Schur Complement of con-s-k-EP Matrices

Bagyalakshmi Karuna Nithi Muthugobal
Ramanujan Research Centre, Department of Mathematics, Government Arts College (Autonomous), Kumbakonam, India Email: bkn.math@gmail.com

Received February 8, 2012; revised March 8, 2012; accepted March 15, 2012

Abstract

Necessary and sufficient conditions for a schur complement of a con-s-k-EP matrix to be con-s-k-EP are determined. Further it is shown that in a con-s-k-EP P_{r} matrix, every secondary sub matrix of rank "r" is con-s-k-EP ${ }_{r}$. We have also discussed the way of expressing a matrix of rank r as a product of con-s-k- EP_{r} matrices. Necessary and sufficient conditions for products of con-s-k-EP ${ }_{r}$ partitioned matrices to be con-s-k-EP ${ }_{r}$ are given.

Keywords: con-s-k-EP Matrices; Partitioned Matrices; Schur Complements

1. Introduction

Let $C_{n \times n}$ be the space of $n \times n$ complex matrices of order n. Let C_{n} be the space of all complex n-tuples. For $A \in C_{\mathrm{n} \times \mathrm{n}}$, let $\bar{A}, A^{T}, A^{*}, A^{S}, \bar{A}^{S}, A^{\dagger}, R(A), N(A)$ and $\rho(A)$ denote the conjugate, transpose, conjugate transpose, secondary transpose, conjugate secondary transpose, Moo-re-Penrose inverse, range space, null space and rank of A, respectively. A solution X of the equation $A X A=A$ is called generalized inverses of A and is denoted by A^{-}. If $A \in C_{\mathrm{n} \times \mathrm{n}}$, then the unique solution of the equations $A X A$ $=A, X A X=X,[A X]^{*}=A X,[X A]^{*}=X A[2]$ is called the moore penrose inverse of A and is denoted by A^{\dagger}.

A matrix A is called con-s-k-EP r_{r} if $\rho(A)=\mathrm{r}$ and $N(A)=N\left(A^{T} V K\right)$ or $R(A)=R\left(K V A^{T}\right)$. Throughout this paper let " k " be the fixed product of disjoint transposition in $S_{\mathrm{n}}=\{1,2, \cdots, \mathrm{n}\}$ and K be the associated per-mute- tion matrix. Let us define the function $k(x)=\left(x_{k(l)}, x_{k(2)}, \cdots, x_{k(n)}\right)$. A matrix $A=\left(\mathrm{a}_{\mathrm{ij}}\right) \in C_{\mathrm{nxn}}$ is s -k symmetric if $\mathrm{a}_{\mathrm{ij}}=\mathrm{a}_{\mathrm{n}-\mathrm{k}(\mathrm{j})+1, \mathrm{n}-\mathrm{k}(\mathrm{i})+1}$ for $\mathrm{i}, \mathrm{j}=1,2, \cdots, \mathrm{n}$. A matrix $A \in C_{\mathrm{nxn}}$ is said to be con-s-k-EP if it satisfies the condition $A x=0 \Leftrightarrow A^{s} k(x)=0$ or equivalently $N(A)$ $=N\left(A^{T} V K\right)$. In addition to that A is con-s-k-EP $\Leftrightarrow K V A$ is con-EP or $A V K$ is con-EP and A is con-s-k-EP $\Leftrightarrow A^{T}$ is con-s-k-EP. Moreover A is said to be con-s-k-EP P_{r} if A is con-s-k-EP and of rank r. For further properties of con-s-k-EP matrices one may refer [1].

In this paper we derive the necessary and sufficient conditions for a schur complement of a con-s-k-EP matrix to be con-s-k-EP. Further it is shown that in a con-$s-k-E P_{r}$ matrix, every secondary submatrix of rank r is con-s-k-EP r_{r}. We have also discussed the way of expressing a matrix of rank r as a product of con-s-k-EP P_{r} matrices. Necessary and sufficient conditions for products of con-s-k-EP r_{r} partitioned matrices to be con-s-k-EP r_{r} are
given. In this sequel, we need the following theorems.

Theorem 1.1 [2]

Let $\mathrm{A}, \mathrm{B} \in \mathrm{C}_{\mathrm{nxn}}$, then

1) $N(A) \subseteq N(B) \Leftrightarrow R\left(B^{T}\right) \subseteq R\left(A^{T}\right) \Leftrightarrow B=B A^{-} A$ for all $A^{-} \in A\{1\}$
2) $N\left(A^{T}\right) \subseteq N\left(B^{T}\right) \Leftrightarrow R(B) \subseteq R(A) \Leftrightarrow B=A A^{-} B$ for all $A^{-} \in A\{1\}$
Theorem 1.2 [3]
Let, $M=\left[\begin{array}{ll}A & B \\ C & D\end{array}\right]$, then
$M^{\dagger}=\left[\begin{array}{cc}A^{\dagger}+A^{\dagger} B(M / A)^{\dagger} C A & -A^{\dagger} B(M / A)^{\dagger} \\ -(M / A)^{\dagger} C A^{\dagger} & (M / A)^{\dagger}\end{array}\right]$
$\Leftrightarrow N(A) \subseteq N(C), N\left(A^{T}\right) \subseteq N\left(B^{T}\right)$,
$N(M / A)^{T} \subseteq N\left(C^{T}\right)$ and $N(M / A) \subseteq N(B)$.
Also, $M^{\dagger}=\left[\begin{array}{cc}(M / D)^{\dagger} & -A^{\dagger} B(M / A)^{\dagger} \\ -D^{\dagger} C(M / D)^{\dagger} & (M / A)^{\dagger}\end{array}\right]$
$\Leftrightarrow N(A) \subseteq N(C)$
$N\left(A^{T}\right) \subseteq N\left(B^{T}\right), N(M / A)^{T} \subseteq N\left(C^{T}\right)$,
$N(M / A) \subseteq N(B)$ and $\Leftrightarrow N(D) \subseteq N(B)$,
$N\left(D^{T}\right) \subseteq N\left(C^{T}\right), N(M / D)^{T} \subseteq N\left(B^{T}\right)$,
$N(M / D) \subseteq N(C)$.
When $\rho(M)=\rho(A)$, then $M=\left(\begin{array}{cc}A & B \\ C & C A^{-} B\end{array}\right)$ and
$M=\left(\begin{array}{ll}A^{T} P A^{T} & A^{T} P C^{T} \\ B^{T} P A^{T} & B^{T} P C^{T}\end{array}\right)$,
where, $P=\left(A A^{T}+B B^{T}\right)^{-} A\left(A^{T} A+C^{T} C\right)^{-}$.
Theorem 1.3 [4]
Let $A, B \in C_{n \times n}$ and $U \in C_{n \times n}$ be any nonsingular matrix, then,
3) $R(A)=R(B) \Leftrightarrow R(U A U)^{T}=R(U B U)^{T}$
4) $N(A)=N(B) \Leftrightarrow N(U A U)^{T}=N(U B U)^{T}$

2. Schur Complements of con-s-k-EP Matrices

In this section we consider a $2 \mathrm{r} \times 2 \mathrm{r}$ matrix M Partitioned in the form,

$$
M=\left(\begin{array}{ll}
A & B \tag{2.1}\\
C & D
\end{array}\right)
$$

where A, B, C and D are all square matrices. If a partitioned matrix M of the form 2.1 is con-s-k-EP, then in general, the schur complement of C in M, that is (M / C) is not con-s-k-EP. Here, necessary and sufficient conditions for (M / C) to be con-s-k-EP are obtained for the class $\rho(M)=\rho(C)$ and $\rho(M) \neq \rho(C)$, analogous to that of results in [5]. Now we consider the matrix

$$
S=\left(\begin{array}{ll}
(M / A) & (M / B) \tag{2.2}\\
(M / C) & (M / B)
\end{array}\right)
$$

the matrix formed by the Schur complements of M over A, B, C and D respectively. This is also a partitioned matrix. If a partitioned matrix S of the form 2.2 is con-s-k-EP, then in general, Schur complement of (M / C) in S, that is $[S /(M / C)]$ is not con-s-k-EP. Here, the necessary and sufficient conditions for $[S /(M / C)$] to be con-s-k-EP are obtained for the class $\rho(S)=\rho(M / C)$ and $\rho(S) \neq \rho(M / C)$, analogous to that of results in [5]
As an application, a decomposition of a partitioned matrix into a sum of con-s-k-EP P_{r} matrices is obtained. Further it is shown that in a con-s-k-EP P_{r} matrix, every secondary sub matrix of rank r, is con-s-k-EP $\mathrm{r}_{\text {. }}$ Throughout this section let $k=k_{1} \mathrm{k}_{2}$ with.

