

Making Holes in the Hyperspace of Subcontinua of Some Continua

José G. Anava, Enrique Castañeda-Alvarado, Fernando Orozco-Zitli

Facultad de Ciencias, Universidad Autónoma del Estado de México, Toluca, México Email: {jgao, eca}@uaemex.mx, forozcozitli@gmail.com

Received November 25, 2011; revised December 23, 2011; accepted December 30, 2011

ABSTRACT

Let X be a metric continuum. Let $A \in C(X)$, A is said to make a hole in C(X), if $C(X) - \{A\}$ is not unicoherent. In this paper, we characterize elements $A \in C(X)$ such that A makes a hole in C(X), where X is either a smooth fan or an Elsa continuum.

Keywords: Continuum; Elsa Continuum; Fan; Hyperspace; Property b); Unicoherence; Whitney Map

1. Introduction

A connected topological space Z is *unicoherent* if whenever $Z = A \cup B$, where A and B are connected and closed subsets of Z, the set $A \cap B$ is connected. Let Z be a unicoherent topological space and let z be an element of Z. We say that z makes a hole in Z if $Z - \{z\}$ is not unicoherent. A compactum is a nondegenerate compact metric space. A continuum is a connected compactum with metric d. Given a continuum X, the hyperspace of all nonempty subcontinua of X is denoted by C(X) and it is considered with the Hausdorff metric. It is known that the hyperspace C(X) is unicoherent (see [1, Theorem 19.8, p. 159]).

In the papers [2] and [3] the author present some partial solution to the following problem.

Problem. Let $\mathcal{H}(X)$ be a hyperspace of X such that $\mathcal{H}(X)$ is unicoherent. For which elements, $A \in \mathcal{H}(X)$, does A make a hole in $\mathcal{H}(X)$?

In the current paper we present the solution to that problem when X is either a smooth fan or an Elsa continuum and $\mathcal{H}(X) = C(X)$.

2. Preliminary

We use \mathbb{N} and \mathbb{R} to denote the set of positive integers and the set of real numbers, respectively. Let Z be a topological space and let A be a subset of Z. We denote int(A) the interior of A in Z. An arc is any homeomorphic space to the closed unit interval [0,1]. Let p,q in a topological space Z, [p,q] will denote an arc, where p and q are the end points of [p,q]. A $free\ arc$ in a continuum X is an arc [p,q] such that $[p,q]-\{p,q\}$ is open in X. A point z in a connected

topological space Z is a *cut point of (non-cut point of)* Z provided that $Z - \{z\}$ is disconnected (is connected). A *map* is a continuous function. A map $f: Z \to S^1$, where Z is a connected topological space and S^1 is the unit circle in the Euclidean plane \mathbb{R}^2 , *has a lifting* if there exists a map $h: Z \to \mathbb{R}$ such that $f = \exp \circ h$, where exp is the map from \mathbb{R} onto S^1 defined by $\exp(t) = (\cos(2\pi t), \sin(2\pi t))$. A connected topological space Z *has property* b) if each map $f: Z \to S^1$ has a lifting.

By an end point of X, we mean an end point in the classical sense, which means a point p of X that is a non-cut point of any arc in X that contains p. A subspace Y of a topological space Z is a deformation retract of Z if there exists a map $H: Z \times I \to Z$ such that, for each $x \in Z$, H(x,0) = x, $H(Z \times \{1\}) = Y$ and, for each $y \in Y$, H(y,1) = y. We say that a topological space Z is contractible if there exists $z \in Z$, such that $\{z\}$ is a deformation retract of Z. It is known that each contractible normal topological space has property b), and so it is unicoherent (see [4, Theorems 2 and 3, pp. 69 and 70]).

3. Smooth Fans

A point p of a continuum X is a ramification point provided that p is a point which is a common end point of three or more arcs in X that are otherwise disjoint. A fan is an arcwise connected, hereditarily unicoherent continuum with exactly one ramification point (hereditarily unicoherent means each subcontinuum is unicoherent). The ramification point of a fan will be called the vertex of the fan. If X is a fan and $x, y \in X$, then

Copyright © 2012 SciRes.

