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ABSTRACT 

A new mathematical system applicable to whatever Brownian problems where the Fickian diffusion equation (F-equa-
tion) is applicable was established. The F-equation, which is a parabolic type partial differential equation in the evolu-
tion equation, has ever been used for linear diffusion problems in the time-space (t, x, y, z). In the parabolic space (xt–0.5, 
yt–0.5, zt–0.5), the present study reveals that the F-equation becomes an ellipse type Poisson equation and furthermore the 
elegant analytical solutions are possible. Applying the new system to one-dimension nonlinear interdiffusion problems, 
the solutions were previously obtained as the analytical expressions. The obtained solutions were also elegant in accor-
dance with the experimental results. In the present study, nonlinear diffusion problems are discussed in the two and 
three dimensional cases. The Brownian problem is widely relevant not only to material science but also to other various 
science fields. Hereafter, the new mathematical system will be thus extremely useful for the analysis of the Brownian 
problem in various science fields. 
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1. Introduction 

Einstein theoretically revealed that Brownian particles 
randomly move in accordance with the parabolic law [1]. 
After then, it was experimentally confirmed by Perrin [2]. 
The Brownian problem is, however, relevant not only to 
the motion of particles in material science but also to 
complex-system science such as life science, computer- 
information science, and/or social science [3-6]. There- 
fore, the Brownian problem is widely relevant to various 
science fields and is one of the most well-known study 
subjects in science. In the present study, applying a new 
mathematical system to diffusion problems, its utility is 
confirmed through solving them by concrete calculations. 
The mathematical system used here is also widely appli- 
cable to various science fields. 

The Fickian diffusion equation (F-equation), which is 
a continuous equation valid in a conservation system 
under the condition of no sink and source, is one of the 
basic equations in physics [7]. When the concentration 
dependence of the diffusivity and the existence of sink/ 
source are negligible in diffusion phenomena, the F- 
equation is a parabolic type linear partial differential equ- 
ation in the evolution equation. The motion of Brownian 
particles has been expressed by the F-equation in the 
time-space , although the F-equation is not 
directly relevant to the parabolic law. When the diffuse- 
vity depends on the concentration in , the dif- 
fusivity becomes a function of the independent variables  

via the concentration. Therefore, even if the F-equation 
depends only on  ,t x

t

, the mathematical solutions are 
impossible as far as another relation between the diffu-
sivity and the concentration is not given. Even if such 
another relation is given, the mathematical solutions of 
the nonlinear partial differential equation are almost im-
possible. 

Using the variable transformation of    and 

1
0.5xt   ,t x for the F-equation of , Boltzmann ob-

tained an ordinary differential equation (B-equation) of 

1  in 1894 [8]. The variable transformation is physically 
reasonable in relation to Refs. [1,2]. However, the B- 
equation has not yet been solved, since another relation 
mentioned above has not been devised. Then, Matano 
obtained a diffusivity profile by using a concentration 
profile of the interdiffusion experimentation between 
solid metals for the B-equation in 1933 [9]. The empiri- 
cal method has been widely used for the analysis of the 
interdiffusion experimentation in metallurgy as an only 
method to investigate the diffusivity profile. However, 
the mathematical solutions were not obtained yet. 

Recently, the author established a new mathematical 
system to solve Brownian problems in the parabolic 
space  , ,1 2 3  0.5, where 2 y t  0.5zt  and 3  
[10]. Then, two new equations I and II, which correspond 
to the Fickian first and second laws, were derived as a 
mathematical system in the parabolic space. The new 
equation I is an integro-differential equation relevant to 
the diffusion flux 

( , , , )t x y z

( , , , )t x y z
   in  1 2 3, ,1 2 3, ,J   . Apply-    
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   ing it to linear diffusion problems in the one-dimension 
space, the well-known solutions were obtained by the 
extremely simple calculations, compared with the previ-
ous ones. Further, the elegant analytical solutions of non- 
linear diffusion problems were, for the first time, ob- 
tained in accordance with the experimental results. How- 
ever, 

, , , , , ,J D Ct x y z t x y z  

( , , , )t x y z  

 , , ,J t x y z
( , , , )t x y z

( , , , )t x y z
 , ,

 is not applicable to those problems, 
since we cannot obtain it as a function of . In 
this meaning, the new equation I is completely different 
from the Fickian first law. 