$$
K=\left(\begin{array}{cc}
K_{1} & 0 \tag{2.3}\\
0 & K_{2}
\end{array}\right)
$$

where K_{1} and K_{2} are the permutation matrices relative to k_{1} and k_{2} and let " V " be the permutation matrix with units in its secondary diagonal of order $2 \mathrm{r} \times 2 \mathrm{r}$ partitioned in such a way that

$$
V=\left(\begin{array}{ll}
0 & v \tag{2.4}\\
v & 0
\end{array}\right)
$$

Theorem 2.5

Let S be a matrix of the form 2.2 with
$\mathrm{N}(M / C) \subseteq \mathrm{N}(M / A)$ and $\mathrm{N}[\mathrm{S} /(M / C)] \subseteq \mathrm{N}(M / D)$, then the following are equivalent:

1) S is a con-s-k-EP P_{r} matrix with $\mathrm{k}=\mathrm{k}_{1} \mathrm{k}_{2}$ and $\mathrm{V}=\left(\begin{array}{ll}0 & v \\ v & 0\end{array}\right)$.
2) (M / C) is a con-s-k-EP, $[S /(M / C)]$ is con-s-k ${ }_{2}$-EP.
$N(M / C)^{T} \subseteq N(M / D)^{T}$ and
$N[S /(M / C)]^{T} \subseteq N(M / A)^{T}$.
3) Both the matrices
$\left(\begin{array}{cc}(M / C) & 0 \\ (M / A) & {[S /(M / C)]}\end{array}\right)$ and $\left(\begin{array}{cc}(M / C) & (M / D) \\ 0 & {[S /(M / C)]}\end{array}\right)$
are con-s-k-EP ${ }_{r}$.

Proof:

Since S is con-s-k-EP E_{r} with $\mathrm{k}=\mathrm{k}_{1} \mathrm{k}_{2}$, KVS is Con-EP and $K=\left(\begin{array}{cc}K_{1} & o \\ o & K_{2}\end{array}\right)$ where K_{1} and K_{2} are permutation matrices associated with k_{1} and k_{2} and $V=\left(\begin{array}{ll}o & v \\ v & o\end{array}\right)$.

$$
\text { Consider } P=\left(\begin{array}{cc}
I & (M / A)(M / C)^{-} \\
O & I
\end{array}\right)
$$

$Q=\left(\begin{array}{cc}I & O \\ (M / D)[S /(M / C)]^{-} & I\end{array}\right)$ and
$L=\left(\begin{array}{cc}O & {[S /(M / C)]} \\ (M / C) & O\end{array}\right)$.
Clearly P and Q are non singular.
Now,

$$
\begin{aligned}
K V P Q L & =\left(\begin{array}{cc}
K_{1} & O \\
O & K_{2}
\end{array}\right)\left(\begin{array}{ll}
O & v \\
v & O
\end{array}\right)\left(\begin{array}{cc}
I & (M / A)(M / C)^{-} \\
O & I
\end{array}\right)\left(\begin{array}{cc}
I & O \\
(M / D)[S /(M / C)]^{-} & I
\end{array}\right)\left(\begin{array}{cc}
O & {[S /(M / C)]} \\
(M / C) & O
\end{array}\right) \\
& =\left(\begin{array}{cc}
O & K_{1} v \\
K_{2} v & O
\end{array}\right)\left(\begin{array}{cc}
I+(M / A)(M / C)^{-}(M / D)\left[\begin{array}{c}
\\
S
\end{array}\right) \\
(M / D)[M / C)]^{-} & (M / A)(M / C)^{-} \\
(M / C)]^{-} & I
\end{array}\right)\left(\begin{array}{cc}
O & {[S /(M / C)]} \\
(M / C) & O
\end{array}\right) \\
& =\left(\begin{array}{cc}
K_{1} v(M / C) & K_{1} v(M / D)[S /(M / C)]^{-}\left[\begin{array}{l}
S /(M / C)] \\
K_{2} v(M / A)(M / C)^{-}(M / C)
\end{array}\right. \\
K_{2} v[S /(M / C)]+(M / A)(M / C)^{-}(M / D)[S /(M / C)]^{-}[S /(M / C)]
\end{array}\right)
\end{aligned}
$$

Since, $N(M / C) \subseteq N(M / A)$, by Theorem 1.1 we have $(M / A)=(M / A)(M / C)^{-}(M / C)$,
that is, $K_{2} v(M / A)=K_{2} v(M / A)(M / C)^{-}(M / C)$.
Since, $N[S /(M / C)] \subseteq N /(M / D)$,
we have by Theorem 1.1
$(M / D)=(M / D)[S /(M / C)]^{-}[S /(M / C)]$.
That is,
$K_{1} v(M / D)=K_{1} v(M / D)[S /(M / C)]^{-}[S /(M / C)]$.
Also,
$K_{2} v[S /(M / C)]$
$+(M / A)(M / C)^{-}(M / D)[S /(M / C)]^{-}[S /(M / C)]$
$=K_{2} v(M / B)$.
Since,
$\left([S /(M / C)]=(M / B)-(M / A)(M / C)^{-}(M / D)\right)$,
therefore,

$$
\begin{aligned}
K V P Q L & =\left(\begin{array}{ll}
K_{1} v(M / C) & K_{1} v(M / D) \\
K_{2} v(M / A) & K_{2} v(M / B)
\end{array}\right) \\
& =\left(\begin{array}{cc}
O & K_{1} v \\
K_{2} v & O
\end{array}\right)\left(\begin{array}{ll}
(M / A) & (M / B) \\
(M / C) & (M / D)
\end{array}\right) \\
& =\left(\begin{array}{cc}
K_{1} & O \\
O & K_{2}
\end{array}\right)\left(\begin{array}{ll}
O & v \\
v & O
\end{array}\right)\left(\begin{array}{ll}
(M / A) & (M / B) \\
(M / C) & (M / D)
\end{array}\right) \\
& =K V S
\end{aligned}
$$

Thus $K V S$ is factorized as $K V S=K V P Q L$.
Hence $\rho(K V S)=\rho(L)$ and $N(K V S)=N(L)$.
But S is con-s-k-EP. Therefore, $K V S$ is con-EP (By Theorem 2.11 [1]).

$$
N(K V S)=N(K V S)^{T} \Rightarrow N(L)=N\left(S^{T} V K\right)
$$

Therefore, by using Theorem 1.1 again we get,
$S^{T} V K=S^{T} V K L^{-} L$ holds for every L^{-}.

We choose L^{-}as $L^{-}=\left(\begin{array}{cc}O & (M / C)^{-} \\ {[S /(M / C)]^{-}} & O\end{array}\right)$

$$
\begin{aligned}
S^{T} V K & =\left(\begin{array}{ll}
(M / A) & (M / B) \\
(M / C) & (M / D)
\end{array}\right)^{T}\left(\begin{array}{ll}
O & v \\
v & O
\end{array}\right)\left(\begin{array}{cc}
K_{1} & O \\
O & K_{2}
\end{array}\right) \\
& =\left(\begin{array}{ll}
(M / A)^{T} & (M / C)^{T} \\
(M / B)^{T} & (M / D)^{T}
\end{array}\right)^{T}\left(\begin{array}{cc}
O & v K_{2} \\
v K_{1} & O
\end{array}\right) \\
& =\left(\begin{array}{ll}
(M / C)^{T} v K_{1} & (M / A)^{T} v K_{2} \\
(M / D)^{T} v K_{1} & (M / B)^{T} v K_{2}
\end{array}\right)
\end{aligned}
$$