 $\begin{bmatrix} x,y \end{bmatrix}$ denotes the unique arc joining x and y. A fan X with vertex v is said to be *smooth* provided that if $\{x_n\}_{n=1}^{\infty}$ is a sequence in X such that it converges to a point $x \in X$, then the sequence $\{[v,x_n]\}_{n=1}^{\infty}$ converges to [v,x] in C(X).

To establish some notation, let X be a smooth fan with vertex v and let $E(X) = \{e_i : i \in \Delta\}$ be its endpoints set, where Δ is an infinity indexing set. It follows from definition of smoothness that the set:

$$N \lceil C(X) \rceil = \{ [v, x] : x \in X \}$$

is a natural homeomorphic copy of X in C(X). By the smoothness of X, we have that the set:

$$T[C(X)] = \bigcup_{i \in \Delta} C([v, e_i])$$

is a closed subspace of C(X). Furthermore, each hyperspace $C([v,e_i])$ is a 2-cell and

 $C([v,e_i]) \cap C([v,e_j]) = \{v\}$ for each $i, j \in \Delta$ which are different. The set of all elements of C(X) such that it contains v will be denoted by $C(\{v\},X)$.

Let $A \in C(X)$. We say that A is a *simple arc* if A is an arc such that $A \cap E(X) = \emptyset$ and, there exists a sequence $\{A_n\}_{n=1}^{\infty}$ of C(X) satisfying the following properties:

- 1) $A = \lim_{n \to \infty} A_n$ and
- 2) for each $n \in \mathbb{N}$,
 - a) $v \notin A_n$,
 - b) $int(A_n) \neq \emptyset$ and
 - c) $A \cap A_n \neq \emptyset$.

Since X is embeded in the Cantor fan (see [5]), we can regard X as embedded in the Euclidean plane \mathbb{R}^2 such that v = (0,0) and each $[v,e_i]$ is a convex arc, where $e_i \in E(X)$. Note that for r = 0, $re_i = v$ for each $e_i \in E(X)$. Throughout this section h will denote the map from $X \times [0,1]$ onto T[C(X)] defined by h(x,t) = [tx,x]. We assume in this section that if $[a,b] \subset [v,e_i]$, then the distance between v and a is less than the distance between v and b.

Lemma 3.1. Let X be a smooth fan with vertex v. If [a,b] is an arc contained in $[v,e_{i_0}]$, where $e_i \in E(X)$ then:

of X such that $[v,b] = \lim_{n \to \infty} [v,x_n]$ and, for each $n \in \mathbb{N}$, $x_n \notin [v,e_{i_0}]$.

2) If $e_{i_0} \notin [a,b]$ and $int([a,b]) \neq \emptyset$, then $[b,e_{i_0}]$ is a free arc in X.

Proof. The proof of (1) is easy.

In order to prove (2), we suppose that $\left[b,e_{i_0}\right]$ is not a free arc in X. Then there exists $y_0 \in \left[b,e_{i_0}\right] - \left\{b,e_{i_0}\right\}$

such that $y_0 \not\in int\left(\left[b,e_{i_0}\right]\right)$. Hence, $y_0 \not\in int\left(\left[v,e_{i_0}\right]\right)$. Then, there exists a sequence $\left\{y_n\right\}_{n=1}^\infty$ of $X-\left[v,e_{i_0}\right]$ such that $y_0=\lim y_n$. Since X a smooth fan, $\left[v,y_0\right]=\lim \left[v,y_n\right]$. Notice that $\left[a,b\right]\subset \left[v,b\right]\subset \left[v,y_0\right]$. Let $z_0\in int\left(\left[a,b\right]\right)$. There exists a sequence $\left\{z_n\right\}_{n=1}^\infty$ of X such that $z_0=\lim z_n$ and, for each $n\in\mathbb{N}$, $z_n\in \left[v,y_n\right]$. Clearly $v\not\in int\left(\left[a,b\right]\right)$. Hence, $z_0\not=v$. Let $\varepsilon>0$ be such that $v\not\in B_\varepsilon\left(z_0\right)$ and $B_\varepsilon\left(z_0\right)\subset \left[a,b\right]$. Let $n_0\in\mathbb{N}$ be large enough such that $z_{n_0}\in B_\varepsilon\left(z_0\right)\subset \left[a,b\right]\subset \left[v,e_{i_0}\right]$. Thus, $z_{n_0}\in \left[v,e_{i_0}\right]\cap \left[v,y_{n_0}\right]$. Since X is a fan and $y_{n_0}\in X-\left[v,e_{i_0}\right]$, $z_{n_0}=v$, this is a contradiction. \square