In the present study, two and three dimensional prob- 
lems of the Brownian motion are solved using the new 
equation II. For linear diffusion problems, the F-equation 
of  becomes an ellipse type Poisson equation 
of 1 2 3   . Based on the mathematical theory, the 
solution of the Poisson equation is obtained as a linear 
combination of a particular solution and a complemen- 
tary function. The present study reveals that the particu-
lar solution is easily possible and the complementary 
function is a constant value to satisfy the given initial and 
boundary conditions. As a result, the solution is obtained 
as a linear combination of the well-known error functions. 
The new mathematical system in the parabolic space 
yields such elegant solution, compared with the previous 
one. Further, nonlinear diffusion problems were ap-
proximately investigated through the present analytical 
procedure of the linear problems. As a result, the con-
centration profile of two and three dimensional nonlinear 
problems was approximately obtained as an analytical 
expression, using the previously obtained solution of the 
one-dimension nonlinear problems. 

The new mathematical system applicable to whatever 
problems where the F-equation is applicable was estab- 
lished. From the concrete calculations of the new mathe- 
matical system, it was confirmed that the new mathe- 
matical system in the parabolic space is superior in ma- 
thematical analysis to the previous one in the ordinary 
time-space. The analytical solutions obtained here are not 
only physically reasonable but also mathematically ele- 
gant expressions. Hereafter, the new basic equations I 
and II will be more and more useful for analyzing Brow- 
nian problems. For the linear diffusion problems, the 
present mathematical analysis and that of Ref. [10] are 
exceedingly simple and elegant in calculation, compared 
with that of the previous integral transformation of La- 
place or Fourier and/or the previous variable-separation 
method. From the educational point of view, therefore, 
the new basic equations may take the place of the F- 
equation in the ordinary text description. 

2. New Basic Equations 

We summarize the new basic equations derived in the 
previous study [10]. The Fickian first law is defined as 

      (1) 

, , ,J t x y zin the time-space , where ,  
 , , ,C t x y z D and  are the diffusion flux, the concen- 

tration and the diffusivity, using the Dirac’s bracket rep- 
resentation. Applying the divergence theorem to the vec- 
tor quantity  , , ,J t x y z , the F-equation is obtained as 

   , , ,
,, , ,

C t x y z
D C t x y z

t


  


       (2) 

where the material conversation law is valid under the 
condition of no sink and source. Boltzmann transformed 
the equation of 

   ,
,,

C t x
D C t x

x x t

       
        (3) 

into the ordinary differential equation of  

   1 11

1 1 1

d dd
,

d d 2 d

C C
D

 
  
 

  
 

t

        (4) 

0.5xwhere   , 1 t   and 0C     because of 
the initial condition [8]. 

The physical meaning of (4) is not apparent. Then, the 
author derived the new basic equation I relevant to the 
diffusion flux in  1 2 3, ,   yielding 

   1 2 3 1 2 3, , , , .J D C              (5) 

Equation (5) corresponds to (1) and the physical 
meaning is thus apparent. Further, (5) satisfies the con- 
servation law, since it is derived from the F-equation in 
the conservation system. Here, 

 

 used in (5) and the 
notations used in the following are defined as follows. 

In the n-dimension parabolic space n   for n = 1, 
2, 3, the nabla vector, the concentration, the diffusivity 
and the diffusion flux are defined as 

     , , and .n n nC D J     

 For example, they are 1n   1n  for ,  

    1 2,nC C   2nfor  and 1 2 3, ,n     

3n

  

for   using i i    . The diffusivity D means a 
constant value D = D0 for  nD D0D C    and   
for 0D C  

 
. 

 1 2 31 2 3, , , ,J J J J     The element of  is ex-

pressed as 

0

0
exp d

2
i

i iJ J
D




     ,i for  




 

       (6) 

 0

0n
i i nJ D C


where .  



Applying the divergence theorem in the parabolic 
space to (5), the new basic equation II is obtained as 
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     

     1

2

 

 

  

   ,

n n n

n n n

D C

C








       (7) 

and it corresponds to (2). In general, further the follow- 
ing relation of 

 d

d i n i
i

C C
C D

D





   


for 1, 2,3i 

andC D

0D D

,     (8) 

must be mathematically valid between . 
Hereinbefore, the mathematical system of (5), (7) and 

(8) applicable to whatever Brownian problems where the 
F-equation is applicable was established. It will be re-
vealed in the following that the new mathematical system 
yields the elegant solutions.  

3. Linear Diffusion Problems 

In the case of , (6) is rewritten as  
2

0

exp
4

iC
D

 
 
 

 (1)
0 0i iJ D    for (1)

0 0n
i i nC C





 

3n 

. 

Using this equation for , (5) yields 

   

(1)
10

(1)
20

(1)
30

exp

exp

exp

n nC C   

2
1 0

2
2 0

2
3 0

4

4 .