As the equation (at the bottom of this page).
and since
$\rho\left[K_{1} v(M / C)^{T}\right]=\rho\left[K_{1} v(M / C)\right]$
$\Rightarrow \rho\left[(M / C)^{T} v K_{1}\right]=\rho(M / C)$
$\Rightarrow N(M / C)=N\left[(M / C)^{T} v K_{1}\right]$
Hence, (M/C) is con-s-k-EP.
From $(M / D)^{T} v K_{1}=(M / D)^{T} v K_{1}(M / C)^{-}(M / C)$, is follows that

$$
\begin{aligned}
& N(M / C) \subseteq N\left[(M / D)^{T} v K_{1}\right] \\
& \Rightarrow N\left[(M / C)^{T} v K_{1}\right] \subseteq N\left[(M / D)^{T} v K_{1}\right]
\end{aligned}
$$

(using (M/C) is con-s-k-EP ${ }_{\mathrm{r}}$).
Therefore $N(M / C)^{T} \subseteq N(M / D)^{T}$.
After substituting
$(M / B)=[S /(M / C)]+(M / A)(M / C)^{-}(M / D)$
and using
$(M / A)^{T} v K_{2}=(M / A)^{T} v K_{2}[S /(M / C)]^{-}[S /(M / C)]$ in
$(M / B)^{T} v K_{2}=(M / B)^{T} v K_{2}[S /(M / C)]^{-}[S /(M / C)]$

$$
\begin{aligned}
& S^{T} V K=S^{T} v K L^{-} L \Rightarrow\left(\begin{array}{ll}
(M / C)^{T} v K_{1} & (M / A)^{T} v K_{2} \\
(M / D)^{T} v K_{1} & (M / B)^{T} v K_{2}
\end{array}\right) \\
& =\left(\begin{array}{ll}
(M / C)^{T} v K_{1} & (M / A)^{T} v K_{2} \\
(M / D)^{T} v K_{1} & (M / B)^{T} v K_{2}
\end{array}\right)\left(\begin{array}{cc}
O & (M / C)^{-} \\
{[S /(M / C)]^{-}} & O
\end{array}\right)\left(\begin{array}{cc}
O & {[S /(M / C)]^{-}} \\
(M / C) & O
\end{array}\right) \\
& =\left(\begin{array}{ll}
(M / C)^{T} v K_{1}(M / C)^{-}(M / C) & A^{T} v K_{2}[S /(M / C)]^{-}[S /(M / C)] \\
(M / D)^{T} v K_{1}(M / C)^{-}(M / C) & B^{T} v K_{2}[S /(M / C)]^{-}[S /(M / C)]
\end{array}\right) \\
& \Rightarrow(M / C)^{T} v K_{1}=(M / C)^{T} v K_{1}(M / C)^{-}(M / C) \\
& \Rightarrow\left[K_{1} v(M / C)\right]^{T}=\left[K_{1} v(M / C)\right]^{T}(M / C)^{-}(M / C) \\
& \Rightarrow N(M / C) \subseteq N\left[K_{1} v(M / C)\right]^{T}=N(M / C)^{T} v K_{1}
\end{aligned}
$$

We get,

$$
\begin{aligned}
& (M / B)^{T} v K_{2}=(M / B)^{T} v K_{2}[S /(M / C)]^{-}[S /(M / C)] \\
& \left([S /(M / C)]+(M / A)(M / C)^{-}(M / B)\right)^{T} v K_{2} \\
& =[S /(M / C)] \\
& +\left[(M / A)(M / C)^{-}(M / B)\right]^{T} v K_{2}[S /(M / C)]^{-}[S /(M / C)] \\
& {[S /(M / C)]^{T} v K_{2}+\left[(M / A)(M / C)^{-}(M / B)\right]^{T} v K_{2}} \\
& =[S /(M / C)]^{T} v K_{2}[S /(M / C)]^{-}[S /(M / C)] \\
& +\left[(M / A)(M / C)^{-}(M / B)\right]^{T} v K_{2}(M / C)^{-}(M / C)
\end{aligned}
$$

$$
[S /(M / C)]^{T} v K_{2}
$$

$$
=[S /(M / C)]^{T} v K_{2}[S /(M / C)]^{-}[S /(M / C)]
$$

$$
\Rightarrow N[S /(M / C)] \subseteq N[S /(M / C)]^{T} v K_{2}
$$

By Theorem 1.1
and since

$$
\rho\left(K_{2} v[S /(M / C)]^{T}\right)=\rho[S /(M / C)]^{T}=\rho[S /(M / C)]
$$

we get,

$$
\begin{aligned}
& N\left(K_{2} v[S /(M / C)]^{T}\right)=N[S /(M / C)] \\
& \Rightarrow N\left([S /(M / C)] v K_{2}\right)=N[S /(M / C)] \\
& \Rightarrow[S /(M / C)] \text { is con-s-k} \mathrm{k}_{2}-\mathrm{EP}_{\mathrm{r} .}
\end{aligned}
$$

Further

$$
\begin{aligned}
& (M / A)^{T} v K_{2}=(M / A)^{T} v K_{2}[S /(M / C)]^{-}[S /(M / C)] \\
& \Rightarrow N[S /(M / C)] \subseteq N\left((M / A)^{T} v K_{2}\right) \\
& \Rightarrow N\left(K_{2} v[S /(M / C)]^{T}\right) \subseteq N\left((M / A)^{T} v K_{2}\right) \\
& \Rightarrow N\left([S /(M / C)]^{T} v K_{2}\right) \subseteq N\left((M / A)^{T} v K_{2}\right) \\
& \Rightarrow N[S /(M / C)]^{T} \subseteq N(M / A)^{T}
\end{aligned}
$$

$$
\text { Thus 2) holds 2) } \Rightarrow 1 \text {). Since }
$$

$$
N(M / C) \subseteq N(M / A), \quad N(M / C)^{T} \subseteq N(M / D)^{T}
$$

$$
N[S /(M / C)] \subseteq N(M / D) \text { and }
$$

$$
N[S /(M / C)]^{T} \subseteq N(M / A)^{T} \text { holds, according to the }
$$ assumption by applying Theorem 1.2, $(K V S)^{\dagger}$ is given by the formula

$$
\begin{align*}
&(K V S)=\left(\begin{array}{cc}
K_{1} v(M / C)+\left(K_{1} v(M / C)\right)\left(K_{1} v(M / D)\right) \\
\left(K_{2} v[S /(M / C)]^{\dagger}\left(K_{2} v(M / A)\right)\right)\left(K_{1} v(M / C)\right)^{\dagger} & -\left(K_{1} v(M / C)\right)\left(K_{1} v(M / D)\right)\left(K_{2} v[S /(M / C)]^{\dagger}\right) \\
-\left(K_{2} v[S /(M / C)]\right)^{\dagger}\left(K_{2} v(M / A)\right)\left(K_{1} v(M / C)\right)^{\dagger} & K_{2} v[S /(M / C)]^{\dagger}
\end{array}\right)\left(\begin{array}{ll}
K_{1} v(M / C)^{\dagger}+(M / C)^{\dagger}(M / D)[S /(M / C)]^{\dagger}(M / A)\left(K_{1} v(M / C)\right)^{\dagger} & -(M / C)^{\dagger}(M / D)[S /(M / C)]^{\dagger} v K_{2} \\
-[S /(M / C)]^{\dagger}(M / A)\left(K_{1} v(M / C)\right)^{\dagger} & {[S /(M / C)]^{\dagger} v K_{2}}
\end{array}\right) \tag{2.6}\\
& {[K V S][K V S]^{\dagger}=\left(\begin{array}{ll}
\left(K_{1} v(M / C)\right)\left(K_{1} v(M / C)\right)^{\dagger} & -\left(K_{1} v(M / C)\right)(M / C)^{\dagger} \\
+\left(K_{1} v(M / C)\right)\left((M / C)^{\dagger}(M / D)[S /(M / C)]^{\dagger}\right) & (M / D)[S /(M / C)]^{\dagger} v K_{2} \\
(M / A)\left(K_{1} v(M / C)\right)^{\dagger}-\left(K_{1} v(M / D)\right)[S /(M / C)]^{\dagger} & +\left(K_{1} v(M / D)\right)[S /(M / C)]^{\dagger} v K_{2} \\
\left(K_{2} v(M / A)\right)\left(K_{1} v(M / C)\right)^{\dagger}\left(K_{2} v(M / A)\right)(M / C)^{\dagger} & -\left(K_{2} v(M / A)\right)(M / C)^{\dagger} \\
(M / D)[S /(M / C)]^{\dagger}(M / D)\left(K_{1} v(M / C)\right)^{\dagger} & (M / D)[S /(M / C)]^{\dagger} v K_{2} \\
-\left(K_{2} v(M / B)\right)[S /(M / C)]^{\dagger}(M / A)\left(K_{1} v(M / C)\right) & +\left(K_{2} v(M / B)\right)[S /(M / C)] v K_{2}
\end{array}\right) }
\end{align*}
$$