Since the Hilbert cube, Q, is homogeneous (see [1, Theorem 11.9.1, p. 93]) and $Q - \{(1,1,1,\cdots)\}$ is contractible, we have the following result.

Lemma 3.2. Let $q \in Q$. Then $Q - \{q\}$ has property b).

Theorem 3.3. Let X be a smooth fan with vertex v. If A is a subcontinuum of X such that $v \in A$ and, for each $e_i \in E(X)$, $A \nsubseteq [v,e_i]$, then A does not make a hole in C(X).

Proof. We are going to prove that $C(\{v\}, X) - \{A\}$ is a deformation retract of $C(X) - \{A\}$. Notice that, for each $B \in T[C(X)]$, there exists $(x_B, t_B) \in X \times [0, 1]$ such that $h(x_B, t_B) = B$. We define

$$H = (B,t) \begin{cases} B, & \text{if } B \in C(\{v\}, X), \\ \lceil (t-1)t_B x_B, x_B \rceil, & \text{if } B \in T \lceil C(X) \rceil. \end{cases}$$

Clearly H is a map. Then, $C(\{v\}, X) - \{A\}$ is a deformation retract of $C(X) - \{A\}$. Since Q is homeomorphic to $C(\{v\}, X)$ (see [6, Theorem 3.1, p. 282]), $C(\{v\}, X) - \{A\}$ has property b) (see Lemma 3.2). Therefore $C(X) - \{A\}$ has property b) (see [2, Proposition 9, p. 2001]). \square

Lemma 3.4. Let X be a smooth fan with vertex v and let $[a,b] \in C([v,e_{i_0}])$ be a simple arc contained in X, for some $e_{i_0} \in E(X)$. Then

$$int\left(\left[b,e_{i_0}\right]\right)=\left[b,e_{i_0}\right]-\left\{b\right\}.$$

Proof. Since [a,b] is a simple arc, there exists a sequence $\{A_n\}_{n=1}^{\infty}$ of C(X) that satisfies the required properties of the definition. Notice that, for each $n \in \mathbb{N}$, $A_n \in T[C(X)]$ and $A_n \subset [v,e_{i_0}]$. Given $n \in \mathbb{N}$, let a_n , $b_n \in [v,e_{i_0}]$ such that $A_n = [a_n,b_n]$.

We need to prove the following claim.

Claim. b, e_{i_0} is a free arc in X. Let $n \in \mathbb{N}$. First, we suppose that there exists $n_0 \in \mathbb{N}$ such that $b_{n_0} \in [v,b]$. Since $int([a_{n_0},b_{n_0}]) \neq \emptyset$ and $e_{i_0} \not\in \left[a_{n_0}, b_{n_0}\right], \ \left[b_{n_0}, e_{i_0}\right]$ is a free arc (see (2) of Lemma 3.1). Hence, b, e_{i_0} is a free arc in X.

