using 

       2 2  
T T

M A νK M A νK M C M CS S


         

in 

       2 2  
T T

M B νK M B νK M C M CS S


         

 

   
   

   
   

 
 

 
 

         

         
   

1 2

1 2

1 2

1 2

1 2

1 2

1

T T

T T

T T

T T

T T

T T

T T

T

M C νK M A νK
S VK S VKL L

M D νK M B νK

O M CM C νK M A νK O S M C

M C OS M C OM D νK M B νK

M C νK M C M C A νK S M C S M C

M D νK M C M C B νK S M C S M C

M C νK M C



 







 
  
 
 

          
           

        
        

     
       

     

1

1 1

1 1

T

T T

T T

νK M C M C

K ν M C K ν M C M C M C

N M C N K ν M C N M C νK
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We get, 

       2 2  
T T

M B νK M B νK M C M CS S


        

       
 

        

2

2

T

T

M C M A M C M B νK

M C

M A M C M B νK M C M C

S

S

S S





  

   

        

 

      

     

        

2 2

2

2

TT

T

T

M C νK M A M C M B νK

M C νK M C M C

M A M C M B νK M C M C

S

S S S





 

     

           

   

 

 

     

   

2

2

2

T

T

T

S M C νK

S M C νK S M C S M C

N S M C N S M C νK



  

          

       

  

By Theorem 1.1  
and since 

      2

T T
ρ K ν S M C ρ S M C ρ S M C            

we get, 

    2

T
N K ν S M C N S M C        

    2N S M C νK N S M C         

 S M C     is con-s-k2-EPr. 

Further 

       

    
     

     
   

2 2

2

2 2

2 2

T T

T

T T

T T

T T

M A νK M A νK S M C S M C

N S M C N M A νK

N K ν S M C N M A νK

N S M C νK N M A νK

N S M C N M A


       

   

   

   

   

 

Thus 2) holds 2)  1). Since 

   N M C N M A ,    T T
N M C N M D , 

   N S M C N M D    and 

  T T
N S M C N M A   



 holds, according to the 

assumption by applying Theorem 1.2,  †
KVS  is given 

by the formula 

 

 

       

        
        

          

                  

        

1 1 1
†

1 1 2† †

2 2 1

† ††

2 2 1 2

† ††† † †

1 1 2

† ††

1 2

 

 

K ν M C K ν M C K ν M D
K ν M C K ν M D K ν M C

K ν M C K ν M A K ν M CKVS

K ν M C K ν M A K ν M C K ν M C

K ν M C M C M D M C M A K ν M C M C M D M C νK
         

M C M A K ν M C M C νK

S
S

S S

S S

S S

 
     

    
 
         

        
       




 


(2.6)

  

     

         
         

    

    

   

    

         

        

         

   

   

    

†

1 1
†

† 1†

1 ††

2
††

†
1 1

1 2
†

†
1

†

2† †

2 1 2
†

2† †

1

2†

2 1

K ν M C K ν M C

K ν M C M C
K ν M C M C M D M C

M D M C νK

  M A K ν M C K ν M D M C
K ν M D M C νK

M A K ν M CKVS KVS

K ν M A M C
K ν M A K ν M C K ν M A M C

M D M C νK
M D M C M D K ν M C

K ν M B M C
K ν M B M C M A K ν M C

S
S

S S

S
S

S
S


   

  
       





  
  


   



2νK
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According to Theorem 1.1 the assumptions N(M/C)  

N(M/A) and      T T
M C M D MN N S   C   

is invariant for every choice of  M C


 
Hence  

   

       
2 2

†

2 1 1                   

K ν M B K ν M C

K ν M C K ν M C K ν M D

S   

 
 

Therefore 

 

         
2

†

2 2 1 1

K ν M C

K ν M B K ν M A K ν M C K ν M D

S  

 
 

        
    

†

2 1 1

2 2    

K ν M A K ν M C K ν M D

K ν M B K ν M CS



    

    
    

†

2

2    

K ν M B M C M D

K ν M B M CS



    
 

        †
M A M C M D M B M CS       

Further using 

 

        
2

†

2 2 2

K ν M A

K ν M C K ν M C K v M AS S       
 

and 

          †

1 1 1 1K ν M D K ν M C K ν M C K v M D . 

