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ABSTRACT 

Wireless sensor networks are often used to monitor physical and environmental conditions in various regions where 
human access is limited. Due to limited resources and deployment in hostile environment, they are vulnerable to faults 
and malicious attacks. The sensor nodes affected or compromised can send erroneous data or misleading reports to base 
station. Hence identifying malicious and faulty nodes in an accurate and timely manner is important to provide reliable 
functioning of the networks. In this paper, we present a malicious and malfunctioning node detection scheme using 
dual-weighted trust evaluation in a hierarchical sensor network. Malicious nodes are effectively detected in the presence 
of natural faults and noise without sacrificing fault-free nodes. Simulation results show that the proposed scheme out-
performs some existing schemes in terms of mis-detection rate and event detection accuracy, while maintaining compa-
rable performance in malicious node detection rate and false alarm rate. 
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1. Introduction 

Wireless sensor networks are often deployed in an unat- 
tended area of interest for the purpose of remote moni- 
toring in a homogeneous or heterogeneous environment 
[1]. Sensor nodes comprising the networks, in practice, 
have limited power, memory, and computational capabi- 
lities. Such networks are vulnerable to faults and mali- 
cious attacks. Hence it is important to detect faulty or 
malicious nodes in the networks to make correct deci- 
sions in the monitoring applications. 

Several fault detection and tolerance schemes for wi- 
reless sensor networks have been proposed in the litera- 
ture [2-9]. They are developed based on centralized, dis- 
tributed, and hierarchical models. Due to the importance 
of energy efficiency, most schemes employ a distributed 
model, using either neighbor coordination or clustering. 
These fault detection schemes mainly deal with noise 
with a certain distribution or randomly and independently 
generated faults. Malicious nodes, however, have not 
been deeply investigated, although they are likely to exist 
in wireless sensor networks due to resource constraints, 
unreliable communications, and unattended operation. 

There are a number of attacks that an attacker can 
launch against wireless sensor networks once a certain 
number of sensor nodes have been compromised [10]. In 
the network and routing layer, the attacks include selec- 
tive forwarding, sinkholes [11], Sybil [12], wormholes [13], 

HELLO flood attacks [11], black hole attack [14], and 
DDOS attacks [15], etc. In application layer, attackers 
may compromise sensor nodes and inject false data to 
fool data aggregators. To cope with the attacks both pre- 
vention-based and detection schemes have been investi- 
gated. 

Curiac et al. [16] proposed a malicious node detection 
scheme using an autoregression technique. It uses time 
series of measured data provided by each sensor node 
and relies on autoregressive predictor placed in base sta- 
tions. Signal strength is used to detect malicious nodes in 
[17], where a message transmission is considered suspi- 
cious if the strength is incompatible with the originator’s 
geographical position. Several trust management schemes 
have been proposed primarily in routing and communi- 
cation. Various efforts have also been made to combine 
communication and data trusts [18]. 

A special type of attack where the compromised nodes 
behave normally but report false readings to lead to an 
incorrect decision has recently been investigated in [19, 
20]. Atakli et al. [19] proposed a novel scheme for dete- 
cting malicious nodes reporting false data in a hierar- 
chical sensor network. They employed a weighted trust 
evaluation (WTE in this paper) to make a decision on the 
correctness of the reports. The weights assigned to sensor 
nodes are updated after each cycle by reflecting the ratio 
of the number of incorrectly reporting nodes to the total 
number of nodes. Ju et al. [20] proposed an improved 
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scheme based on WTE, named weighted-trust application 
(WTA). The weight of each sensor node is updated based 
on the behavior of the node itself. 

Both WTE and WTA reduce the weights and norma- 
lize them after each cycle to keep the values in the range 
from 0 to 1. In the worst case, however, malicious nodes 
are likely to be detected with sacrificing some normal 
nodes. The loss of normal nodes might be problematic 
due to the resulting lack of network connectivity and 
sensing coverage. In addition, faults are only partially ta- 
ken into account in detecting malicious nodes. Consequ- 
ently, both schemes might not achieve the expected per- 
formance in a sensor network where noise, natural faults, 
and malicious nodes coexist. 