Now, we assume that, for each $n \in \mathbb{N}$, $b_n \in [b, e_{i_0}] - \{b\}$. Let $y \in [b, e_{i_0}] - \{b, e_{i_0}\}$. Notice that $b = \lim b_n$ and d(b, y) > 0. Then there exists $n_0 \in \mathbb{N}$, such that $d(b,b_{n_0}) < d(b,y)$. Since $[v,e_{i_0}]$ is a convex arc of \mathbb{R}^2 , we have that $y \in [b_{n_0}, e_{i_0}] - \{b_{n_0}, e_{i_0}\}$. Since $int(A_{n_0}) \neq \emptyset$. $\begin{bmatrix} b_{n_0}, e_{i_0} \end{bmatrix}$ is a free arc in X (see (2) of Lemma 3.1). Thus, $\left[b_{n_0}, e_{i_0}\right] - \left\{b_{n_0}, e_{i_0}\right\}$ is an open subset of X such that $y \in [b_{n_0}, e_{i_0}] - \{b_{n_0}, e_{i_0}\} \subset [b, e_{i_0}] - \{b, e_{i_0}\}$. Hence $b, e_{i_0} - b, e_{i_0}$ is an open subset of X. This proves the claim.

By Claim, $\left\lceil b, e_{i_0} \right\rceil$ is a free arc in X . Since $\begin{bmatrix} v, e_{i_0} \end{bmatrix} = \begin{bmatrix} v, a \end{bmatrix} \cup \begin{bmatrix} a, b \end{bmatrix} \cup \begin{bmatrix} b, e_{i_0} \end{bmatrix}, b \notin int(\begin{bmatrix} b, e_{i_0} \end{bmatrix}).$ Suppose that $e_{i_0} \notin int([b,e_{i_0}])$. Then there exists a sequence $\{y_m\}_{m=1}^{\infty}$ in X such that $e_{i_0} = \lim y_m$ and, for each $m \in \mathbb{N}$, $y_m \notin [b, e_{i_0}]$. Since $e_{i_0} = \lim y_m$, we may assume that, for each $m \in \mathbb{N}$, $y_m \notin [v, e_{i_0}]$. Since X is a smooth fan, $\lceil v, e_{i_0} \rceil = \lim [v, y_m]$. Let $z_0 \in \lceil b, e_{i_0} \rceil - \{b, e_{i_0}\} \subset \lceil v, e_{i_0} \rceil$. There exists a sequence $\{z_m\}_{m=1}^{\infty}$ such that, $z_0 = \lim z_m$ and, for each $m \in \mathbb{N}$, $z_m \in [v, y_m]$. Since $b, e_{i_0} - b, e_{i_0}$ is an open set in X and $z_0 \in \left\lceil b, e_{i_0} \right\rceil - \left\{ b, e_{i_0} \right\} \text{ , there exists } m_0 \in \mathbb{N} \quad \text{such that}$ $z_{m_0} \in [b, e_{i_0}] - \{b, e_{i_0}\} \subset [v, e_{i_0}]$. Then $z_{m_0} \in [v, e_{i_0}] \cap [v, y_m] = \{v\}$, this is a contradiction. Therefore $int([b,e_{i_0}]) = [b,e_{i_0}] - \{b\}$. \square

Theorem 3.5. Let X be a smooth fan with vertex $\{v\}$. If $A \in C(X)$ is a simple arc, then A makes a hole in C(X).

Proof. We may assume that $A = [a,b] \in C(\lceil v, e_{i_0} \rceil)$, where $e_{i_0} \in E(X)$ and $t_0 \in [0,1]$ such that $a = t_0 b$.

$$\mathcal{A} = \left(C(\{v\}, X) \cup \left(T \left\lceil C\left(X - int\left(\left\lceil b, e_{i_0} \right\rceil\right)\right)\right)\right]\right) - \left\{A\right\}$$

and

$$\mathcal{B} = h\left(\left\lceil b, e_{i_0} \right\rceil \times \left[0, 1\right]\right) - \left\{A\right\}.$$

By Lemma 3.4, $X - int(b, e_{i_0})$ is a smooth fan. Then $\left(T\left[C\left(X-int\left(\left[b,e_{i_0}\right]\right)\right)\right]\right)-\{A\}$ is a connected and closed subset of $C(X) - \{A\}$. So, A is a connected and closed subset of $C(X) - \{A\}$.