According to Theorem 1.1 the assumptions $N(M / C) \subseteq$
$N(M / A)$ and $N /(M / C)^{T} \subseteq N /(M / D)^{T} \Rightarrow[S /(M / C)]$
is invariant for every choice of $(M / C)^{-}$
Hence

$$
\begin{aligned}
K_{2} v(M / B) & =K_{2} v[S /(M / C)] \\
& +\left(K_{2} v(M / C)\right)\left(K_{1} v(M / C)^{\dagger}\left(K_{1} v(M / D)\right)\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& K_{2} v[S /(M / C)] \\
& =K_{2} v(M / B)-\left(K_{2} v(M / A)\right)\left(K_{1} v(M / C)\right)^{\dagger}\left(K_{1} v(M / D)\right) \\
& \Rightarrow\left(K_{2} v(M / A)\right)\left(K_{1} v(M / C)\right)^{\dagger}\left(K_{1} v(M / D)\right) \\
& \quad=\left(K_{2} v(M / B)\right)-K_{2} v[S /(M / C)] \\
& \Rightarrow K_{2} v(M / B)(M / C)^{\dagger}(M / D) \\
& \quad=K_{2} v((M / B)-[S /(M / C)]) \\
& \Rightarrow(M / A)(M / C)^{\dagger}(M / D)=(M / B)-[S /(M / C)]
\end{aligned}
$$

Further using
$K_{2} v(M / A)$
$=\left(K_{2} v[S /(M / C)]\right)\left(K_{2} v[S /(M / C)]^{\dagger}\right)\left(K_{2} v(M / A)\right)$
and
$K_{1} v(M / D)=\left(K_{1} v(M / C)\right)\left(K_{1} v(M / C)\right)^{\dagger}\left(K_{1} v(M / D)\right)$.
That is
$K_{2} v(M / A)$
$=K_{2} v[S /(M / C)][S /(M / C)]^{\dagger} v K_{2} K_{2} v(M / A)$
$=K K_{2} v[S /(M / C)][S /(M / C)]^{\dagger}(M / A)$
$(M / A)=[S /(M / C)][S /(M / C)]^{\dagger}(M / A)$
and
$K_{1} v(M / D)=K_{1} v(M / C)(M / C)^{\dagger} v K_{1} K_{1} v(M / D)$
$=K_{1} v(M / C)(M / C)^{\dagger}(M / D)$
$(M / D)=(M / C)(M / C)^{\dagger}(M / D)$,
$(K V S)(K V S)^{\dagger}$ reduces to the form,
As the Equation (a) below.
Again using
$\left(K_{1} v(M / D)\right)^{\dagger}$
$=\left(K_{1} v(M / D)\right)\left(K_{2} v[S /(M / C)]\right)^{\dagger}\left(K_{2} v[S /(M / C)]\right)$
and
$\left(K_{2} v(M / A)\right)=\left(K_{2} v(M / A)\right)\left(K_{1} v(M / C)\right)^{\dagger}\left(K_{1} v(M / C)\right)$
that is, $(M / D)=(M / D)[S /(M / C)]^{\dagger}[S /(M / C)]$
and
$(M / A)=(M / A)(M / C)^{\dagger}(M / C),(K V S)(K V S)^{\dagger}$
reduces to the form
As the Equation (b) below.
Since, (M / C) is con-s-k k_{1}-EP $\Rightarrow K_{1} v(M / C)$ is con-EP.

Therefore we have
$\left[K_{1} v(M / C)\right]\left[K_{1} v(M / C)\right]^{\dagger}$
$=\left[K_{1} v(M / C)\right]^{\dagger}\left[K_{1} v(M / C)\right]$
Similarly, since $[S /(M / C)]$ is con-s- $\mathrm{k}_{2}-\mathrm{EP}_{\mathrm{r}}$. We have,
$\left(K_{2} v(M / C)\right)\left(K_{2} v[S /(M / C)]\right)^{\dagger}$
$=\left(K_{2} v[S /(M / C)]\right)^{\dagger}\left(K_{1} v[S /(M / C)]\right)$
Thus
$(K V S)(K V S)^{\dagger}=(K V S)^{\dagger}(K V S)$
$\Rightarrow K V S S^{\dagger} V K=S^{\dagger} V K K V S$
$\Rightarrow K V S S^{\dagger} V K=S^{\dagger} S$
$\Rightarrow K V S S^{\dagger}=S^{\dagger} S K V$
$\Rightarrow S$ is con-s-k-EP (by Theorem 2.11 [1]).
Thus 1) holds 2) $\Leftrightarrow 3$)
$\left(\begin{array}{cc}K_{2} v(M / C) & 0 \\ K_{2} v(M / A) & K_{2} v[S /(M / C)]\end{array}\right)$
is con-EP if and only if $K_{1} v(M / C)$ and
$K_{2} v[S /(M / C)]$ are con-EP.
Therefore,

$$
\left(\begin{array}{cc}
K_{1} & 0 \\
0 & K_{2}
\end{array}\right)\left(\begin{array}{cc}
0 & v \\
v & 0
\end{array}\right)\left(\begin{array}{cc}
(M / C) & 0 \\
(M / A) & {[S /(M / C)]}
\end{array}\right)
$$

$$
\begin{align*}
& (K V S)(K V S)^{\dagger}=\left(\begin{array}{cc}
\left(K_{1} v(M / C)\right)\left(K_{1} v(M / C)\right)^{\dagger} & 0 \\
0 & \left(K_{2} v[S /(M / C)]\right)\left(K_{2} v[S /(M / C)]\right)^{\dagger}
\end{array}\right) \tag{a}\\
& (K V S)(K V S)^{\dagger}=\left(\begin{array}{cc}
\left(K_{1} v(M / C)\right)\left(K_{1} v(M / C)\right)^{\dagger} & 0 \\
0 & \left(K_{2} v[S /(M / C)]\right)\left(K_{2} v[S /(M / C)]\right)^{\dagger}
\end{array}\right)
\end{align*}
$$

(b)
is con-EP if and only if $K_{1} v(M / C)$ and $K_{2} v(M / C)$ are con-EP.
$\left(\begin{array}{cc}(M / C) & 0 \\ (M / A) & {[S /(M / C)]}\end{array}\right)$ is con-s-k-EP if and only if (M / C) is con-s-k k_{1}-EP and $[S /(M / C)]$ is con-s- k_{2}-EP.
Further $N(M / C) \subseteq N(M / A)$
and $N[S /(M / C)]^{T} \subseteq N(M / D)^{T}$
Also $\left(\begin{array}{cc}K_{1} v(M / C) & K_{1} v(M / D) \\ 0 & K_{2} v[S /(M / C)]\end{array}\right)$ is con-EP if and only if and $K_{2} v[S /(M / C)]$ and con-EP.

Therefore, $\left(\begin{array}{cc}(M / C) & (M / D) \\ 0 & {[S /(M / C)]}\end{array}\right)$ is con-s-k-EP if and only if (M / C) is con-s-k k_{1}-EP and $[S /(M / C)]$ is con-s-k ${ }_{2}$-EP \quad further $\quad N(M / C)^{T} \subseteq N(M / D)^{T} \quad$ and $N[S /(M / C)]^{T} \subseteq N(M / D)$.
This proves the equivalence of 2) and 3). The proof is complete.
Theorem 2.7
Let S be a matrix of the form (2.2) with
$N(M / C)^{T} \subseteq N(M / D)^{T}$ and
$N[S /(M / C)]^{T} \subseteq N(M / A)^{T}$, then the following are equivalent.