In this paper, we propose a dual weighted trust evalua- 
tion (DWE) scheme to detect malicious nodes in the face 
of faults in a hierarchical sensor network, where sensor 
nodes report their readings to a forwarding node for 
aggregation. Each sensor node is assigned two trust va- 
lues. They are increased or decreased depending on its 
reading and the aggregation result at the forwarding node. 
An efficient updating policy is developed to keep mis-de- 
tection rate low while achieving high malicious node 
detection rate for a wide range of fault and related pro- 
babilities. Moreover, event detection accuracy and false 
alarm rate are also taken into account to be practically 
useful. 

The rest of the paper is organized as follows. Section 2 
describes the network model and fault model to be used 
throughout the paper. Our dual weighted trust evaluation 
scheme is presented in Section 3. Experimental results 
are shown in Section 4. Section 5 concludes the paper. 

2. Network Model and Fault Model 

2.1. Network Architecture 

The proposed scheme is also based on a three-layer hier- 
archical network architecture shown in Figure 1 [19],  
 

 

Figure 1. A hierarchical sensor network. 

only for comparison purposes, where SN, FN, and BS 
represent the corresponding layers, respectively. Sensor 
nodes in SN (sensor node) layer are grouped, and the 
member nodes in each group directly communicate with 
the corresponding forwarding node in FN (forwarding 
node) layer to provide their sensor readings. 

Sensor nodes in SN layer are densely deployed to 
monitor the network area. They have limited power, me- 
mory, and computational capabilities. Sensor readings are 
assumed to be binary, 0 and 1 (alarm), and reported to 
the FN node. Nodes in FN layer are assumed to be more 
powerful as far as resources are concerned, and thus 
more dependable. 

2.2. Modeling Malicious Nodes 

In this paper, malicious nodes in a sensor network are 
assumed to behave normally but send wrong data to the 
forwarding node. Such sensor nodes can also be modeled 
as faulty nodes behaving differently from normal nodes, 
although the fault model becomes more complicated. In 
[19] malicious nodes are assumed to keep reporting the 
opposite information after being compromised. In [20], 
the ratio of sending wrong information is defined in the 
simulation. If the ratio is 80%, for example, malicious 
nodes report correctly 20% of the time to hide them to 
stay undetected. In reality, sensor readings will be affected 
by noise, faults, and malicious nodes. Hence malicious 
nodes have to be detected in the presence of faults and 
noise.  

Both transient and permanent faults are included in the 
fault model. Transient faults are assumed to occur ran-
domly and independently with the same probability pt. 
Permanent faults are also assumed to occur with the same 
probability pp for all the nodes in SN layer. In the case of 
permanent faults, both stuck-at-0 and stuck-at-1 (alarm) 
are assumed to occur with the same probability. Mali-
cious nodes, although treated as faulty nodes, are as-
sumed to behave more intelligently not to be detected. In 
the simulation later, they are assumed to report opposite 
to the sensor readings with probability pinv. For conven-
ience we list in Table 1 the notation to be used through-
out the paper. 

3. Dual Weighted Trust Evaluation 

In detecting malicious nodes, we employ trust values of 
sensor nodes to reflect their track records in decision 
making process. Each forwarding node maintains trust 
values of its associated sensor nodes in SN layer as 
shown in Figure 2, where Un represents the binary sen-
sor reading of the sensor node SNn. Here Un = 1 indicates 
an alarm to the FN. FN will make a decision on an event 
based on weighted majority voting with the trust values 
and snU  . 

Copyright © 2012 SciRes.                                                                                 WSN 



S. H. OH  ET  AL. 86 

Table 1. Notation. 