Notice that \mathcal{B} is homeomorphic to

$$\begin{bmatrix} b, e_{i_0} \end{bmatrix} \times [0,1] - \{(b,t_0)\}$$
. Since $\begin{bmatrix} b, e_{i_0} \end{bmatrix} \times [0,1] - \{(b,t_0)\}$ is a connected subset of $X \times [0,1] - \{(b,t_0)\}$, we have that $\mathcal B$ is a connected subset of $C(X) - \{A\}$. Clearly $\mathcal B$ is a closed subset of $C(X) - \{A\}$.

Notice that $C(X) - \{[a,b]\} = A \cup B$ and:

$$\mathcal{A} \cap \mathcal{B} = h((\{b\} \times [0,1]) - \{(b,t_0)\}) \cup h([b,e_{i_0}] \times \{0\}).$$

Let:

$$\mathcal{F}_{\scriptscriptstyle 1} = \left(h\left(\left(\left\{b\right\} \times \left[0, t_0\right]\right) - \left\{\left(b, t_0\right)\right\}\right)\right) \cup h\left(\left\lceil b, e_{i_0}\right\rceil \times \left\{0\right\}\right)$$

and

$$\mathcal{F}_2 = h\left(\left(\left\{b\right\} \times \left[t_0, 1\right]\right) - \left\{\left(b, t_0\right)\right\}\right).$$

Clearly, $\mathcal{F}_1 \cup \mathcal{F}_2 = \mathcal{A} \cap \mathcal{B}$ is a separation of $\mathcal{A} \cap \mathcal{B}$. Then $C(X) - \{A\}$ is not unicoherent. \square

Theorem 3.6. Let X be a smooth fan with vertex v, let $e_{i_0} \in E(X)$ and let $a \in [v, e_{i_0}] - \{e_{i_0}\}$. Then a, e_{i_0} does not make a hole in C(X).

$$G: \left(C(X) - \left\{ \left[a, e_{i_0}\right] \right\} \right) \times [0, 1] \to C(X) - \left\{ \left[a, e_{i_0}\right] \right\}$$

be defined by:

$$G(A,t) = \{ta : a \in A\}$$
.

It is easy to prove that G is well defined. In order to show that G is continuous, we define $G': C(X) \times [0,1] \rightarrow C(X)$ by $G'(A,t) = \{ta: a \in A\}$. We prove that G is continuous. Let $\{(A_n, t_n)\}_{n=1}^{\infty}$ be a sequence in $C(X) \times [0,1]$ and $(A_0, t_0) \in C(X) \times [0,1]$ such that $(A_0, t_0) = \lim (A_n, t_n)$. We suppose that there exists $B \in C(X)$ such that $B = \lim_{n \to \infty} G'(A_n, t_n)$. We will show $B = G'(A_0, t_0)$. Let $b \in B$. Consider two sequences $\{b_n\}_{n=1}^{\infty}$ and $\{a_n\}_{n=1}^{\infty}$ of X such that

 $b = \lim b_n$ and, for each $n \in \mathbb{N}$, $b_n \in G'(A_n, t_n)$, $a_n \in A_n$ and $b_n = t_n a_n$. Taking subsequences if necessary, we may assume that there exists $a_0 \in X$ such that $a_0 = \lim a_n$. Then $a_0 \in A_0$. Moreover, $t_0 a_0 = \lim t_n a_n = b$ and, so $b \in G'(A_0, t_0)$. This proves

 $t_0a_0=\lim t_na_n=b$ and, so $b\in G'(A_0,t_0)$. This proves that $B\subset G'(A_0,t_0)$. Now, let $t_0a_0\in G'(A_0,t_0)$. Then $a_0\in A_0$. Then there exists a sequence $\{a_n\}_{n=1}^\infty$ in X such that $a_0=\lim a_n$ and, for each $n\in \mathbb{N}$, $a_n\in A_n$. So $t_0a_0=\lim t_na_n$. Since, for each $n\in \mathbb{N}$,

 $t_n a_n \in G'(A_n, t_n), t_0 a_0 \in B$. Thus $B = G'(A_0, t_0)$.

Hence, G is a map. So $\{v\}$ is a deformation retract of $C(X) - \{ a, e_{i_0} \}$.