1) S is con-s-k-EP with $\mathrm{k}=\mathrm{k}_{1} \mathrm{k}_{2}$ where
$K=\left(\begin{array}{cc}K_{1} & 0 \\ 0 & K_{2}\end{array}\right)$ and $V=\left(\begin{array}{cc}0 & \mathcal{v} \\ \boldsymbol{v} & 0\end{array}\right)$
2) (M / C) is con-s-k k_{1}-EP. Further and $[S /(M / C)]$ is con-s-k k_{2}-EP. Further $N(M / C) \subseteq N(M / A)$ and $N[S /(M / C)] \subseteq N(M / D)$
3) Both the matrices $\left(\begin{array}{cc}(M / C) & 0 \\ (M / A) & {[S /(M / C)]}\end{array}\right)$
and $\left(\begin{array}{cc}(M / C) & (M / D) \\ 0 & {[S /(M / C)]}\end{array}\right)$ are con-s-k-EP.

Proof

This follows from Theorem 2.5 and from the fact that S is con-s-k-EP $\Leftrightarrow \mathrm{S}^{\mathrm{T}}$ is con-s-k-EP.

In particular, when $(M / D)=(M / A)^{T}$, we got the following.

Corollary 2.8

Let $S=\left(\begin{array}{cc}(M / A) & (M / B) \\ (M / C) & (M / A)^{T}\end{array}\right)$ with
$N(M / C) \subseteq N(M / A)$ and
$N[S /(M / C)] \subseteq N(M / A)^{T}$.
Then the following are equivalent.

1) S is a con-s-k-EP matrix.
2) (M/C) is con-s- k_{1}-EP and $[S /(M / C)]$ is con-s-k_{2}-EP.
3) The matrix $\left(\begin{array}{cc}(M / C) & 0 \\ (M / A) & {[S /(M / C)]}\end{array}\right)$ is con-s-k- EP.

Remark 2.9

The conditions taken on S in Theorem 2.6 and Theorem 2.7 are essential. This is illustrated in the following example.

Let $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$
$A=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right), B=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), C=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), D=\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$
$M=\left[\begin{array}{l}\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \\ \left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)\end{array}\right]$
$(M / A)=\left(\begin{array}{cc}1 & -1 \\ 2 & 1\end{array}\right),(M / B)=\left(\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right)$,
$(M / C)=\left(\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right),(M / D)=\left(\begin{array}{cc}1 & -1 \\ 2 & 1\end{array}\right)$,
$S=\left(\begin{array}{ll}(M / A) & (M / B) \\ (M / C) & (M / D)\end{array}\right)$
$\left.S=\binom{\left(\begin{array}{cc}1 & -1 \\ 2 & 1\end{array}\right)\left(\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right)}{\left(\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right)\left(\begin{array}{cc}1 & -1 \\ 2 & 1\end{array}\right)} \quad K=\left(\begin{array}{ll}\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right), ~\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right) ~ \$$
$V=\binom{\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)}{\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)} \quad K V=\binom{\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)}{\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)}$
Now $K V S=\binom{\left(\begin{array}{cc}-1 & 1 \\ 1 & 2\end{array}\right)\left(\begin{array}{cc}2 & 1 \\ 1 & -1\end{array}\right)}{\left(\begin{array}{cc}2 & 1 \\ 1 & -1\end{array}\right)\left(\begin{array}{cc}-1 & 1 \\ 1 & 2\end{array}\right)}$,
$K V S$ is symmetric of rank 3
$\Rightarrow K V S$ is con- $\mathrm{EP} \Rightarrow \mathrm{S}$ is con-s-k-EP.

$$
\begin{aligned}
& {[S /(M / C)]=(M / B)-(M / D)(M / C)^{-1}(M / A)} \\
& (M / A)=\left(\begin{array}{cc}
1 & -1 \\
2 & 1
\end{array}\right), \quad(M / B)=\left(\begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array}\right)
\end{aligned}
$$

$(M / D)=\left(\begin{array}{cc}1 & -1 \\ 2 & 1\end{array}\right)$,
$(M / C)^{-1}=\frac{1}{3}\left(\begin{array}{cc}1 & -2 \\ 1 & 1\end{array}\right)$
$[S /(M / C)]=\left(\begin{array}{ll}3 & 3 \\ 0 & 3\end{array}\right)$
Hence $K_{2} v[S /(M / C)]=\left(\begin{array}{ll}0 & 3 \\ 3 & 3\end{array}\right)$ is con-EP, that is $[S /(M / C)]$ is con-s-k ${ }_{2}$-EP.

Also, $\quad(M / C)=\left(\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right) \Rightarrow K_{1} v(M / C)=\left(\begin{array}{cc}-1 & 1 \\ 1 & 2\end{array}\right)$ is con-EP. $K_{1} v(M / C)$ is con-EP $\Rightarrow(M / C)$ is con-s-k ${ }_{1}$ EP.

Moreover $N(M / C) \subseteq N(M / A)$ and
$N(M / D)^{T} \subseteq N(M / C)^{T}$. But
$N[S /(M / D)] \subseteq N(M / D)$ and
$N[S /(M / C)]^{T} \subseteq N(M / A)^{T}$.
Further
$K V\left(\begin{array}{cc}(M / C) & 0 \\ (M / A) & {[S /(M / C)]}\end{array}\right)=\left[\frac{\left(\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right)}{\left(\begin{array}{ll}1 & -1 \\ 2 & 1\end{array}\right)} \frac{\left(\begin{array}{ll}0 & 0\end{array}\right)}{\left(\begin{array}{ll}3 & 3 \\ 0 & 3\end{array}\right)}\right]$ is not con-EP.
Therefore,
$\left(\begin{array}{cc}(M / C) & (M / D) \\ 0 & {[S /(M / C)]}\end{array}\right)$ is not con-s-k-EP.
Thus the Theorem 2.5 and the Theorem 2.7 as well as the corollary 2.8 fail.

Remarks 2.10

We conclude from Theorem 2.5 and Theorem 2.7 that for a con-s-k-EP matrix of the form 2.2 and $k=k_{1} k_{2}$ where $K=\left(\begin{array}{cc}\mathrm{k}_{1} & 0 \\ 0 & \mathrm{k}_{2}\end{array}\right)$ and $v=\left(\begin{array}{ll}0 & v \\ v & 0\end{array}\right)$ the following are equivalent.

$$
\begin{align*}
& N(M / C) \subseteq N(M / A) \\
& N[S /(M / C)] \subseteq N(M / D) \\
& N(M / C)^{T} \subseteq N(M / D)^{T} \\
& N[S /(M / C)]^{T} \subseteq N(M / A)^{T}
\end{align*}
$$

However this fails if we omit the condition that S is con-s-k-EP.

For example,

Let $M=\left(\begin{array}{ll}A & B \\ C & D\end{array}\right)$, where
$A=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right), \quad B=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \quad C=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right), \quad D=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$
$\left.M=\left[\frac{\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)}{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)} \frac{1}{1} \begin{array}{ll}1 & 1 \\ \hline & 1\end{array}\right)\right]$
$A, B, C, D \Rightarrow(M / A)=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$,
$(M / B)=\left(\begin{array}{cc}0 & -2 \\ -1 & 0\end{array}\right), \quad(M / C)=\left(\begin{array}{cc}-1 & -1 \\ 1 & -1\end{array}\right)$,
$(M / D)=\left(\begin{array}{cc}1 & 0 \\ -1 & 2\end{array}\right)$
$S=\left(\begin{array}{ll}(M / A) & (M / B) \\ (M / C) & (M / D)\end{array}\right)$
$S=\left[\frac{\left(\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right)}{\left(\begin{array}{cc}-1 & -1 \\ 1 & -1\end{array}\right)} \frac{\left(\begin{array}{cc}0 & -2 \\ -1 & 0\end{array}\right)}{\left(\begin{array}{cc}1 & 0 \\ -1 & 2\end{array}\right)}\right]$
$K=\left[\frac{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)}{\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)} \frac{\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)}{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)}\right] \quad V=\left[\frac{\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)}{\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)} \frac{\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)}{\left(\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right)}\right]$
$K V S=\left[\frac{\left(\begin{array}{cc}1 & -1 \\ -1 & -1\end{array}\right)}{\left(\begin{array}{cc}1 & 0 \\ 0 & 1\end{array}\right)} \frac{\left(\begin{array}{cc}-1 & 2 \\ 1 & 0\end{array}\right)}{\left(\begin{array}{cc}-1 & 0 \\ 0 & -2\end{array}\right)}\right]$ is not con-EP.
Therefore S is not con-s-k-EP.
Here $K_{1} v(M / C)=\left(\begin{array}{cc}1 & -1 \\ -1 & -1\end{array}\right)$ is con-EP.
$\Rightarrow(M / C)$ is con-s-k-EP.

$$
\begin{aligned}
& K_{1} v(M / D) \neq\left(K_{1} v(M / D)\right)^{T} \\
& K_{1} v(M / D) \neq\left((M / D)^{T} v K_{1}\right)^{T} \\
& (M / D) \neq v K_{1} A^{T} v K_{1} \\
& v(M / C) \subseteq v(M / A)
\end{aligned}
$$

and $v(M / C)^{T} \subseteq v(M / D)^{T}$.
Hence $[S /(M / C)]$ is independent of the choice of $(M / C)^{-}$.

