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ABSTRACT  

In this paper, under the reduced form framework and “Bottom Up” method, a model for pricing a basket Loan-only 
Credit Default Swap (LCDS), with the negative correlation between prepayment and default, is established. A general 
pricing formula for it is obtained, where one factor CIR (Cox-Ingersoll-Ross) and ICIR (Inversed CIR) models are used 
to describe the negative correlation between prepayment and default. In this situation, the positivity of prepayment and 
default intensity processes are guaranteed. Numerical computations are presented. 
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Model 

1. Introduction 

During the last twenty years, the market for credit de-
rivatives has experienced rapid development with the 
increasingly prominent importance of derivatives which 
leads to the evolution and innovation of the credit mar-
ket. 

The international financial crisis began in the year 
2008 shocked the financial market even the global eco- 
nomy. Since assets securitization contributed a lot to the 
financial crisis, recent researches focus more and more 
on measuring the related risks and prices. Academic 
studies usually analyze the risks of interest rate, prepay-
ment, default etc., which are related to the asset securiti-
zation products by building mathematical models. Then 
they try to use methods of stochastic processes, partial 
differential equations and statistics etc. to obtain solu-
tions analytically, or use finite differential methods and 
the Monte Carlo simulation etc. to study empirical data 
and solution numerically. 

The two classical frameworks in the mathematical 
modeling of the problem are the structural and reduced- 
form methods. Among them, the reduced-form method 
has peerless advantages than the structural method in 
pricing credit derivatives with large asset pools. Then as 
a result, many new methods and techniques have been 
developed within the reduced-form framework in recent 
years, especially for pricing basket CDS, CDO and 
LCDS etc. The reduced-form method can be divided into 
two categories: “Bottom Up” ([1,2]) and “Top Down” 
([3,4]) frameworks. In the first one, the events probabil-
ity distributions of the whole asset pool are obtained after 
the intensity models of every reference contract being 

built. Nevertheless, in the second one, the model focuses 
on the whole asset pool, and the parameters of the model 
can be estimated from statistical data. Once the events 
are modeled, the pricing formula can be obtained by us-
ing PDEs or statistical methods. Furthermore, numerical 
methods such as finite differentiation can be applied for 
numerical analysis. 

We begin pricing basket CDS, which helps us better 
understand the pricing model of basket LCDS. Under the 
assumption that the default intensity follows a Vasicek 
model, Junmei Ma and Jin Liang ([5]) obtained the joint 
survive probability distribution function of N assets with 
PDEs. Tao Wang and Jin Liang ([6]) employed Monte 
Carlo method to verify the above model and analyzed its 
effective range. In more details, Jin Liang et al. ([7]) 
pointed out that the Vasicek model is accurate only when 
the asset pool is a small one, and it does not fit the reality 
when the scale of the asset pool increases to some extent. 
Therefore, it is reasonable that the positive default inten-
sity should be guaranteed by replacing the Vasicek mod-
el with a CIR model, though the correlation between dif-
ferent assets increase the dimension of the PDE and bring 
more difficulties in solving this problem. 

Loan Credit Default Swaps (LCDS) are almost identi-
cal to the standard Credit Default Swaps (CDS) except 
two features. 1) The reference obligation of a LCDS con-
tract is limited on loans; 2) LCDS contract can be can-
celled. This means that correlated prepayment and de-
fault should be both considered. Therefore, pricing a 
LCDS is not simply extending from pricing a standard 
CDS. The situation for basket LCDS makes problem 
more complicated. Literatures on pricing a single-name 
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LCDS include ex. Wei ([8]) and Liang & Wang ([9]). By 
use of “top down” framework, pricing a basket LCDS is 
considered in Liang and Zhou ([10,11]) and Wu and Li-
ang ([12]). 

In this article, the Bottom Up method is used to price 
basket CDS and LCDS. We use a factor model to de-
scribe the correlation of the prepayment and default 
among the references. This model is developed step by 
step from Pricing a basket CDS, the simplest basket 
LCDS (two references) to large-scale basket LCDS to 
obtain the formulae. 