That is 
 

     

     

2

†
2 2

†

2

K ν M A

K ν S M C S M C νK K ν2 M A

KK ν M C M C M AS S

       

       

 

       †
M A M C M C MS S        A  

and 

      
    

†

1 1 1 1

†

1

K ν M D K ν M C M C νK K ν M D

K ν M C M C M D




 

      †
M D M C M C M D , 

 KVS  †KVS  reduces to the form, 

As the Equation (a) below. 
Again using 

  

        

†

1

†

1 2 2

K ν M D

K ν M D K ν M C K ν M CS S       

 

and 

           †

2 2 1 1K ν M A K ν M A K ν M C K ν M C

that is,        †
M D M D M C M CS S         

and 

        † †
, M A M A M C M C KVS KVS  

reduces to the form 
As the Equation (b) below. 

Since,  M C  is con-s-k1-EP  1K ν M C  is 

con-EP. 
Therefore we have 

   

   

†

1 1

†

1 1

K ν M C K v M C

K v M C K v M C

      

       
 

Similarly, since  M CS    is con-s-k2-EPr. We 

have, 

     
     

†
2 2

†

2 1

K ν M C K ν M C

K ν M C K ν M C

S

S S

  

       
 

Thus 

      † †
KVS KVS KVS KVS  

† †

† †

† †

KVSS VK S VKKVS

KVSS VK S S

KVSS S SKV

 

 

 

 

S  is con-s-k-EP (by Theorem 2.11 [1]). 
Thus 1) holds 2)   3) 

 
   

2

2 2

0K ν M C

K ν M A K ν M CS
 
     

 

is con-EP if and only if  1K ν M C  and 

 2K ν M CS    are con-EP. 

Therefore, 

 
   

1

2

00 0

0 0

M CK

M A M CK S
ν

ν
   
          

 

 
 

  
     

     

†

1 1†

†

2 2

0

0

K ν M C K ν M C
KVS KVS

K ν M C K ν M CS S

 
           

          (a)

  
     

     

†

1 1†

†

2 2

0

0

K ν M C K ν M C
KVS KVS

K ν M C K ν M CS S

 
           

          (b)
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is con-EP if and only if 1K ν M C  and  2K ν M C are 
con-EP. 

 
   

0M C

M A M CS
 
    

  is con-s-k-EP if and only if 

 M C  is con-s-k1-EP and  M CS    is con-s-k2-EP. 
Further    N M C N M A  

and    T T
N M C N M DS     

Also 
   

 
1 1

20

K ν M C K ν M D

K ν S M C

 
   




 is con-EP if 

and only if and  2K ν S M C   and con-EP. 

Therefore, 
   

 0

M C M D

S M C

 
     

is con-s-k-EP if 

and only if  M C is con-s-k1-EP and  S M C   is 

con-s-k2-EP further   T T
N M C N M D   and 

   T
N S M C N M D   . 

This proves the equivalence of 2) and 3). The proof is 
complete. 
Theorem 2.7 

Let S be a matrix of the form (2.2) with 

  T T
N M C N M D  and 

   T T
N M C N M AS    , then the following are 

equivalent. 
1) S is con-s-k-EP with k = k1k2 where  

1

2

0

0

K
K

K

 
  
 

and  
0

0
V

ν
ν
 

  
 

2)  M C  is con-s-k1-EP. Further and  M CS    

is con-s-k2-EP. Further    N M C N M A  and 

   N M C N M DS     

3) Both the matrices 
 
   

0M C

M A M CS
 
     

 

and 
   

 0

M C M D

S M C

 
     

 are con-s-k-EP. 

Proof 
This follows from Theorem 2.5 and from the fact that 

S is con-s-k-EP  ST is con-s-k-EP. 
In particular, when    TM D M A , we got the fol-

lowing. 
Corollary 2.8 

Let S = 
   
   T
M A M B

M C M A

 
  
 

 with  

   N M C N M A  and  

   TA . 

uiva

N M C N MS   
Then the following are eq lent. 
1) S is a con-s-k-EP matrix. 

d 2) (M/C) is con-s-k1-EP an  M CS    is con-s- 

k2

e matrix 

-EP. 

