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ABSTRACT 

Healthcare is one of the world’s fastest growing 
industries consisting of broad services offered 
by various hospitals, physicians, nursing homes, 
diagnostic laboratories, pharmacies and sup-
ported by drugs, pharmaceuticals, chemicals, 
medical equipment, manufacturers and suppli-
ers. The industry is highly fragmented, compris-
ing of various ancillary sectors namely medical 
equipment and supplies, pharmaceutical, health- 
care services, biotechnology, and alternative 
medicines. The present study focuses on the 
pharmaceutical and biotechnology segments of 
the healthcare industry, and presents a stochas-
tic analysis of the evolution over time of firm 
size. A dynamic model is proposed that attempts 
to predict the evolutionary process of firm size 
distribution based on industry and product 
characteristics. A validation exercise, applying 
the model to pharmaceutical and the biotech-
nology industries finds that the predictions from 
the model are very close to the actual trajecto-
ries of firm size distributions within these in-
dustries at the global level. The results show 
interestingly, that the drivers of firm size dy-
namics are industry level characteristics that 
can be estimated from historical data with some 
accuracy. Specifically, it is found that firm size 
distributions are approaching a long-run equi-
librium at a faster rate in the case of the phar-
maceutical industry and that the dispersion of 
the distributions are shrinking over time above all 
for the biotechnology industry. 
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1. INTRODUCTION 

The distribution of firm size has enjoyed a privileged 
position in the Industrial Organization literature. Since 
the earliest contributions, attention has focused on the 
explanation of the shape of firm size distribution at a 

given point in time by reference to steady state argu-
ments. The dynamics in question have been relatively 
ignored however. The main objective of this paper is to 
help fill this gap by introducing a stochastic model that 
allows to incorporate dynamics which are typically neg- 
lected when looking at distribution of firm sizes. We 
consider a representation for the dynamics in the evolv- 
ing distributions where the growth distribution of firm 
sizes can be generated by a single stochastic process in 
which firm size follows a Brownian motion. A cross- 
industry empirical analysis, comparing dynamics of firm 
size in Pharmaceutical and Biotechnology industries fills 
a second gap in the literature, as only few diffusion stud-
ies have employed real statistical data when analyzing 
firm size dynamics. The applicability of the proposed 
method suggests that diffusion may be a preferable tech- 
nique for the analysis of spatial dynamics in firm size. It 
is a more transparent way to quantify dynamics, as it 
avoids the complications associated with dynamic infer-
ence and statistical regression fallacy inherent in stan-
dard cross-section tests [1-3]. 

The paper is organized as follows: Section 2 provides 
a theoretical framework. Section 3 discusses the relation 
of this study to the previous literature. Section 4 presents 
the model and Section 5, the empirical application. Section 
6 concludes with suggested directions for future research. 

2. THEORETICAL FRAMEWORK 

The study is motivated by the observation that the dis-
tribution of size of firms varies over time, both within 
and across industries. A question of both theoretical and 
empirical importance is drivers of industry dynamics. To 
examine this question, we propose a classical stochastic 
model for the evolution of cross-sectional distribution of 
firm size around its trend. The model is mechanical and 
descriptive in nature. It describes the diffusion of shocks 
across space, via an adjustment process with noise. The 
dynamics of the model rely on two counteracting flows: 
1) a mean reversion process and 2) a diffusion process. 
Noise is generated by a search and learning process, based 
on imitation, trial and error, and learning-by-doing be-
havior à la Arrow [4], Nelson and Winter [5], and Levine 
[6]. It is hypothesized that these flows follow simple evolu-
tionary laws that can be described with five parameters. 
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3. RELATION TO PREVIOUS LITERATURE 