Symbol Meaning 

W0n Trust value of SNn in case of no-event 

W1n Trust value of SNn in case of event 

Wn min(W0n, W1n) 

Un Output of sensor node SNn 

E Aggregation result 

θ Penalty 

r Recovery rate 

M0 Weighted sum of trust values of sensor nodes with Un = 0

M1 Weighted sum of trust values of sensor nodes with Un = 1

pt Transient fault probability 

pp Permanent fault probability 

pm Malicious node probability 

pinv Probability of reporting opposite to sensor readings 

δ Tolerable variation of transient fault probability 

 

 

Figure 2. Two trust values assigned to each sensor node. 
 

Two trust values (weights), W0n and W1n, ranging be-
tween 0 and 1, and initialized to 1, are assigned to each 
sensor node SNn, 1 ≤ n ≤ N. W0n represents the trust 
value of SNn in case of no-events, while W1n denotes that 
of SNn in case of events. Employing two weights is to 
eliminate the cancelation effect due to transitions be-
tween event and no-event. The weights represent the 
sensor node’s dependability. That is, the readings of a 
sensor node with a higher weight are more trustworthy. 
Updating the values is important to reflect the correct-
ness of the current readings in the future decision making 
process. 

FN collects sensor readings of its associated sensor 
nodes where “1” denotes an alarm. It then computes 
weighted sums of 1’s and 0’s, respectively, as follows. 
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where Wn = min (W0n, W1n). 
The aggregation result at the forwarding node (FN), E, 

is equal to 1 (i.e., and event) if M1 > M0. It is 0 (no-event) 
if M0 > M1. If M0 = M1, the decision will be delayed until 
the inequality is satisfied. 

At the end of the aggregation at FN, all the weights as-
signed to the member nodes are updated as follows: 

If E = 1, then 

  1 max 1 , 0 forn n nW W U  E  

  1 min 1 , 1 forn n nW W r U   E  

If E = 0, then 

  0 max 0 , 0 forn n nW W U  E  

  0 min 0 ,  1 forn n nW W r U   E  

where θ is a penalty ranging between 0 and 1. If Un is not 
equal to E, the corresponding weight of SNn is reduced 
by θ. Otherwise, it is increased by θ × r, where r, named 
here the recovery rate of the lost weight due to a transient 
fault, is assigned based on the transient fault probability 
pt. The reason for not simply choosing r = 1 is that a ma-
licious node reporting 0 and 1 at almost the same rate, for 
example, keeps the weight close to 1, and the node is 
likely to remain in the network without being detected. 
To lower the weights of malicious nodes while main-
taining the weights of normal nodes close to 1, even in 
the face of transient faults, an appropriate value of r 
needs to be chosen. For a given transient fault probability, 
pt, we set r to be 
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where δ is proportional to the variance of pt. If pt = 0.1 
and δ = 0.05, for example, normal sensor nodes with 
transient faults up to 15% for a certain period of time, 
can maintain the weights close to 1. In that case, 

0.15
0.176

0.85
r   . A normal node with 15% of incorrect  

readings due to transient faults for a certain period of 
time loses its weight by θ each time it reports incorrectly, 
but gains it by 0.176×θ each time it reports correctly. 

Eventually, nodes with Wn (=min (W0n, W1n)) less than 
or equal to a specified threshold value Wlow will be de-
termined as faulty (including malicious). For the weight 
ranging from 0 to 1 the value Wlow is expected to be 0 
unless otherwise stated. 

4. Performance Evaluation 

4.1. Simulation Setups 

Computer simulation is conducted to evaluate the perfor- 
mance of the proposed malicious node detection scheme 
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in a hierarchical sensor network, where 20 sensor nodes 
are under the control of a single forwarding node. Faults 
and malicious nodes are generated in accordance with 
predefined probabilities, pt (transient fault), pp (perma-
nent fault), and pm (malicious node). In the case of per-
manent faults, both stuck-at-0 and stuck-at-1 are assumed 
to occur with the same probability. If pt = 0.2, for exam-
ple, normal nodes are expected to report incorrect read-
ings with a probability of 0.2. If pp = 0.1, both stuck-at-1 
and stuck-at-0 occur with probability of 0.05 each. Mali-
cious nodes are randomly generated with probability pm. 
They are assumed to report opposite to the sensor read-
ings with probability pinv. 