3) Th
 
   

0M C

M A M CS
 
     

 is con-s-k- EP. 

R
ons taken on S in Theorem 2.6 and Theo-

emark 2.9 
The conditi

rem 2.7 are essential. This is illustrated in the following 
example.  

Let 
A B

M 
C D

 
 
 

 

1 0

1 1
A   

 
,

 1 1

0 1
B

 
  
 

,
1 1

0 1
C

 
  
 

,
1 0

1 1
D

 
  
 

 

1 0 1 1

1 1 0 1

1 1 1 0

0 1 1 1

M

   
   
              

 

   
1 1 1 2

,
2 1 1 1

M A M B
   

       
, 

   
1 2 1 1

,
1 1 2 1

M C M D
  

     





, 

   
   
M A M B

S
M C M D

 
  
 

 

1 1 1 2

2 1 1 1

1 2 1 1

1 1 2 1

S

  
            

 








1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

K

   
   
              

 

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

V

   
   
              

 

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

KV

   
   
              

 

Now 

KVS is symmetric of rank 3 
s-k-EP. 

1 1 2 1

1 2 1 1

2 1 1 1

1 1 1 2

KVS

    
                 

, 

 KVS is con-EP S is con-

        1
M C M M D M C B M AS     

 
1 1

2 1
M A

 
  
 

,  
1 2

1 1
M B
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1 1

2 1
M D

 
  
 

, 

  1 1 21

1 13
M C

  
  

 
 

 
3 3

0 3
S M C

 
    
 

 

Hence  2

0 3

3 3
K ν S M C

 
    
 

 is con-EP, 

that is  S M C   is con-s-k2-EP. 

, Also   1

1 2

1 1
K ν M 


1 1

1 2
M C C

   
    
   

 is 

con-EP.  1K ν M C  is con-EP  M C  is con-s-

EP. 
ver 

k1- 

Moreo   C N M A N M and 

   T T
N M C . But N M D 

   N S M D N M D    and 

  T
N S M C N M A  

Further 

 .  
T

 
   

1 2 0 0

0 1 1 0 0

1 1 3 3

2 1 0 3

KV
M A S M C

M C

    
                          
     

 is not 

con-EP. 
Therefore, 

   
 0

   

M C M D

S M C


 

 is not con-s-k-EP. 

Thus the Theorem 2.5 a s well as 
the corollary 2.8 fail.  
R

rem 2.5 and Theorem 2.7 that 
P matrix of the form 2.2 and k = k1k2 

ivalent. 

nd the Theorem 2.7 a

emarks 2.10 
We conclude from Theo

for a con-s-k-E

where 1

2

k 0

0 k
K

 
  
 

 and 
0

0

ν
ν

ν

 
  
 

 the following 

are equ

   

   

,N M C N M A

N S M C N M D



  
         2.11 

   

   

,
T

T T

N M C N M D

N S M C N M A



  

 

T

      2.12 

However this fails if we omit the condition t
con-s-k-EP.  

hat S is 

For example,  

Let 
A B

D
M

C
 
 

 
 , where  

, , 
1


1

, 
1

0 1
A  

 

 0

1 0
B


  
 

1 0

0 1
C

 
  
 

1 1

0 1
D

 
  
 

 

1 1 0 1

0 1 1 0

1 0 1 1

0 1 0 1

M

    
    
    

    
    
     

 

 
0 1

, , ,
1 0

A B C D M A
 

   
 

, 

 
0 2

1 0
M B

 
   

,  
1 1

1 1
M C

  
   

, 

  1 0

1 2
M D

 
   

 

   
   
M A M B

S
M C M D

 
  
 

  

0 1 0 2

1 1 1 0

1 1 1 0

1 1 1 2

S

     
        
     
     
     

 

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

K

    
    
    
    
    
     

 

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

V

    
    
    
    
    
     

 

1 1 1 2

1 1 1 0

1 0 1 0

0 1 0 2

KVS

     
      


 

    
         

is not con-EP.  