Then $C(X) - \{[a, e_{i_0}]\}$ is contractible. Therefore $C(X) - \{[a, e_{i_0}]\}$ has property b) (see [2, Proposition 9, p. 2001]). \square

Theorem 3.7. Let X be a smooth fan with vertex v, let $e_{i_0} \in E(X)$ and let $[a,b] \in C([v,e_{i_0}])$ such that $e_{i_0} \notin [a,b]$ and $[b,e_{i_0}]$ is not a free arc of X. Then [a,b] does not make a hole in C(X).

Proof. In light of Proposition 9 of [2, p. 2001], it suffices to prove that there exist two connected, closed subsets \mathcal{D} and ε of $C(X) - \{[a,b]\}$ which have property b) and the intersection of them is connected.

We may assume that there exists $t_0 \in [0,1]$ such that $t_0b = a$.

We consider two cases.

Case 1. $t_0 = 0$.

Then [a,b] = [v,b]. Let $\mathcal{D} = T[C(X)] - \{[a,b]\}$ and $\varepsilon = C(\{v\}, X) - \{[a,b]\}$. Clearly \mathcal{D} has property b). By Theorem 3.1 of [6, p. 282], $C(\{v\}, X)$ is a Hilbert cube. By Lemma 3.2, ε has property b). Notice that $(\mathcal{D} \cap \varepsilon) - \{[a,b]\} = N[C(X)] - \{[a,b]\}$. Clearly

 $N[C(X)] - \{[a,b]\}$ is homeomorphic to $X - \{b\}$.

Since $X - \{b\}$ is connected, $(\mathcal{D} \cap \varepsilon) - \{[a,b]\}$ is connected. By Proposition 8 of [2],

 $C(X) - \{[a,b]\} = (\mathcal{D} \cup \varepsilon) - \{[a,b]\}$ has property b).

Case 2. $t_0 > 0$. Consider the following sets:

$$\mathcal{D} = h(X \times [t_0, 1] - \{(b, t_0)\})$$

and

$$\varepsilon = C(\lbrace v \rbrace, X) \cup h(X \times [0, t_0] - \lbrace (b, t_0) \rbrace).$$

Clearly $\mathcal D$ and ε are connected, closed subsets of $C(X) - \{[a,b]\}$ and $\mathcal D \cap \varepsilon = h(X \times \{t_0\} - \{(b,t_0)\})$.

Notice that $\mathcal{D} \cap \varepsilon$ is homeomorphic to $X - \{b\}$. So, since $X - \{b\}$ is connected, $\mathcal{D} \cap \varepsilon$ is connected.

Now, we are going to prove that \mathcal{D} and ε have

property b). If we define $H: \mathcal{D} \times [0,1] \to \mathcal{D}$ by H(h(x,t),s) = h(x,t+(1-t)s), we have $h(X \times \{1\})$ is a deformation retract of \mathcal{D} . Since $h(X \times \{1\})$ is contractible, $h(X \times \{1\})$ has property b) (see [2, Proposition 9, p. 2001]). Hence, \mathcal{D} has property b) (see [2, Proposition 9, p. 2001]).

In order to prove that ε has property b), note that $C(\{v\},X)$ is a deformation retract of ε . By Theorem 3.1 of [6, p. 282], $C(\{v\},X)$ is homeomorphic to a Hilbert cube. Thus, $C(\{v\},X)$ has property b). Hence, ε has property b) (see Proposition 9 of [2, p. 2001]). Therefore $C(X) - \{[a,b]\} = \mathcal{D} \cup \varepsilon$ has property b). \square

Classification

Theorem 3.8. Let X be a smooth fan with vertex v and $A \in C(X)$. Then A makes a hole in C(X) if and only if A a simple arc.