Four metrics, malicious node detection rate (MDR), 
misdetection rate (MR), false alarm rate (FAR), and event 
detection accuracy (EDA), are defined to show the effec- 
tiveness of our scheme compared to the existing WTA 
and WTE, although they focus only on malicious node 
detection. MDR is defined to be the ratio between the 
number of detected malicious nodes and the total number 
of existing malicious nodes. MR is defined to be the ratio 
between the number of normal nodes determined to be 
faulty and the total number of normal nodes. FAR is de- 
fined as the ratio of the number of no-event cycles with E 
= 1 to the total number of no-event cycles. Lastly, EDA 
is the ratio of the number of event cycles with E = 1 to 
the total number of event cycles.  

In our scheme, if necessary, each sensor node can be 
logically removed from the network when its weight is 
less than or equal to Wlow. Sensor nodes excluded may 
optionally join the aggregation process later if their 
weights reach Whigh. If Wlow = 0 and Whigh = 1, for exam-
ple, suspicious nodes are detected when their weights 
reach 0. Sensor nodes can be reinstated if their weights 
increase up to 1 (i.e., Whigh). 

4.2. Experimental Results 

Malicious node detection schemes have to achieve high 
MDR while maintaining low MR. In addition, they need 
to guarantee high EDA while keeping FAR low. MDR 
and MR for various values of pinv for the proposed DWE 
when pt = 0.2, pp = 0.2, pm = 0.2, θ = 0.05, and δ = 0.05, 
are shown in Figures 3 and 4, respectively. Simulation 
results after 200 cycles of operation with Wlow = 0.4 are 
used for comparison since WTA and WTE stop simula-
tion after a short period of time with the threshold. All 
the three schemes achieve almost perfect MDR for pinv > 
pt. WTA and WTE perform better in terms of MDR for 
pinv ≤ pt. They, however, achieved a higher MDR by sac-
rificing normal nodes, as can be seen in Figure 4, where 
mis-detection rate (MR) for WTA and WTE are higher 
than that for the proposed DWE. MR for DWE is only 
about 0.01 for the entire range of pinv. More importantly, 
malicious nodes behaving normally and reporting 

 

Figure 3. MDR for various values of pinv. 
 

 

Figure 4. MR for various values of pinv.  
 
similar to normal nodes (i.e., pinv ≤ pt) do not cause a 
significant problem even if they stay in the network. 
Hence MDR for pinv ≤ pt does not carry much meaningful 
information.  

Performance of a malicious node detection scheme par- 
tially depends on the correctness of the aggregation re-
sults at the forwarding node since wrong decisions at the 
node lead to inaccurate management of trust values. The 
resulting false alarms might waste energy and thus shor- 
ten the network lifetime. FAR for various values of pinv 
when pm = pt = pp = 0.2, δ = 0.05, and θ = 0.05 are shown 
in Figure 5. All the three schemes under comparison 
achieve extremely low FAR, although WTA performs 
the best. The proposed DWE is comparable to WTA, but 
shows a slightly higher FAR. It is due to the facts that 
stuck-at-0 nodes reduce the chances of having false alarms 
for all the three schemes, but the weights of normal nodes 
in WTA are generally lower than those of normal nodes 
in DWE since DWE recovers the weight lost by transient 
faults with time. In other words, an alarm from a normal 
node is counted less in WTA as compared to DWE, re- 
sulting in a slightly lower FAR. 