The structure of the paper as follows: In the next Sec-
tion 2, a model of pricing basket CDS with CIR process 
is discussed. In Section 3, a simplest basket LCDS, 
which includes two loan references, is considered. Then 
the model is extended to a large scale of basket LCDS in 
Section 4. Numerical examples are shown in Section 5. 
Section 6 is conclusion. 

2. Basket CDS Pricing with CIR Intensities 

According to [5], the basket CDS can be priced given the 
joint survive probability of reference assets (here we as-
sume the assets are all residential mortgage loans) in the 
pool. If the prepayment is neglected, this CDS is a spe-
cial case of a basket LCDS. In the following paragraphs 
the single factor CIR model will be used to build to the 
dependency of the reference loans. 

We assume that the number of reference loans in the 
pool is , and describe the default process of every 
loan with non-homogenous Poisson process. The default 
intensities  satisfy the following single 
factor models: 

N

t  1,2, ,i i   N

.N

1

 1 , 1, 2, ,i i
t i t i tr i              (1) 

in which 0 i   are correlation coefficients, and  
and 
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i
t  are drove by CIR processes. 

Denote id  as the default times of loan .  1i i   N

id  are stopping times defined in a probability space 
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According to the solving method in [9,12], one can 
obtain 
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And thus the explicit ex
probability 

pression for the joint survive 
 survive

tP s  
. 

can be obtained, which is shown 
in Figure 1

ates that

Figure 2 is a price picture of large scale nth-to-default 
basket CDS, and the coefficients are the same as [6]. The 
picture indic  the pricing formula still corre-
sponds to reality when the asset amount exceeds that in 
[6]. Thus the CIR model fills the gap in the model using 
Vasicek process. The model can be applied to evaluate 
larger-scale basket CDS than those shown in the figure, 
and it is more proficient. Estimating from the current 
calculation efficiency, it takes about 10 to 20 minutes to 
price an nth-to-default basket CDS with 120 loans. 
 

 

Figure 1. Joint survival probability. 

Copyright © 2012 SciRes.                                                                                  ME 



T. WANG  ET  AL. 

Copyright © 2012 SciRes.                                                                                  ME 

173

For two reference loans, four intensity processes 
should be analyzed, which are the prepayment and de-
fault intensity processes ,ip id

t t   of loan  The 
prepayment and default times of loan , ip

 1,2 .i i 
i

 


 and id , 

are stopping times defined on a probability space 
  , , ,t t G G

0t
.  and  are defined similarly as 

in the previous section, tG , 
G 

1 2
t t th h   F   0t t
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 
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     (6) 

Figure 2. Fair price of basket nth-to-default CDS. 

3. Pricing the Simplest Basket LCDS 

3.1. Model Establishment 

For a basket LCDS, the contract may be terminated by 
prepayment or default of any loan in the pool, but the 
seller only compensates the loss caused by default. As a 
result, not only the case of loan termination, but also the 
reason (prepayment or default) of it, should be taken into 
consideration. Meanwhile, the prepayment and default of 
a loan are negatively correlated. In this section, a pricing 
model for the simplest basket LCDS, which includes two 
reference loans, is established. 

This basket LCDS is assumed to be “first to default”, 
which means that the contract seller will make the com
pensation to the contract  th
pool ne 

ny com-

-
e 
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1,2 . 

In order to price a basket LCDS, some probabilities 
need to be calculated as follows: 

 1p
tP s    1d

tP s : from time t , the probability of 
one prepaying (defaulting) and the other surviving before 
time s ; 
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t

s ; 
 2 p

tP s    2d
tP s : from time , the probability of 

prepaying (defaulting) of both loans before time 
t

s ; 
 2s

tP s : from time , the probability of surviving of 
both loans before time

t
s ;  buyer either of the loans in

 defaults. The compact remains valid when only o According to the assumptions we can obtain the ex-
pressions for the probabilities above as follows (here we 
take , 1,2i id ip i     ): 

loan is prepaid, and it will terminate without a
pensation if both loans are prepaid. 
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A basket LCDS pricing formula can thus be obtained 
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of LCDS in [13]. We assume that the expiration time of 
the contract is , the spread at time  is , the face 
or fair value of reference loan is F h s of pay-
ment are as be , with 
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 the 
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3.2. Model Solution 

The key of pricing basket LCDS is to calculate the prob-
abilities Equations (8)-(12), so that it is necessary to 
model default and prepayment intensities, which are 
negative correlated and both non-negative processes. We 
assume them to satisfy SDEs as follows: 
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where 1  and 2d n the former chapter, 

( )
d  are the same as i

x  is the gamma function, and  , ; z   is a con-
ent hyper geometric function: 
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For the solving process of , for 
please refer to [9,12-15]. In th ce of two- 
reference basket LCDS can be obtained explicitly. 