Therefore S is not con-s-k-EP.  

Here  
1 1

K ν M C
 

1 1 1   
P. is con-E

 M C  is con-s-k-EP. 

    1 1

T
K ν M D K ν M D , 

    1 1

TT
K ν M D M D νK , 

  1 1
TM D νK A νK , 

   ν M C ν M A , 

and    T T
ν M C ν M D . 

He  S M C    is i ependent of the choice of ndnce 

 M C


. 

Now 
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Let S be of the form 2.2 with     .ρ S ρ M C r   
Then S is con-s-k-EPr and K and V are of the form 2.3 
and 2.4 if and only if (M/C) is con-s-k1-EPr and  

        †
S M C M B M A M C M D     

   
0 2 0 1

,
1 0 1 0

M B M A
  

     
, 



         † †

1 2

T

M A M C νK M C M D νK . 

    11 0 1 11
,

1 2 1 12
M D M C

    
      

 

 

Proof 
Let S be of the form 2.2 and let k= k1k2 with 

 and  then 1

2

0

0

k
K

k

 
  
 

0

0

ν
ν

ν


 
 


 

0 1

1 1
S M C

 
      

  

   
   

1 1

2 2

K ν M C K ν M D
KVS

K ν M A K ν M B

 
  
 

.  2

1 1

0 1
K ν S M C

 
      

is not con-EP. 

Since     ,ρ S ρ M C r    S M C     is not con-s-

Also, 

k2-EP. 

    1ρ KVS ρ K ν M C r   by [ 6]    T T
N S M C N M D . But 

    ,N M C N M A   T T
N M C N M D   and    N C N M D . 

Thus, 2.12 holds while 2. 1 fails. 
Remark 2.13 

r a con-s-k-EP mar-
 2.6 gives 

S M
  
   

1

2 0 0

KVS K ν M C

K ν S M C S M C
1

.         
 

It is clear by Remark 2.10 that fo
 † By Theorem 1.1 these relation equivalent to  

    2 2 ,K ν M A K ν M A M C  
trix S, formula KVS  if and only if either 
2.

 of the form 2.2 with K and V are of 
d 2.4 respectively, for which 

11 or 2.12 holds. 
Corollary 2.14 

Let S be a matrix
     †

1 1K ν M D K ν M C M C M D  and 

      †

2 2K ν M B K ν M A M C M D   †
KVSthe forms 2.3 an  is 

given by the formula then S is con-s-k-EP if and only if 
both (M/C) and  S M C    and con-s-k-EP
Proof 

This follows em 2.5 and using 

. 
Let us consider the matrices  

   
0

I M A M C
P

I

 
   
 

 
from Theor Remark 

ow we proceed to prove the most important 
Th
2.13. N    †

0

I M C M D
Q

I

 
   
 

 and  
0 0

0
L

M C

 
  
 

 eorem. 
Theorem 2.15 

 

  
 

   

    
 

   

           
      

      
   

† †
1

2

† †
1

2

† † †

1

†
2

†

1 1

†

2 2

0 00 0

00 0 0 0

0 0

0 0 0

0

0

K ν I M A M C I M C M D
KVPLQ

M CK ν I I

K ν M A M C M C I M C M D
K ν M C I

M A M C M C M A M C M C M C M CK ν

K ν M C M C M C M D

K ν M C K ν M C M C M D

K ν M A M C M C K

     
              

   
           

        







    

   
   

   
   

†

1 1

2 2

1

2

0 0

0 0

ν M A M C M D

K ν M C K ν M D

K ν M A K ν M B

K M A M Bν

K M C M Dν

KVS
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Thus KVS can be factorized as KVS = KVPLQ. Since 

KVP = (KVQ)T. 
We have KVPTVK=Q. Therefore, 

    
   

T

T

T

KVS KVPLKVP VK

KVP LKV KVP

KVP KVL KVP







  

[since LVK = KVL]. 
Since (M/C) is con-s-k1-EPr. We have k1v(M/C) is 

con-EPr.  