Although the process proposed in this paper is com- 
patible with σ and β convergence type specifications in 
the literature on firm size [7-19], it adopts a different 
approach. Amongst the studies on distribution of firm sizes, 
only a select few have attempted to examine its evolution 
either at the industry or at the economy-wide level. Cabral 
and Mata [20] pioneered an evolutionary approach to 
explain the firm size distribution and showed that the 
distribution of the logarithms of firm size of young co- 
horts are skewed, but the distribution gradually moves 
towards a lognormal distribution in older cohorts. The 
authors show that most of the observed changes in the 
firm size distribution results from the evolution of the 
distribution of survivors of a given cohort, and are not 
due to firm selection processes. Theories such as Jova- 
novic [9], Hopenhayn [11], and Ericson and Pakes [21] 
are often cited to motivate firm turnover in young firms 
[19]. The emphasis of Cabral and Mata [20] is on the 
evolution of the distribution of survivors of a given co-
hort and not on noisy selection (i.e. not on entry and exit 
in young cohorts). The innovation in the present paper is 
to take the ideas of learning from Jovanovic [9], Hopen-
hayn [11] and Ericson and Pakes [21] but apply them to 
the evolution of size in surviving incumbent firms. In 
other words, is the learning process that is driving the 
effect age overtime in the firm size distribution. Hut-
chinson, Konings and Walsh [19] expand the idea of 
Cabral and Mata [20] to explore whether time to build 
product portfolios can be proxy for age of companies and 
how it may impact the firm size distribution. The present 
analysis is consistent with Hutchinson, Konings and 
Walsh, but adds that trial and error is needed to create 
these segments of the market in the first place. Outcome 
of such learning processes moves the firm size distribu-
tion along and gives the dynamic structure certain prop-
erties that are industry specific. Hence the paper pro-
motes modeling of the drivers of industry dynamics 
without having to derive a steady state solution. Cabral 
and Mata [20] and Hutchinson, Konings, Walsh [19] 
already do this. This paper adds a little more structure to 
this kind of approach. 

4. THE MODEL 

Consider an industry consisting of a constant number 
of firms with different sizes. Firm size is distributed as 
log-normal. Average costs of producing an amount x of 
output are a non-increasing function of firm size for a 
given quality of output. Each firm may have significant 
fixed costs, and marginal costs may essentially be con- 
stant. Furthermore, consumers prefer small firms for 
perceived higher quality of service. Under these condi-
tions, there would exist a limit equilibrium distribution of 
firm sizes with a certain unknown mean and variance, 

determined by the tension between economies of scale in 
production and consumer preference for smaller firms. 
The equilibrium trades off productive efficiency against 
consumer preferences, and the evolution of the distribu-
tion reflects convergence towards this equilibrium1. 

The history of a firm is governed by an ordinary dif-
ferential equation  d d ,X t g X t  where  ,g x t  is 
the drift. Letting  ,X x t  be the solution such that  

 ,0X x x , we get 

　       d , d , ,    ,0X x t t g X x t t X x x     (1) 

Assume that x > 0 and that the solution  ,X x t  re-
mains positive (see Appendix A). 

From the point of view of diffusion processes, con-
sider a stochastic differential equation of the Ito type 

   d , d ( ) , dX x t σ W t g X x t t         (2) 

where σ is a small constant, and W is a standard Wiener 
process. Under mild conditions on g, Eq.2 is known to 
have a unique solution. Moreover, for each t > 0 and 
each x,  ,X x t does have a probability density 
 , ,f x y t  and  , ,f x y t  satisfies Kolmogorov’s for-

ward equation. 
Consider the form ( )g x x u   where u > 0. In this 

case, each point moves toward the position u but never 
reaches it. More precisely, for the drift spread, it is as-
sumed that there exists some equilibrium distribution of 
firm sizes with a certain mean and variance, towards 
which the ensemble of firms gravitate. For the drift 
spread, bounded rationality, search and learning, trial 
and error and imitation generate noise in the system (Le-
vine [6], Fudenberg and Levine [23]). Random effects 
tend to cause a spread of firms from regions of high den-
sity toward lower density sizes. The speed of spreading 
parameter, related to the adjustment process, is inter-
preted as depending on learning speed. This learning 
process generates randomness in the system. 

Hence, assuming that firm size behaves like a stochas-
tic process and that it is continuous and Markovian, we 
consider the most natural candidate; a classical linear 
stochastic differential equation driven by a standard 
Wiener process: 

　      d , d dtX x t σ W t λ u X t        (3) 

where tX  is firm size. λ denotes the adjustment rate, 
assumed constant for simplicity. u denotes the mean of 
the stationary equilibrium distribution, σ is a small con-
stant, and W(t) is a standard Wiener process. 

Analysis of the Model 

The process derived from the diffusion model evolves 

1This tension goes back to Chamberlin’s and Robinson’s ideas of “mo-
nopolistic competition”, and was formalized by Spence and Dixit-
Stiglitz [see 22-25]. 