Proof. Let $A \in C(X)$ be such that A makes a hole in C(X). By Theorem 3 of [2, p. 2001] and by Theorem 3.3, A is an arc [p,q]. By Theorems 3.6 and 3.7, $[p,q] \subset [v,e_{i_0}] - \{v,e_{i_0}\}$ for some $e_{i_0} \in E(X)$, and $[q,e_{i_0}]$ is a free arc in X. In order to prove that [p,q] is a simple arc, let $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ be sequences in $[p,q] - \{p,q\}$ and $[q,e_{i_0}] - \{q\}$, respectively, such that $p = \lim a_n$ and $q = \lim b_n$. Then $[p,q] = \lim [a_n,b_n]$ and, for each $n \in \mathbb{N}$, $v \notin [a_n,b_n]$, $int([a_n,b_n]) \neq \emptyset$ and $[p,q] \cap [a_n,b_n] \neq \emptyset$. Therefore A is a simple arc.

The sufficiency follows from Theorem 3.5.

4. Elsa Continua

A compactification of $[0,\infty)$ with an arc as the remainder is called an *Elsa continuum*. The Elsa continua was defined by S. B. Nadler Jr., in [7]. A particular example of an Elsa continuum is the familiar $\sin(1/x)$ -continuum. There are uncountably many topologically different Elsa continua, the different topological types being a consequence of different ways $[0,\infty)$ "patterns into" the remainder of the compactification [8, p. 184]. Let X be a continuum. A *Whitney map* for C(X) is a continuous function $\mu: C(X) \to [0,1]$ that satisfies the following two conditions:

- 1) for any A, $B \in C(X)$ such that $A \subset B$ and $A \neq B$, $\mu(A) < \mu(B)$,
 - 2) $\mu(\lbrace x \rbrace) = 0$ for each $x \in X$ and c) $\mu(X) = 1$.

A Whitney block in C(X), respectively a Whitney level in C(X), is a set of the form $\mu^{-1}([s,t])$, respectively $\mu^{-1}(t)$, where $0 \le s \le t \le 1$. It is known that Whitney maps always exist (see [1, Theorem 13.4, p. 107]). Moreover, Whitney blocks and Whitney levels in

C(X) are continua (see [1, Theorem 19.9, p. 160]).

Throughout this section $X = I \cup R$ will denote a Elsa continuum, where I is the remainder of X and R is homeomorphic to the half-ray $[0,\infty)$.

Lemma 4.1. Let $\mu: C(X) \to \mathbb{R}$ be a Whitney map, let $t \in (0, \mu(I)]$ and let $A_0 \in \mu^{-1}(t) \cap C(I)$. Then $\mu^{-1}([0,t]) - \{A_0\}$ has property b).

Proof. We consider $\mu_1 = \mu|_{C(I)}$. It is easy to prove that $\mathcal{A} = \mu_1^{-1}([0,t]) - \{A_0\}$ has property b).

Let $\mathcal{B} = \mathcal{A} \cup \mu^{-1}(0)$. Since $\mu^{-1}(0)$ has property b) (see [9, 12.66, p. 269]) and $\mathcal{A} \cap \mu^{-1}(0) = \mu_1^{-1}(0)$, \mathcal{B} has property b) (see [2, Proposition 8, p. 2001]).

Let $f: \mu^{-1}([0,t]) - \{A_0\} \to S^1$ be a map. Then there exists a map $h_0: \mathcal{B} \to \mathbb{R}$ such that $\exp \circ h_0 = f|_{\mathcal{B}}$.

Given $A \in \mu^{-1}((0,t]) \cap C(R)$, it is an arc contained in R and it is determined by its end point, i_A , lying near to the end point of R. Let α_A be an order arc in C(X) from i_A to A. Since α has property b), there exists a map $h_A: \alpha \to \mathbb{R}$ such that $\exp \circ h_A = f|_{\alpha}$ and $h_A(\{i_A\}) = h_0(\{i_A\})$.

We define $h: \mu^{-1}([0,t]) - \{A_0\} \to \mathbb{R}$ by

$$h(A) \begin{cases} h_0(A), & \text{if } A \in \mathcal{B}, \\ h_A(A), & \text{if } A \in \mu^{-1}T([0,t]) \cap C(R). \end{cases}$$

In order to prove that h is continuous, let $\{B\}_{n=1}^{\infty}$ be a sequence of $\mu^{-1}([0,t])-\{A_0\}$ such that $\lim B_n=B_0$ for some $B_0\in\mu^{-1}([0,t])-\{A_0\}$. We consider two cases.