Therefore 

(Theorem 2.11 of [1]) 

By Theorem 1.3 

assume that S is con-s-k-EPr. 
Since S is con-s-k-EPr, KVS is con-EPr. Since KVS = 

KVPLQ, one choice of 

 ( ) TN L N L VK  

   TN KVL N KVL   

         T T
N KVP KVL KVP N KVP KVL KVP      

T 


  ( )TN KVS N KVS      

  TN S N S VK      
S  is con-s-k-EP (Theorem 2.11 of [1]). 

Since  ρ S r , S is con-s-k-EPr. 

Conversely, let us 

 
 

1 1
†

0 0
  

0
KVS Q P VK KVS

M C

  
 

   


 is con-EP 

  ( )TN KVS N KVS     By Theorem 1.1 

 T



      .T
KVS K VS KVS KVS  



That is,  

   
   

   
   

1 1

2 2ν M A K ν

1 1

2 2

T

T

M C K ν M D

K M B

K ν M C K ν M D

K ν M A K ν M B

 
 

 
  
 

  

K ν 

 
1

†

0 0

0
Q

M C

 
  
 

 

   
   

1

2

1 1K ν M C K ν

2

M D
P

ν M A
VK

K K ν M B
  

 
 

 

As the equation (at the bottom of this page). 
or conversely, 

         †

1 1

T T
K ν M C K ν M C M C M C  

         †

2 1

T T
K ν M C K ν M C M C M D  and 

         †

1 1

T T
K ν M C K ν M C M C M C  From 

it follows that  

    1

T
N M C N K ν M C    

 

     1

T
N M C N M C νK M C    

is con-s-k-EP. 
Since   .ρ M C r  M C  is con-s-k-EPr. 

From 

         †

2 1

T T
K ν M A K ν M C M C M D   

it follows that. 
Now, 

  

        

         
        

     

   

†

2

† †

1

† †

1

† †

1

†

1

†

1

TT

T

TT T

TT T

T

K ν M A M C

M D M C K ν M C M C

M C M C M C K ν

M D M C M C M C νK

M D M C νK

K ν M C M D





   

   

   

 

(By theorem 2.11 [ ) 

T
M D

1]

      † †

2 1

T

K ν M A M C M C M D νK     

      † †

1 2

T

M A M C νK K ν M C M D     

      †

1 2

T

νK M C M D νK †
M A M C    

Mark 2.16 
hen (M/A) is non singlular, KV(M/A) is autom ti-

cally con-EPr and (M/A) is con-s-k-EPr and Theorem 2.15
re o the following. 

Let S be of the form 2.2 with C non singular and 

W a
 

duces t
Corollary 2.17 

 [ ]ρ S ρ M C . Then S is con-s-k-EP with K = k1k2 

and
  

   

†

1

†

2

0

0
ν

T

ν
M A M C νK

ν
  
 

M C  M D νK

 




 

 

. 

     
     

            

             

†

1 1 1

†

2 2 1 1

T T T T

T T T T

K ν M C K ν M C K ν
†

M C M C1K ν M A M

†

C M C M D

K ν M D K ν M B K ν M D M C M C K ν M C M C M D
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Remark 2.18 

When k(i) = i, we have K1 = K2 = I, then the Theorem 
2.15 reduces to the result for con-s-EP matrices. 

When KV = I then Theorem 2.15 reduces to Theorem 
3 of [5]. 
Remark 2.19 

Theorem 2.15 fails if we relax the condition on the 
rank of S. 

For example, let us consider the matrix S and K given 
in Remark 2.10, 2

But 

[ ] [ ]ρ KVS ρ S  . 

    1 1,ρ K V M C ρ M C   

    1( ) ( )ρ KVS ρ K ν M A ρ S ρ .M A    

KVS is not con-EP 
Therefore S is not Con-s-k-EP. 
However, 

 1

1 0 0 1 1 1

0 1 1 0 1 1
0 1 1 1 1 1

                 
1 0 1 1 1 1

K V M C
    

       
      

           

is con-EP. 