4

C D

D

C D







    
    
    

D

      (9) 

If we multiply (9) by 0 , the diffusion flux repre-
sentation is given. Then, (7) becomes the Poisson equa-
tion given by 

 2 (

1 10

1
exp1) 2

0 04
2

n n

i n i i i
i i

C C D
D

  
 

      

 , , ,C t x y z

and 0

and 0

and 0

0 and 0

z x

z y

y z

x y z

 

 

 

 

 , , ,t x y z

 0 0
1 2,0,C C  

 , 0, ,C   

 1 2, ,

.   (10) 

The diffusion problems are solved using the ellipse 
type differential Equation (10) under the initial and boun- 
dary conditions in the following. The initial and boun- 
dary conditions of  are ex-
pressed as: 

 1 2 3, ,C   

 
 
 
 

0
1

0
2

0
3

for 0, 0, , ,

for 0, 0, , ,

for 0, 0, , ,

0 for 0, 0,, , ,

C C t yt x y z

C C t xt x y z

C C t xt x y z

C tt x y z

  

  

  

  

 

in the time-space  and these correspond to 

  ,0, ,C C 

  0
3, ,0C C 

, 

 

in the parabolic space 3  
 , ,C t x y

 ,C t x

     0 0
1 2, , 0,0 0, ,C C C C C

. In the same manner, 
those of  for the two-dimension 
space and  for the one-dimension space 

are 

 1 2,C   
 1C  

     

   0
1 , 00C C C

 and 



 

 
in the parabolic space, respectively. 

In the analysis of (10), it is easily found that the equa-
tion of 

(1)
0 0 0

1

π e rf 2
n

S n i i
i

C D C D 


   

   n L nC C

     (11) 

satisfies (10). In other words, (11) is the particular solu-
tion of (10). When the solution  

 2

1

0
n

i n
i

C 


 of the 
Laplace equation given by 

               (12) 

satisfies the initial and boundary conditions, the solution 
of (10) is obtained as 

     n L n S nC C C  

   
1

n

          (13) 

in accordance with the mathematical theory. 
Assuming the equation of 

L n i i
i

C F 




 

           (14) 

and using the variable-separation method, the solution of 
(12) is possible. Substituting (14) into (12), the relation 
of 

 2

2
1

d1
0

d

n
i i

i i i i

F

F


 



i

 

is valid. In order to satisfy this equation for an arbitrary 
 , the equation of 

 
2

2
2

d
0

d i i i
i

F 


 
         (15)   

 

2

1

0.
n

i
i






1 0

must be valid under the condition of 

               (16) 

Equation (16) yields   1n  for  and solution 
of (15) is expressed as 

 1 1 1 1 ,LC A A   

and

 

where 1 1A A   are arbitrary constants. In accor-
dance with the present initial and boundary conditions,  

 0 (1)
1 1 1 0 100 and πA A C D C    

 

 are obtained. There- 

fore, the well-known solution is obtained as 

 0
1 1 01 1 erf 2C C D      .          (17) 

Further, the solutions under other initial conditions are 
also shown in Ref. [10]. 
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Then, for  and , substituting the  2, 3n 
1

0
n

i
i






i i i i
ie A e

solution of (15) given by 

 i i iC A    
  

  ,i i
ie A e  

 
 


and

  

into (14), the general solution of (12) is obtained as 

 
1

i i

i

n

L n i
i

C A  






 


       (18) 

where i iA A   are arbitrary constants. However, 
there is no solution to satisfy the initial and boundary 
conditions. As a result, under the condition of 1   

2 3 0  

 i i iA A  

0A

, the general solution of (12) is obtained as 

 
1

n

L n
i

C 

 .          (19) 

The initial and boundary conditions give i  . 
Therefore, the present solution of (12) is obtained as 

  0

1

,
n

L n i
i

C C


   

where 0 (1)
0 0πi iC D C   in accordance with the initial 

and boundary conditions. 
The solution of (10) is thus obtained as 

   0

1

1 e r
n

n i
i

C C


  0f 2i D  
  2 or 3 for n  

(20a) 
and/or using    1erfc erf    for n , 3

  0
1

0 0
2 0

e rf c 2, , ,

e rf c 2 e rf

C C xt x y z

C y D t C



   

0

3 0c 2 .

D t

z D t

 
 

 
 

 i ik x
i iA e 

   
 

, ,

   (20b) 

As described above, the parabolic type F-equation be-
comes the ellipse type Poisson equation in the parabolic 
space. As a result, it was apparent that the diffusion be-
havior is incorporated into the inhomogeneous term of 
the ellipse type partial differential equation, and that the 
homogeneous partial differential equation plays a role 
only to determine the initial and boundary values. As 
shown in (20a) or (20b), the solution is expressed as the 
linear combination of the terms resulting from each 
component of the diffusion flux. The present solution is 
thus exceedingly simple and elegant, compared with the 
usual solution of  

 
3

1

3
2

1

, , ,

for

i ik xt

i

i
i

C t x y z e A e

k















 


 (21) 

where 1 2 3x x x y x z   . 
From the historical point of view, the diffusion prob-

lems have not ever been investigated in the parabolic 
space for such a long time. In the present study, however, 
it was revealed that the present analysis of Brownian 
problems in the parabolic space is exceedingly superior 
in mathematical calculations to the previous one in the 
ordinary time-space. 