Copyright © 2012 SciRes.                                                                    OPEN ACCESS 



F. Hashemi / Health 4 (2012) 155-164 157

according to an Ornstein-Uhlenbeck. This type of model 
has been widely used in Biomathematics [26-30]. The 
Ornstein-Uhlenbeck is the most general normal station-
ary Markovian process with zero expectations. For t > T, 
the transition density from (T,s) to (t,y) is normal with 
expectation  and variance . As 

, the expectation tends to 0 and the variance to 
. The analytic solution derived for our diffusion equa-

tion is a normal distribution for all t. There is the 

( )λ r te   2 2 (1 λ r tσ e  )

t 
2σ

λtse  

factor; with a change of variables, it can be shown that 
the solution is normal with a constant multiplied by it2. 

5. EMPIRICAL APPLICATION 

5.1. Data and Descriptive Statistics 

The empirical analysis presents a cross-industry and 
cross-sectional analysis of the Biotechnology and Phar-
maceuticals segments of the Healthcare industry. The 
empirical portion is conducted in three steps: In the first 
step, a cross-industry analysis is presented, where the 
proposed model is applied to the evolution of size distri-
bution of two different segments of the Healthcare in-
dustry between the years 1989-2007: 1) Global Pharma-
ceuticals and 2) Global Biotechnology. In the second 
step, the model is applied to the evolution of firm size 
distribution for the US sub-segment of the two industries. 
The third step involves a cross-sectional analysis, focus-
ing on the Pharmaceutical and Biotechnology industries 
in isolation, and comparing the Global and US portions 
of each. 

Our first data describes the Global Pharmaceutical in-
dustry between the years 1989-2007. Pharmaceuticals are 
a relatively large and mature industry, and of growing 
significance. Its market size globally is around $700 bil-
lion, with a growth rate of 5 - 8 percent per year. The 
cost of bringing a new drug to market (including the cost 
of clinical trials and failures) is estimated at around $800 
million in 2000 dollars. The global market is geographi-
cally concentrated, with sales in the US accounting for 
about 48% of the total, followed by Europe’s 29% and 
Japan’s 11%. Since the mid-eighties, the industry has 
gone through a wave of mergers and acquisitions which 
has made the industry more and more concentrated. This 
phenomenon has run parallel to the emergence of Bio-
technology and Generics. Figure 1 provides a descrip-
tion of the evolution of the distribution of firm sizes in 
this data, where number of employees is used as proxy 
for firm size. Observations were available annually, and 
the sample includes 502 companies engaged in the re-
search, development or production of Pharmaceuticals3.  
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Figure 1. Evolution in distribution of firm size for pharmaceu-
ticals. 
 

The vertical axis measures firm size in logarithms, and 
the horizontal axis measures time in years. The solid line 
represents the mean size of the industry and the dotted 
lines one standard deviation around the mean. 

Our second data set describes the Global Biotechnol-
ogy industry between the years 1989-2007. The sample 
consists of a total of 197 Biotechnology firms primarily 
engaged in research, development, manufacturing and/or 
marketing of products based on genetic analysis and ge-
netic engineering. Observations were available annually. 
Figure 2 provides a description of the evolution of the 
distribution of firm sizes in this data, where our measure 
of firm size is once again, the total number of employees. 
The vertical axis measures firm size in logarithms, and 
the horizontal axis measures time in years. The solid line 
represents the mean size of the industry and the dotted 
lines, one standard deviation around the mean. 

The model has five parameters: 0 , and 2
0 , , ,u u ε σ . λ  

0 denotes the initial mean of the distribution, and u de-
notes the mean of the steady state distribution. 0 is the 
initial variance,  represents the strength of the diffu-
sion effect, and 

u
σ

σ
λ  represents the strength of the mean 

reversion effect. The model has been applied to the dis-
tribution of firm size for the two populations as a func-
tion of time. Table 1 reports estimates for the five model 
parameters, along with the standard errors and t-values. 

Figures 3 and 4 graphically illustrate the mean of the 
firm size distribution in the Pharmaceutical and Bio-
technology data respectively (dotted line), superimposed 
on the mean of the size distribution as predicted by the 
model (bold solid line, +/– one standard deviation). The 
vertical axis on this panel measures the mean of the size 
distribution (in logarithms) and the horizontal axis 
measures time in years. 