Now
$[S /(M / C)]=(M / B)-(M / A)(M / C)^{\dagger}(M / D)$
$(M / B)=\left(\begin{array}{cc}0 & -2 \\ -1 & 0\end{array}\right),(M / A)=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$,
$(M / D)=\left(\begin{array}{cc}1 & 0 \\ -1 & 2\end{array}\right),(M / C)^{-1}=\frac{1}{2}\left(\begin{array}{ll}-1 & -1 \\ -1 & -1\end{array}\right)$
$[S /(M / C)]=\left(\begin{array}{cc}0 & -1 \\ -1 & 1\end{array}\right)$
$K_{2} v[S /(M / C)]=\left(\begin{array}{cc}-1 & 1 \\ 0 & -1\end{array}\right)$ is not con-EP.
$\Rightarrow[S /(M / C)]$ is not con-s-k ${ }_{2}$-EP.
Also, $N[S /(M / C)]^{T} \subseteq N(M / D)^{T}$. But
$N[S /(M / C)] \not \subset N(M / D)$.
Thus, 2.12 holds while 2.11 fails.

Remark 2.13

It is clear by Remark 2.10 that for a con-s-k-EP martrix S, formula 2.6 gives $(K V S)^{\dagger}$ if and only if either 2.11 or 2.12 holds.

Corollary 2.14

Let S be a matrix of the form 2.2 with K and V are of the forms 2.3 and 2.4 respectively, for which $(K V S)^{\dagger}$ is given by the formula then S is con-s-k-EP if and only if both (M / C) and $[S /(M / C)]$ and con-s-k-EP.

Proof

This follows from Theorem 2.5 and using Remark 2.13. Now we proceed to prove the most important Theorem.
Theorem 2.15

Let S be of the form 2.2 with $\rho(S)=\rho(M / C)=r$. Then S is con-s-k-EP E_{r} and K and V are of the form 2.3 and 2.4 if and only if (M / C) is con-s- $\mathrm{k}_{1}-\mathrm{EP}_{\mathrm{r}}$ and
$(M / A)(M / C)^{\dagger} v K_{1}=\left((M / C)^{\dagger}(M / D) v K_{2}\right)^{T}$.
Proof
Let S be of the form 2.2 and let $\mathrm{k}=\mathrm{k}_{1} \mathrm{k}_{2}$ with $K=\left(\begin{array}{cc}k_{1} & 0 \\ 0 & k_{2}\end{array}\right)$ and $v=\left(\begin{array}{ll}0 & v \\ v & 0\end{array}\right)$ then
$K V S=\left(\begin{array}{ll}K_{1} v(M / C) & K_{1} v(M / D) \\ K_{2} v(M / A) & K_{2} v(M / B)\end{array}\right)$.
Since $\rho(S)=\rho(M / C)=r$,
$\rho(K V S)=\rho\left(K_{1} v(M / C)\right)=r \quad$ by [6]
$N(M / C)=N(M / A), N(M / C)^{T} \subseteq N(M / D)^{T}$ and
$\left(K V S / K_{1} v(M / C)\right)$
$=K_{2} v[S /(M / C)]=0 \Rightarrow[S /(M / C)]=0$.
By Theorem 1.1 these relation equivalent to $K_{2} v(M / A)=K_{2} v(M / A)(M / C)$,
$K_{1} v(M / D)=K_{1} v(M / C)(M / C)^{\dagger}(M / D)$ and
$K_{2} v(M / B)=K_{2} v(M / A)(M / C)^{\dagger}(M / D)$
Let us consider the matrices

$$
\begin{aligned}
& P=\left(\begin{array}{cc}
I & (M / A)(M / C) \\
0 & I
\end{array}\right) \\
& Q=\left(\begin{array}{cc}
I & (M / C)^{\dagger}(M / D) \\
0 & I
\end{array}\right) \text { and } L=\left(\begin{array}{cc}
0 & 0 \\
(M / C) & 0
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& K V P L Q=\left(\begin{array}{cc}
K_{1} & 0 \\
0 & K_{2}
\end{array}\right)\left(\begin{array}{ll}
0 & v \\
v & 0
\end{array}\right)\left(\begin{array}{cc}
I & (M / A)(M / C)^{\dagger} \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
0 & 0 \\
(M / C) & 0
\end{array}\right)\left(\begin{array}{cc}
I & (M / C)^{\dagger}(M / D) \\
0 & I
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & K_{1} v \\
K_{2} v & 0
\end{array}\right)\left(\begin{array}{cc}
(M / A)(M / C)^{\dagger}(M / C) & 0 \\
(M / C) & 0
\end{array}\right)\left(\begin{array}{cc}
I & (M / C)^{\dagger}(M / D) \\
0 & I
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & K_{1} v \\
K_{2} v & 0
\end{array}\right)\left(\begin{array}{cc}
(M / A)(M / C)(M / C)^{\dagger} & (M / A)(M / C)(M / C)^{\dagger}(M / C)^{\dagger}(M / C) \\
(M / C) & (M / C)(M / C)^{\dagger}(M / D)
\end{array}\right) \\
& =\left(\begin{array}{cc}
K_{1} v(M / C) & K_{1} v(M / C)(M / C)^{\dagger}(M / D) \\
K_{2} v(M / A)(M / C)(M / C)^{\dagger} & K_{2} v(M / A)(M / C)^{\dagger}(M / D)
\end{array}\right) \\
& =\left(\begin{array}{cc}
K_{1} v(M / C) & K_{1} v(M / D) \\
K_{2} v(M / A) & K_{2} v(M / B)
\end{array}\right) \\
& =\left(\begin{array}{cc}
K_{1} & 0 \\
0 & K_{2}
\end{array}\right)\left(\begin{array}{ll}
0 & v \\
v & 0
\end{array}\right)\left(\begin{array}{ll}
(M / A) & (M / B) \\
(M / C) & (M / D)
\end{array}\right) \\
& =K V S
\end{aligned}
$$

Thus $K V S$ can be factorized as $K V S=K V P L Q$. Since $K V P=(K V Q)^{\mathrm{T}}$.

We have $K V P^{T} V K=Q$. Therefore,
$K V S=K V P L K V P^{T} V K$
$=(K V P)(L K V)(K V P)^{T}$
$=(K V P)(K V L)(K V P)^{T}$
[since $L V K=K V L]$.
Since (M / C) is con- $s-\mathrm{k}_{1}-\mathrm{EP}_{\mathrm{r}}$. We have $\mathrm{k}_{1} v(M / C)$ is con-EP ${ }_{r}$.
Therefore $N(L)=N\left(L^{T} V K\right)$
(Theorem 2.11 of [1])
$\Rightarrow N(K V L)=N(K V L)^{T}$
By Theorem 1.3
$N\left[(K V P)(K V L)(K V P)^{T}\right]=N\left[(K V P)(K V L)^{T}(K V P)^{T}\right]$
$\Rightarrow N(K V S)=N\left[(K V S)^{T}\right]$
$\Rightarrow N(S)=N\left[S^{T} V K\right]$
$\Rightarrow S$ is con-s-k-EP (Theorem 2.11 of [1]).
Since $\rho(S)=r, S$ is con-s-k-EP .
Conversely, let us assume that S is con-s-k-EP ${ }_{\mathrm{r}}$.
Since S is con-s-k-EP $\mathrm{r}_{\mathrm{r}}, K V S$ is con- EP_{r}. Since $K V S=$ $K V P L Q$, one choice of
$(K V S)^{-}=Q^{-1}\left(\begin{array}{cc}0 & 0 \\ (M / C)^{\dagger} & 0\end{array}\right) P^{-1} V K K V S$ is con-EP
$\Rightarrow N(K V S)=N\left[(K V S)^{T}\right]$ By Theorem 1.1
$(K V S)^{T}=(K V S)^{T}(K V S)^{-}(K V S)$.
That is,

$$
\begin{aligned}
& \left(\begin{array}{ll}
K_{1} v(M / C) & K_{1} v(M / D) \\
K_{2} v(M / A) & K_{2} v(M / B)
\end{array}\right)^{T} \\
& =\left(\begin{array}{ll}
K_{1} v(M / C) & K_{1} v(M / D) \\
K_{2} v(M / A) & K_{2} v(M / B)
\end{array}\right)^{T} \\
& Q^{-1}\left(\begin{array}{cc}
0 & 0 \\
(M / C)^{\dagger} & 0
\end{array}\right) \\
& P^{-1} v K\left(\begin{array}{ll}
K_{1} v(M / C) & K_{1} v(M / D) \\
K_{2} v(M / A) & K_{2} v(M / B)
\end{array}\right)
\end{aligned}
$$