3.3. Numerical Simulation 

Based on the closed-form solution of two-reference bas-
ket LCDS obtained in the previous subsection, a calcula-
tion example is provided in this part, and the relevant 
parameter analysis is carried out. Thanks to the closed- 
form solutions, the computation is relatively fast and 
efficient, but the calculation amount is much larger than 
that of single-name LCDS. In this simulation the basic 
parameters are set as follows if they are not specified: 
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which reduces the termination probability by prepayment. 
As the duration of the contract increases, the expected 
number of payment increases as well, while the number 
of loans under protection does not change. As a result,  

 

Figure 3. Sensitivity between the price of basket LCDS and 

0 0 0, , , ,0  T r . 
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the spread of the basket LCDS decreases. 
As the method employed with single name LCDS, 

only the ratio of the system risk factor in id
t  and ip

t  
is changed. As a result, the values of these intensities 
remain almost unchanged. It can be indicated from Fig-
ure 4 above that the price of basket LCDS will increase 
as the increment in correlation between prepayment and 
default. 

4. Large-Scale Basket LCDS Pricing 
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Figure 4. Basket LCDS premiums vs correlations between 
prepayment and default. 
 

be  ,np md
tP s . Especially, all the loans survive when 

0n m  , so    0 ,0p d Ns
t tP s P s  is the joint survival 

probability of all N  loans. According to the assump-
tions in the framework of reduced form method, the ex-
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 , 1, , ; ,ij ija b i N j p d 
stants. The two expectations
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ij ij

t u z t uk z  
intervals can be dealt with 

 are all non-negative con-
 can be expressed as func-

 The other 
s the 

explicit expression of Equation (20) can be obtained, and 
the price prepayable nth-to-default LCDS can be derived. 

Although the model in this chapter provides us an ex-
plicit solution, the large scale of calculation prevents us 
from evaluating it directly. Here only the outcomes by 
Monte Carlo stimulation are demonstrated. It is indicated 
in Figure 5 that the price of a first-to-default LCDS with 
an asset pool of two loans (with an expiration of over two 
years) is lower than that of a single-name LCDS, which 
concords the property shown in the model and result in 
Sections 3.2 and 3.3. 

According to Figures 6 and 7, the price of first- 
to-default basket LCDS (corresponding to the case 
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Figure 5. Price surface of large scale nth-to-default LCDS. 
 

 

Figure 6. Price surface of nth-to-default LCDS (N = 30). 

 

Figure 7. Relationship between nth-to-default basket LCDS 
and n (N = 30). 
 
of basket LCDS first decreases then increases with ter-
minal time  as  increases, and this coincides the 
conclusion  3.3. e reason of this phenomenon may 
lie in this fact  we have assumed from the beginning that 
the LCDS 
when the liv  lo
default loan  sm ler than . As a result, the prob-
ability to clo tract by p epayment is rather small 

i ability of the

ly, 
ep nt ses and the number of 

payment decreases, resulting in an increasing spread rate. 

5. Conclusion 

In this paper, a single factor model with CIR process 
used in pricing a single-name LCDS is extended for 

 basket CDS and LCDS. The mod

tw

atsu and W. Zhen, “Valuation of 

[2] P. Dobranszky and W. Schoutens, “Generic Levy One- 
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when s small, and the surviving prob  
contract is larger with larger T . The augmentation in the 
times to pay spreads reduces the spread rate. Contrari

 n  

the pr ayme  probability increa

pricing a el is under 
reduced form framework, where the prepayment and 
default are two negative correlated processes following 
factor CIR processes. Pricing formulas for basket CDS, 

o-reference basket LCDS and large-scale basket LCDS 
are established and calculated. The first two prices are 
presented numerical examples analytically while the last 
one is shown by Monte Carlo simulation. From the re-
sults, analysis on parameters is carried on. 
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