Figures 5 and 6 graphically illustrate the standard de-
viation of the size distribution in the Pharmaceutical and 
Biotechnology industries respectively (dots), superim-
posed on the standard deviation of the respective distri-
butions as predicted by the model (solid curves). 

2Ref [31,32] develop and provide a full analysis of this model, albeit in 
a different context. 
3The data set includes 502 companies comprising the universe of all 
firms in the Pharmaceutical industry, and 197 companies comprising 
the universe of all firms in the Biotechnology industry. 
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Figure 2. Evolution in distribution of firm size for biotechnol-
ogy. 
 
Table 1. Parameter estimates for global pharmaceutical and bio-
technology industries. 

Global Pharmaceutical Industry 

Parameter Value Std. Error t-value 

λ 2.32 2.85 0.81 

u 2.88 0.01 203.06 

u0 3.09 0.05 53.55 

σ0 1.21 0.04 29.27 

ε 1.94 0.05 35.07 

Global Biotechnology Industry 

Parameter Value Std. Error t-value 

λ 0.33 0.13 2.51 

u 2.13 0.02 92.14 

u0 2.43 0.05 43.96 

σ0 1.09 0.03 30.36 

ε 0.18 0.01 23.63 

 

 
Figure 3. Mean of the distribution for pharmaceuticals. 

 

Figure 4. Mean of the distribution for biotechnology. 
 

 

Figure 5. Standard deviation of the distribution for pharmaceu-
ticals. 
 

 

Figure 6. Standard deviation of the distribution for biotech-
nology. 
 

To ascertain whether the parameter estimates conform 
to the real data presented in the descriptive analysis, 
Figures 7 and 8 illustrate the actual versus predicted  
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Figure 7. Predicted vs. actual distribution for pharmaceuticals. 
 

 

Figure 8. Predicted vs. actual distribution for biotechnology. 
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time plot that can be generated from the real and esti-
mated data. These figures graphically illustrate the evo-
lution of the firm size distribution (log-normals) over 
time for the Pharmaceutical and Biotechnology indus-
tries respectively, superimposed on histograms which 
describe the time evolution of the distribution of firm 
sizes in the data (for selected years). The solid curves in 
these figures illustrate the distribution of firm size as 
predicted by the model, and the dotted curves illustrate 
the distribution of firm size in the data. The vertical axes 
in these figures denote frequency, and the horizontal axes 
measure firm size in logarithms. These figures illustrate 
that the nice pattern which we see in the fitted log nor-
mals are being pulled out of a set of histograms whose 
shape are irregular. 

The following observations can be made concerning 
our results: 

1) The mean and variance of both distributions are 
clearly evolving, corresponding to our theoretical predic-
tions. 

2) The value for the strength of the mean reversion 
process λ , is small and positive and varies for the two 
industries, corresponding to our theoretical predictions. 
Mean reversion is stronger in the Pharmaceutical indus-
try than in Biotechnology. 

3) The value for the strength of the diffusion effect is 
likewise small and positive and varies from industry to 
industry, corresponding to our theoretical predictions. 
The diffusive limit is σ λ , which is larger for Pharma-
ceutical than for Biotechnology, suggesting a slightly 
more homogeneous firm size within the later. The results 
predict that if we start with a normal distribution and let 
the model drive the distribution, the distribution variance 
will tend toward a constant σ λ , and concentrated 
around a mean u which is larger for Pharmaceutical than 
for Biotechnology. 

5.2. Empirical Application to the US  
Segments of the Two Industries 

In the following section, we present a cross-industry 
analysis of the US data, comparing US Pharmaceutical 
and US Biotechnology, followed by an analysis of each 
industry in isolation, comparing the US and its Global 
counterparts. Table 2 reports estimates for the five mod-
el parameters 0 0  and , , ,u u σ σ λ , along with the stan-
dard errors and t-values for each industry respectively. 

Figures 9 and 10 graphically illustrate the evolution of 
the firm size distribution (log-normals) over time for the 
US Pharmaceutical and US Biotechnology industries 
respectively, superimposed on histograms which de-
scribe the time evolution of the distribution of firm sizes 
in the data (for selected years). The solid curves in these 
figures illustrate the distribution of firm size as predicted 
by the model, and the dotted curves illustrate the distri 

Table 2. Parameter estimates for US pharmaceutical and US 
biotechnology industries. 