Therefore (M/C) is con-s-k1-EP and 

  1 1 11

1 12
M C

   
    

, 

   1

1

1 11

1 12
A M C νK

   
    

, M

   1 1 0
M C M D νK

  
 . 2 1 0  

 = K1K2, where 

Thus the theorem fails. 
Corollary 2.20  

Les S be a 2r x 2r matrix of rank r. Thus S is 
con-s-k-EPr with K

1

2

0

0

K

K

 
 
 

and V = 
0

0

ν

ν

 
 

 
 every secondary sub 

matrix of S of rank r is con-s-k-EPr. 

trix then KVS is an 
co ix by Theorem 2.11 [1]. Let 

Proof 
Suppose S is con-s-k-EPr ma
n-EPr matr  1K ν M C  

 such thatbe any Principal submatrix of KVS  
 1[ ]ρ KVS ρ K ν ,M C r   

tation matrix P such that, 
then there exists a permu-

       
   

1 1

2 2

T T K ν M C K ν M D
KVS P KVS P

M A νK ν K M B


    

with 





   1 .ρ KVS ρ K ν M C r     By [4]  T
KVS
2.15 that

 is 
con-EP . Now we conclude from Theorem  r  

  1K ν M C  is con-EPr. That is (M/C) is r 
Si

s under which a partitioned matrix is 
de
k-EP matrices a le-
mentary summands of S if  
S = S1 + S2 and 

 con-s-k1-EP
nce [M/C] is arbitrary it follows that every secondary 

submatrix of rank r is con-s-k-EPr. The converse is ob-
vious. 

The condition
composed into complementary sum and S of con-s- 

re given. S1 and S2 and called comp

     1 2 .ρ S ρ S ρ S   

Theorem 2.21 
Let S be of the form 2.2 with 

      ,ρ S ρ M C ρ S M C      

         †
(S M C M B M A M C M D     where 

and K is of the form 2.3 and V is of the form 2.4. If (M/C) 

is con-s-k1-EP and  S M C   is con-s-k2-EP matrices 

such that  

        † †

1 2

T

M A M C νK M C M D νK and  

        † †

2 1

T

M D S M C νK S M C M C νK        

th

Proof  
Let us consider the matrices, 

en S can be decomposed into complementary sum-
mands of con-s-k-EP matrices. 

      
         

†

† †1

M C M C M C M D
S

M A M C M C M A M C M D 
and 

 



 


   
 

 

†

0
I M C M C 


 

      
2

†
)

M D
S

M A
S M C

I M C M C

 



 
    
 

. 

toTaking in  account that 

       †
M C N M A M C M A

      C vK N M A M C M C vK and 

 

† T

N M 1 1

                   
                 
             
         

†

1
1

† † †

1

† †

† †

S M C M A M C M D M A M

M A M C M D M A M C M C M C M D

M A M C M D M A M C M C

M A M C M M A M C M D

   

 

 

 

 

† †
C M D M C M C M C M D





†
M C M D

0

M C M C

D
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ain by [6] that  We obt

   1 .ρ S ρ M C  Since (M/C) is con-s-k1-EP and  

      
     
  
    
        

† †

1
†

1

†

1

† †

T

T

C M C

M C M C νK

M A M C νK

M C M D νK







 

at is S  is con-s-k1-EP. 

† †

1M A M C M νK

M A M C

2M C M C M C M D νK

We have by Theorem 2.15, th 1

 Since     ,ρ S ρ M C ρ S M C      

Theorem 1 of [6], gives 

       †
,N S M C N I M C M C M D        

        †
TT

N S M C N M C I M C M C        

and 

      

   

††

†
0

I M C M C M D S M C

I M C M C

     
    

 

Therefore,  2S S M C  0.   

Thus by [7] we get    2 .ρ S ρ S M C     Thus 

     1 2 .ρ S ρ S ρ S   

Further using 

      †

1 1M C M C K ν K ν M C M C   

We obtain, 

      

             

             

       

††

2

† †† †
1 1

† †† †

1 1

† †

1 1 (

TT T

T TT T

T

I M C M C M D S M C νK

I M C M C S M C M A νK S M C v A νK I M C M C

S M C v A I M C M C K ν S M C v A K ν M C M C K ν

S M C M A K ν K ν M C M C

     

                            

                         

       

1



       

         A I M C C νK  

† †

1

†

1

T TT

TT

S M C M A K ν I M C M C

M
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