As the equation (at the bottom of this page). or conversely,
$\left(K_{1} v(M / C)\right)^{T}=\left(K_{1} v(M / C)\right)^{T}(M / C)^{\dagger}(M / C)$
and $\left(K_{2} v(M / C)\right)^{T}=\left(K_{1} v(M / C)\right)^{T}(M / C)^{\dagger}(M / D)$
From $\left(K_{1} v(M / C)\right)^{T}=\left(K_{1} v(M / C)\right)^{T}(M / C)^{\dagger}(M / C)$ it follows that
$N(M / C)=N\left[\left(K_{1} v(M / C)\right)^{T}\right]$
$\Rightarrow N(M / C) \subseteq N(M / C)^{T} \nu K_{1} \Rightarrow(M / C)$
is con-s-k-EP.
Since $\rho(M / C)=r .(M / C)$ is con-s-k-EP E_{r}.
From
$\left(K_{2} v(M / A)\right)^{T}=\left(K_{1} v(M / C)\right)^{T}(M / C)^{\dagger}(M / D)$
it follows that.
Now,
$K_{2} v(M / A)(M / C)^{\dagger}$
$=(M / D)^{T}\left((M / C)^{\dagger}\right)^{T}\left(K_{1} v(M / C)\right)(M / C)^{\dagger}$
$=(M / D)^{T}\left((M / C)^{\dagger}\right)^{T}\left((M / C)^{\dagger}(M / C) K_{1} v\right)$
$=(M / D)^{T}\left[(M / C)^{\dagger}(M / C)(M / C)^{\dagger}\right]^{T}\left(v K_{1}\right)^{T}$
$=(M / D)^{T}\left[(M / C)^{\dagger}\right]^{T}\left(v K_{1}\right)^{T}$
$=\left[K_{1} v(M / C)^{\dagger}(M / D)\right]^{T}$
(By theorem 2.11 [1])
$K_{2} v(M / A)(M / C)^{\dagger}=\left[(M / C)^{\dagger}(M / D)\right]^{T} v K_{1}$
$(M / A)(M / C)^{\dagger} v K_{1}=K_{2} v\left[(M / C)^{\dagger}(M / D)\right]^{T}$
$(M / A)(M / C)^{\dagger} v K_{1}=\left[(M / C)^{\dagger}(M / D) v K_{2}\right]^{T}$

Mark 2.16

When (M / A) is non singlular, $K V(M / A)$ is automatically con- EP_{r} and (M / A) is con-s-k- EP_{r} and Theorem 2.15 reduces to the following.

Corollary 2.17

Let S be of the form 2.2 with C non singular and $\rho[S]=\rho(M / C)$. Then S is con-s-k-EP with $\mathrm{K}=\mathrm{k}_{1} \mathrm{k}_{2}$
and $v=\left(\begin{array}{ll}0 & v \\ v & 0\end{array}\right) \Leftrightarrow(M / A)(M / C)^{\dagger} v K_{1}$.
$=\left[(M / C)^{\dagger}(M / D) v K_{2}\right]^{T}$

$$
\left(\begin{array}{ll}
\left(K_{1} v(M / C)\right)^{T} & \left(K_{1} v(M / A)\right)^{T} \\
\left(K_{2} v(M / D)\right)^{T} & \left(K_{2} v(M / B)\right)^{T}
\end{array}\right)=\left(\begin{array}{ll}
\left(K_{1} v(M / C)\right)^{T}(M / C)^{\dagger}(M / C) & \left(K_{1} v(M / C)\right)^{T}(M / C)^{\dagger}(M / D) \\
\left(K_{1} v(M / D)\right)^{T}(M / C)^{\dagger}(M / C) & \left(K_{1} v(M / C)\right)^{T}(M / C)^{\dagger}(M / D)
\end{array}\right)
$$

Remark 2.18

When $\mathrm{k}(\mathrm{i})=\mathrm{i}$, we have $\mathrm{K}_{1}=\mathrm{K}_{2}=\mathrm{I}$, then the Theorem 2.15 reduces to the result for con-s-EP matrices.

When KV = I then Theorem 2.15 reduces to Theorem 3 of [5].

Remark 2.19

Theorem 2.15 fails if we relax the condition on the rank of S.

For example, let us consider the matrix S and K given in Remark 2.10, $\quad \rho[K V S]=\rho[S]=2$.

But $\rho\left(K_{1} V(M / C)\right)=\rho(M / C)=1$,
$\rho(K V S) \neq \rho\left(K_{1} v(M / A)\right) \Rightarrow \rho(S) \neq \rho(M / A)$.
$K V S$ is not con-EP
Therefore S is not Con-s-k-EP.
However,

$$
\begin{aligned}
K_{1} V(M / C) & =\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
-1 & -1 \\
1 & -1
\end{array}\right) \\
& =\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
-1 & -1 \\
1 & -1
\end{array}\right)=\left(\begin{array}{cc}
1 & -1 \\
-1 & -1
\end{array}\right) \text { is con-EP. }
\end{aligned}
$$

Therefore (M / C) is con-s- $\mathrm{k}_{1}-\mathrm{EP}$ and
$(M / C)^{-1}=\frac{1}{2}\left(\begin{array}{ll}-1 & -1 \\ -1 & -1\end{array}\right)$,
$(M / A)(M / C)^{-1} v K_{1}=\frac{1}{2}\left(\begin{array}{ll}-1 & -1 \\ -1 & -1\end{array}\right)$,
$(M / C)^{-1}(M / D) v K_{2}=\left(\begin{array}{ll}-1 & 0 \\ -1 & 0\end{array}\right)$.
Thus the theorem fails.

Corollary 2.20

Les S be a 2 r x 2 r matrix of rank r . Thus S is con-s-k-EP ${ }_{r}$ with $\mathrm{K}=\mathrm{K}_{1} \mathrm{~K}_{2}$, where
$\left(\begin{array}{cc}K_{1} & 0 \\ 0 & K_{2}\end{array}\right)$ and $V=\left(\begin{array}{ll}v & 0 \\ 0 & v\end{array}\right) \Leftrightarrow$ every secondary sub matrix of S of rank r is con-s-k-EP ${ }_{r}$.

Proof

Suppose S is con-s-k-EP P_{r} matrix then $K V S$ is an con- EP_{r} matrix by Theorem 2.11 [1]. Let $K_{1} v(M / C)$ be any Principal submatrix of $K V S$ such that $\rho[K V S]=\rho\left[K_{1} v(M / C)\right]=r$, then there exists a permutation matrix P such that,

$$
(K V S)^{T}=P(K V S) P^{T}\left(\begin{array}{ll}
K_{1} v(M / C) & K_{1} v(M / D) \\
K_{2} v(M / A) & K_{2} v(M / B)
\end{array}\right)
$$

with $\rho[K V S]=\rho\left[K_{1} v(M / C)\right]=r$. By [4] $[K V S]^{T}$ is con- EP_{r}. Now we conclude from Theorem 2.15 that $\left(K_{1} v(M / C)\right)$ is con- EP_{r}. That is (M / C) is con-s- $\mathrm{k}_{1}-\mathrm{EP}_{\mathrm{r}}$ Since $[M / C]$ is arbitrary it follows that every secondary submatrix of rank r is con-s- $k-\mathrm{EP}_{\mathrm{r}}$. The converse is obvious.