The main reason that malicious nodes report false 
readings might be to lead the forwarding nodes to make 
an incorrect aggregation, especially in the case of an  
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Figure 5. FAR for various values of pinv. 
 
event. Malicious node detection schemes leading to a low 
event detection accuracy (EDA) are not acceptable. Hen- 
ce we now evaluate EDA when an event occurs after 200 
non-event cycles, under the assumption that all the sensor 
nodes associated with a forwarding node are in an event 
region. The results for various values of pinv for pm = pt = 
pp = 0.2, δ = 0.05, and θ = 0.05 are shown in Figure 6, 
where our DWE outperforms WTA and WTE, for the en- 
tire range of pinv, maintaining EDA of 0.95 even for rela-
tively high fault probabilities. 

The same simulation is conducted to see the changes 
in performance for four different values of pm. MDR is 
not included since almost perfect MDR can be obtained 
for the three different schemes under comparison. DWE 
consistently outperforms WTA and WTE in terms of MR 
and EDA as shown in Figures 7-9, respectively. 

Stuck-at-1 faults are detected while there are no events. 
Stuck-at-0 faults, on the other hand, can be identified 
when an event occurs. After 600 non-event and event 
cycles almost all of the permanent faults are logically 
removed from the network, resulting in considerably 
better EDAs for all the three schemes, compared to Fig-
ure 6, as shown in Figure 10. 

Finally, we performed simulation to see the changes in 
performance depending on the values of θ (penalty). As θ 
increases, malicious nodes lose their weights more qui- 
ckly, and thus be detected in a relatively short time. On 
the other hand, normal nodes are more likely to be mis- 
detected as faulty nodes. Hence the value of θ has to be 
properly chosen to compromise between MDR and MR. 
MDR and MR for four different values of θ are shown in 
Table 2, where pinv = 0.2 and 0.3 are chosen to focus on 
non-trivial cases. 

As can be seen in Table 2, MDR for θ = 0.1 is the best 
while MR increases with θ. Almost all of the malicious 
nodes are detected when pinv = 0.3 regardless of the value 
of θ under consideration. The loss of normal nodes due to 
the increase in θ becomes problematic. The appropriate 
value of θ for the cases under consideration lies between 
0.05 and 0.1. 

5. Conclusion 

In this paper, we proposed a malicious and malfunction- 
ing node detection scheme using dual weighted trust eva- 
luation in a hierarchical sensor network. Malicious nodes 
are detected in the face of faults and noise by using a 
weighted majority voting. Trust values of sensor nodes 
are used as weights at the forwarding node to reflect the 

 

 

Figure 6. EDA for various values of pinv. 
 

 

Figure 7. MR for various values of pm. 
 

 

Figure 8. FAR for various values of pm. 
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Figure 9. EDA for various values of pm. 
 

 

Figure 10. EDA for various values of pinv. 
 

Table 2. MDR and MR for various values of θ when pp = pt 
= 0.2. (a) pinv = 0.2; (b) pinv = 0.3. 
 

(a) Pinv = 0.2 

Θ MDR MR 

0.05 0.568 0.000 

0.10 0.944 0.034 

0.15 0.925 0.104 

0.20 0.894 0.180 

(b) Pinv = 0.3 

Θ MDR MR 

0.05 0.971 0.000 

0.10 0.999 0.033 

0.15 0.993 0.103 

0.20 0.982 0.178 

 
correctness of their reports in the decision-making proc- 
ess. The weights are updated in such a way that normal 
nodes with some transient faults may retain their weights  

close to 1, while malicious nodes behaving differently 
from normal nodes gradually lose the weights to be de- 
tected. Implementing the scheme does not sacrifice nor-
mal nodes even for high fault probabilities. The scheme 
is presented using a simple hierarchical model for con-
venience. The simulation is also limited for comparison 
with some existing schemes. It, however, is developed 
for more realistic sensor networks, and can thus be ap-
plied to different structures without significant modifica-
tions. 
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