USA Pharmaceutical Industry 

Parameter Value Std. Error t-value 

λ 0.65 0.88 –1.65 

u 2.26 0.02 84.93 

u0 2.97 0.10 96.41 

σ0 2.46 0.57 13.92 

σ 0.77 0.02 84.93 

USA Biotechnology Industry 

Parameter Value Std. Error t-value 

λ 0.54 0.98 –1.55 

u 2.21 0.02 88.75 

u0 2.96 0.10 96.41 

σ0 1.86 0.03 18.37 

σ 0.37 0.02 88.75 

 
bution of firm size in the data. The vertical axes in these 
figures denote frequency, and the horizontal axes meas-
ure firm size in logarithms. These figures illustrate that 
the nice pattern which we see in the fitted log normals 
are being pulled out of a set of histograms whose shape 
are irregular. 

Table 3 summarizes the findings for the four sub- 
populations. The following observations can be made 
concerning our results: 

1) The mean and variance of both distributions are 
clearly evolving, corresponding to our theoretical predic-
tions. 

2) The value for the strength of the mean reversion 
process λ , is small and positive and varies from indus-
try to industry, corresponding to our theoretical predic-
tions. 

3) The value for the strength of the diffusion effect is 
likewise small and positive and varies from industry to 
industry. The diffusive limit is larger in Pharmaceutical 
industry than in Biotechnology, suggesting a more ho-
mogeneous firm size in the later. This result conforms to 
our earlier finding regarding the Global cohort of the two 
industries. 

We observe a marked difference between the two in-
dustries in the dynamic adjustment to stationary equilib-
rium and in the dispersion of the size distributions. This 
comes as no surprise, and indicates differences between 
the two industries, with respect to their size, product 
characteristics, stage of growth, and competition. The 
field of modern biotechnology is thought to have largely 
begun in 1980, when the United States Supreme Court 
ruled that a genetically-modified microorganism could be  
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Figure 9. Actual versus Predicted Distributions in Pharmaceuticals. 
 

 

Figure 10. Actual versus Predicted Distributions in Biotechnology. 
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Table 3. Parameter estimates for US and global pharmaceutical 
and biotechnology industries. 

Global Pharmaceutical Industry 

Parameter Value Std. Error t-value 

λ 2.32 2.85 0.81 

u 2.88 0.01 203.06 

u0 3.09 0.05 53.55 

σ0 1.21 0.04 29.27 

σ 1.94 0.05 35.07 

US Pharmaceutical Industry 

Parameter Value Std. Error t-value 

λ 0.65 0.88 –1.65 

u 2.26 0.02 84.93 

u0 2.97 0.10 96.41 

σ0 2.46 0.57 13.92 

σ 0.77 0.02 84.93 

Global Biotechnology Industry 

Parameter Value Std. Error t-value 

λ 0.33 0.13 2.51 

u 2.13 0.02 92.14 

u0 2.43 0.05 43.96 

σ0 1.09 0.03 30.36 

σ 0.18 0.01 23.63 

US Biotechnology Industry 

Parameter Value Std. Error t-value 

λ 0.54 0.98 –1.55 

u 2.21 0.02 88.75 

u0 2.96 0.10 96.41 

σ0 1.86 0.03 18.37 

σ 0.37 0.02 88.75 

 
patented. Pharmaceuticals however, represent a relatively 
large and mature segment of the Global Healthcare in-
dustry. Most of today’s major Pharmaceutical companies 
were founded in the late 19th and early 20th centuries. 
The industry remained relatively small scale until the 
1970s when it began to expand at a greater rate. It en-
tered the 1980s pressured by economics and a host of 
new regulations, and transformed by new DNA chemis-
tries and new technologies. A new business atmosphere 
became institutionalized during the last two decades 
where the Pharmaceutical industry underwent extensive 
restructuring in the form of mergers and acquisitions. 
The dynamic process proposed in this paper requires a 
wide enough variety of strategies and actions that have 
already been experimented with, which is more plausible 
for larger, more mature, and relatively heterogeneous 