4. Nonlinear Diffusion Problems 

The mathematical system for the one-dimension case of 
(5) and (8) given by 

  11 0
1 0

1

d
exp d

d 2

C
D J

D

  


          (22) 

and 

1 1 1

d d

d d

C C C D

D 
 

 
 

D

           (23) 


is applicable to the interdiffusion problems between me- 
tal plates. In order to discuss two and three dimensional 
problems, we summarize the results obtained in the pre- 
vious work [10].  

Using the effective diffusivity int  as an approxima- 
tion, the solutions of (22) and (23) were obtained as 

  m1

11 IF m IF

int int

erf erf
2 2

D D

D D
D

DD D



  





  
       




 

(24) 
and 

  m1

1IN m IN1

int int

erf erf
2 2

C C

C C
C

CD D



 





  
       




 

(25) 
under the initial condition of 

   
   

11 1

11 1

, for and

, for .

A A

B B

D D C C

D D C C

 

 

   

   
 

Here, the used notations are as follows. 

  2m A BD D D   , 2A BD D D   , 

   IF A Bln lnA BD D D D D  

0IF

, 

   , 2m A BC C C   , 2A BC C C   , 

 IN m m IFC C C D D D ,    

   IN A B A B A B2 D D D D D D   

intD D D

 

and  is the arithmetical mean of int int   
  2A BD D 1 0 for   or the geometrical mean of 

int int A BD D D D   for 1 0 . 
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0D D D  (24) and (25), it is 
re  becomes the

,

Here, if we set 
)

A B  in
markable that (25  solution when the dif- 

fusivity does not depend on the concentration, i.e., 
  0D D  . In other words, (24) and (25) are the gener- 

alized solutions regardless of the concentration depend- 
ence of the diffusivity. 

It is extremely difficult to solve the two or three di-
mensional nonlinear diffusion problems, even if it is ap-
proximate. Then, we rewrite (7) into 

  2
n

i n nC W
1i

  


           (26) 

where  

      ,
2n i i nD C C

D
   



      
 

   (27) 

The exact analysis of (26) is im since 

1

1 1n

n i i
i

W

possible,  C n  
 d nDan   are included in the right-hand side of 

Using t e effective diffusivity intD , physically and 
s o

(27).  
h

mathematically reasonable solution f (24) and (25) 
were obtained in Ref. [10]. Then, if we accept the effec-
tive diffusivity of int

iD D  in (27) as an approximation, 
(26) is rewritten as 

   
1 int

1
( ) 0.

2i n i i n ni
i

C
D

  



  

 
    

In accordance with the theory of the previous sectio
th

2
n

C 

 (28) 

n, 
e solution of (28) is obtained as 
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re andi i

nC  

(29) 
whe A B  are the integral constants to be d

y the init

clusions and Discussion 

iffusion problems

 in the previous work that the elegant one-dimen- 
si

[1] A. Einstein, “ inetischen Theorie 
der Warme Ge  in Ruhenden Flus-

eter- 
mined b ial and boundary conditions. In order to 
estimate the validity of the solution of (29), it is neces-
sary to compare it with the experimental concentration 
profile. 

5. Con

The mathematical system to solve the d  
in the parabolic space was established. The elegant solu- 
tions of Brownian problems were obtained in the present 
study. As a result, it was found that the new basic Equa- 
tion (5) is exceedingly useful for analyzing Brownian 
problems. 

For the linear Brownian problems, it was found that 
the diffusion equation becomes the ellipse type partial 
differential equation in the parabolic space. Further, the 
diffusion behavior is incorporated into the inhomogene- 
ous term of the ellipse type partial differential equation 
and the homogeneous differential equation plays a role 

only to determine the initial and boundary values. We 
can thus obtain the elegant solutions of Brownian prob- 
lems. 

For nonlinear Brownian problems, it was already con- 
firmed

on solutions are obtained as the analytical expressions 
in accordance with the experimental results [10]. In the 
present study, the concentration profile of the two or 
three dimensional case was also obtained as the analyti-
cal expression of (29) in accordance with the analytical 
method of the linear problems. It is, however, necessary 
to investigate the validity between the obtained solutions 
and the experimental concentration profile. Hereafter, the 
present mathematical system will be exceedingly useful 
for the Brownian problem in various science fields. 
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