The conditions under which a partitioned matrix is decomposed into complementary sum and S of con-s-k-EP matrices are given. S_{1} and S_{2} and called complementary summands of S if
$S=S_{1}+S_{2}$ and $\rho[S]=\rho\left[S_{1}\right]+\rho\left[S_{2}\right]$.

Theorem 2.21

Let S be of the form 2.2 with
$\rho(S)=\rho(M / C)+\rho[S /(M / C)]$,
where $[S /(M / C)]=(M / B)-(M / A)\left((M / C)^{\dagger}(M / D)\right.$
and K is of the form 2.3 and V is of the form 2.4. If (M / C) is con-s- k_{1}-EP and $[S /(M / C)]$ is con-s- k_{2}-EP matrices such that
$(M / A)(M / C)^{\dagger} v K_{1}=\left((M / C)^{\dagger}(M / D) v K_{2}\right)^{T}$ and

$$
(M / D)[S /(M / C)]^{\dagger} v K_{2}=\left([S /(M / C)]^{\dagger}(M / C) v K_{1}\right)^{T}
$$

then S can be decomposed into complementary summands of con-s-k-EP matrices.

Proof

Let us consider the matrices,
$S_{1}=\left(\begin{array}{cc}(M / C) & (M / C)(M / C)^{\dagger}(M / D) \\ (M / A)(M / C)^{\dagger}(M / C) & (M / A)(M / C)^{\dagger}(M / D)\end{array}\right)$
and

$$
S_{2}=\left(\begin{array}{cc}
0 & \left(I-(M / C)(M / C)^{\dagger}\right) \\
(M / D) \\
(M / A) & {[S /(M / C)]}
\end{array}\right)
$$

Taking into account that
$(M / C) \subseteq N\left((M / A)(M / C)^{\dagger}(M / A)\right)$
$N(M / C) v K_{1} \subseteq N\left((M / A)(M / C)^{\dagger}(M / C)\right)^{T} v K_{1}$ and

$$
\begin{aligned}
& {\left[S_{1} /(M / C)\right]=(M / A)(M / C)^{\dagger}(M / D)-\left((M / A)(M / C)^{\dagger}(M / D)\right)(M / C)^{-}\left((M / C)(M / C)^{\dagger}(M / D)\right)_{1}} \\
& =(M / A)(M / C)^{\dagger}(M / D)-\left((M / A)(M / C)^{\dagger}\right)\left((M / C)(M / C)^{-}(M / C)\right)(M / C)^{\dagger}(M / D)_{1} \\
& =(M / A)(M / C)^{\dagger}(M / D)-(M / A)\left((M / C)^{\dagger}(M / C)(M / C)^{\dagger}\right)(M / D) \\
& =(M / A)(M / C)^{\dagger}(M / D)-(M / A)(M / C)^{\dagger}(M / D) \\
& =0
\end{aligned}
$$

We obtain by [6] that
$\rho\left(S_{1}\right)=\rho(M / C)$. Since (M/C) is con-s-k k_{1} - EP and
$\left((M / A)(M / C)^{\dagger}(M / C)\right)(M / C)^{\dagger} v K_{1}$
$=(M / A)(M / C)^{\dagger}(M / C)(M / C)^{\dagger} v K_{1}$
$=(M / A)(M / C)^{\dagger} v K_{1}$
$=\left((M / C)^{\dagger}(M / D) v K_{1}\right)^{T}$
$=\left((M / C)^{\dagger}\left((M / C)(M / C)^{\dagger}(M / D)\right) v K_{2}\right)^{T}$
We have by Theorem 2.15, that is S_{1} is con-s- k_{1}-EP.
Since $\rho(S)=\rho(M / C)+\rho[S /(M / C)]$,
Theorem 1 of [6], gives
$N[S /(M / C)]=N\left(\left[I-(M / C)(M / C)^{\dagger}\right](M / D)\right)$,
$\left[I-(M / C)(M / C)^{\dagger}\right](M / D)[S /(M / C)]^{\dagger} v K_{2}$

REFERENCES

[1] S. Krishnamoorthy, K. Gunasekaran and B. K. N. Muthugobal, "con-s-k-EP Matries," Journal of Mathematical
Sciences and Engineering Applications, Vol. 5, No. 1, hugobal, "con-s-k-EP Matries," Journal of Mathematical
Sciences and Engineering Applications, Vol. 5, No. 1, 2011, pp. 353-364.
[2] C. R. Rao and S. K. Mitra, "Generalized Inverse of Matrices and Its Applications," Wiley and Sons, New York, 1971. [3] R. Penrose, "On Best Approximate Solutions of Linear
Matrix Equations," Mathematical Proceedings of the R. Penrose, "On Best Approximate Solutions of Linear
Matrix Equations," Mathematical Proceedings of the Cambridge Philosophical Society, Vol. 52, No. 1, 1959, pp. 17-19. [4] T. S. Baskett and I. J. Katz, "Theorems on Products of
$E P_{r}$ Matrices," Linear Algebra and Its Applications, Vol. T. S. Baskett and I. J. Katz, "Theorems on Products of
$E P_{r}$ Matrices," Linear Algebra and Its Applications, Vol. 2, No. 1, 1969, pp. 87-103.
$N[S /(M / C)]^{T}=N\left((M / C)\left[I-(M / C)^{\dagger}(M / C)\right]\right)^{T}$
and
$\left[I-(M / C)(M / C)^{\dagger}\right](M / D)[S /(M / C)]^{\dagger}$
$\subset\left[I-(M / C)^{\dagger}(M / C)\right]=0$
Therefore, $\left[S_{2} /[S /(M / C)]\right]=0$.
Thus by [7] we get $\rho\left(S_{2}\right)=\rho[S /(M / C)]$. Thus $\rho(S)=\rho\left(S_{1}\right)+\rho\left(S_{2}\right)$.
Further using
$=(M / C)(M / C) K_{1} v=K_{1} v(M / C)^{\dagger}(M / C)$
We obtain,

$$
=\left[I-(M / C)(M / C)^{\dagger}\right]\left[[S /(M / C)]^{\dagger}(M / A) v K_{1}\right]^{T}=\left[\left[[S /(M / C)]^{\dagger}(v / A) v K_{1}\right]\left[I-(M / C)(M / C)^{\dagger}\right]^{T}\right]^{T}
$$

$$
=\left[[S /(M / C)]^{\dagger}(v / A)\left[\left[I-(M / C)(M / C)^{\dagger}\right] K_{1} v\right]^{T}\right]^{T}=\left[[S /(M / C)]^{\dagger}(v / A)\left[K_{1} v-(M / C)(M / C)^{\dagger} K_{1} v\right]^{T}\right]^{T}
$$

$$
\begin{aligned}
& =\left[[S /(M / C)]^{\dagger}(M / A)\left[K_{1} v-K_{1} v\left((M / C)^{\dagger}(M / C)\right]^{T}\right]^{T}=\left[[S /(M / C)]^{\dagger}(M / A)\left[K_{1} v-I-(M / C)^{\dagger}(M / C)\right]^{T}\right]^{T}\right. \\
& =\left[[S /(M / C)]^{\dagger}(M / A) I-\left[(M / C)^{\dagger}(M / C)\right]^{T} v K_{1}\right]^{T}
\end{aligned}
$$

[5] A. R. Meenakshi, "On Schur Complements in an EP Matrix, Periodica, Mathematica Hungarica," Periodica Mathematica Hungarica, Vol. 16, No. 3, 1985, pp. 193200.
[6] D. H. Carlson, E. Haynesworth and T. H. Markham, "A Generalization of the Schur Complement by Means of the Moore-Penrose Inverse," SIAM Journal on Applied Mathematics, Vol. 26, No. 1, 1974, pp. 169-175.
[7] A. B. Isral and T. N. E. Greviue, "Generalized Inverses Theory and Applications," Wiley and Sons, New York, 1974.
[8] S. Krishnamoorthy, K. Gunasekaran and B. K. N. Muthugobal, "On Sums of con-s-k-EP Matrix," Thai Journal of Mathematics, in Press, 2012.