industries, than for smaller, relatively younger, and rela-
tively homogeneous industries, which to some extent 
display the features of Sutton’s [33] “strategic depend-
ence” hypothesis of homogeneous submarkets. Sutton 
puts forward the idea that firm heterogeneity in the col-
lection of sub-markets (product lines or geographical 
areas) during industry evolution is a core determinant of 
the firm size distributions. As firms learn passively, they 
must represent a sufficient variety of behaviors such that 
as Alchian [34] famously noted”... what really counts is 
the various actions actually tried, for it is from these that 
success is selected, not from some set of perfect actions” 
[34, p. 220]. One might thus expect the rates of learning 
and dynamic adjustment to stationary equilibrium to be 
rather slow in a relatively small, young and homogene-
ous industry where competition is relatively week and 
trial and error and imitation are limited. Our empirical 
results suggest that this might indeed be the case. 

6. CONCLUSIONS 

By considerations of analytic tractability, the model 
developed in this paper is simplified. The dynamics rep-
resent a trade-off between a preference for small size on 
the part of the consumers and a technological advantage 
of being large, but the dynamics could represent many 
other forces as well. Small firms may be able to adapt to 
changes in the environment more easily, and large firms 
may have higher visibility and may thus benefit from 
reputation effects. Moreover, both the Pharmaceutical 
and the Biotechnology industries are governed by a rich 
set of environmental, political, and institutional charac-
teristics. For instance, the Pharmaceutical industry faces 
extremely different regulatory frameworks from country 
to country, and these regulations suffer drastic changes 
very often. Some of the dispersion in firm size one sees 
in the Global Pharmaceutical market could be driven by 
the location of the Pharmaceutical firms or by the par-
ticular markets where they are currently present. More-
over, in this paper, number of employees has been se-
lected as proxy for firm size realizing that for techno-
logical and research industries such as Pharmaceuticals 
and Biotechnology, there are additional measures one 
could use. On this, I have built on earlier literature on 
firm size where size had been proxied by sales, income, 
number of employees, or total assets (Simon and Bonini 
[35], Ijiri and Simon [8], Sutton [33], Axtell [14] and 
Hutchinson et al. [19]). An interesting property of firm 
size distributions noted in previous studies of large firms 
is that the qualitative character of such distributions is 
independent of how size is defined (Axtell [14]). 

Furthermore, the model presented in this paper in-
cludes no exogenous control variables that shift the con-
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ditional mean (e.g. business cycle effects). An extension 
which would significantly enrich the present analysis 
would be to include such exogenous control variables. 
We also observe that the rate of approach to final equi-
librium, as well as the relaxation time in our model only 
depend on λ characterizing the drift term, but does not 
depend on the diffusion strength. This feature is entirely 
inherent to the linearity of the dynamics considered in 
this paper and turns out to be a limitation in the modeling 
capability offered by Ornstein-Uhlenbeck. For nonlinear 
drifts, this feature does not occur anymore and the rate of 
approach to final equilibrium may strongly depend on 
the diffusion parameter, and as such, the noise strength 
strongly affects the transient behavior of the probability 
density. 

In general, an exercise such as the one presented in 
this paper is informative from the point of view of un-
derstanding industry dynamics and shaping policy. The 
methodology proposed in this paper can be extended to 
formally map industry characteristics on the dynamics of 
firm structure, to predict the evolutionary process of firm 
size distribution based on industry and product charac-
teristics. One area of investigation which would prove 
informative is patents. This is important because in cir-
cumstances where innovations build on each other— 
which is the case for the discovery and development of 
both biologics and drugs—patents can be especially 
costly, as they may reduce rather than encourage the in-
centive to innovate. As early as in the early seventies, 
Hirshleifer [36] theoretically illustrated that economi-
cally valuable information can be traded in the absence 
of patents and under condition of competition. More re-
cently, Boldrin and Levine [37,38] have shown that there 
is no theoretical need to postulate either increasing re-
turns or monopoly power to understand the dynamics of 
innovation in Pharmaceuticals, and that the traditional 
competitive model provides a more solid foundation for 
the examination of R&D processes in this industry. A 
good understanding of which kind of characteristics lead 
to which kinds of dynamics helps us understand how 
incentives should be provided for the socially optimal 
amount of creative activity to take place. Given the cur-
rent R&D slowdown in both Pharmaceutical and Bio-
technology industries, this seems to be a most valuable 
direction for future research, with critical implications 
for the future of Global Healthcare. 
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