Case 1. For each $n \in \mathbb{N}$, $B_n \in \mathcal{B}$.

Since \mathcal{B} is a closed subset of $\mu^{-1}([0,t])-\{A_0\}$, $B_n \in \mathcal{B}$. Then $limh(B_n)=h(B_0)$.

Case 2. For each $n \in \mathbb{N}$, B_n is an arc contained in R

We consider two subcases.

Subcase 1. $B_0 \subset R$.

Let $p \in R$ be such that $\bigcup_{n=0}^{\infty} B_n \subset [p,q]$, where q denotes the end point of R. Then $\mu|_{C([p,q])}$ is a Whitney map for C([p,q]). Since $(\mu|_{C([p,q])})^{-1}(0)$ is an arc, it has property b). By Lemma 4 of [10, p. 254], $(\mu|_{C([p,q])})^{-1}([0,t])$ has property b). Then there exists a map $g:(\mu|_{C([p,q])})^{-1}([0,t]) \to \mathbb{R}$ such that $\exp \circ g = f|_{C([p,q])}$ and $g(\{i_{B_1}\}) = h_0(\{i_{B_1}\})$. Notice that $h_0|_{(\mu|C([p,q]))}^{-1}(0)$ and $g|_{(\mu|C([p,q]))}^{-1}(0)}^{-1}$ are liftings of $f|_{(\mu|C([p,q]))}^{-1}(0)$ and $g(\{i_{B_1}\}) = h_0(\{i_{B_1}\})$. Then

$$h_0\big|_{\left(\mu\middle|C([p,q])\right)^{-}(0)}^{\quad \ -1}=g\big|_{\left(\mu\middle|C([p,q])\right)^{-}(0)}^{\quad \ -1}.$$

Given $n \in \mathbb{N} \cup \{0\}$. Notice that h_{B_n} y $g\big|_{\alpha_{B_n}}$ are liftliftings of $f\big|_{\alpha_{B_n}}$ and $h_{B_n}\left(i_{B_n}\right) = h_0\left(i_{B_n}\right) = g\big|_{\alpha_{B_n}}\left(i_{B_n}\right)$. Then $h_{B_n} = g\big|_{\alpha_{B_n}}$. Hence,

$$h(B_0) = h_{B_0}(B_0) = g(B_0) = \lim g(B_n)$$
$$= \lim h_{B_n}(B_n) = \lim h(B_n).$$

Subcase 2. $B_0 \subset I$.

We can consider that, for any $n,m\in\mathbb{N}$, $i_{B_n}\neq i_{B_m}$, if $n\neq m$.

Since $B_0 = \lim B_n$ and X is a compact space, we may assume that there exists $i_{B_0} \in B_0$ such that $i_{B_0} = \lim i_{B_n}$. We can suppose, taking subsequence if it is necessary, that there exists a subcontinuum α_{B_0} of C(X) such that $\alpha_{B_0} = \lim \alpha_{B_n}$. It is easy to show that α_{B_0} is either an order arc from b_0 to b_0 or a one point-set.

Given $n \in \mathbb{N} \cup \{0\}$, we have $\mu|_{\alpha_{B_n}}$ is an homeomorphism between $[0, \mu(B_n)]$ and α_{B_n} . Let

 $g_n : [0, \mu(B_n)] \to \alpha_{B_n}$ be such that $g_n = (\mu|_{\alpha_{B_n}})^{-1}$. By Lemma 3.1 of [7, p. 330], we can assume that X is a subset of \mathbb{R}^2 . Let

$$D = X \times \{0\} \cup \left(\bigcup_{n=0}^{\infty} \left(\left\{i_{B_n}\right\} \times \left[0, \mu(B_n)\right]\right)\right).$$

Notice that D is a subset of the Euclidian space \mathbb{R}^3 and $X \times \{0\}$ is a deformation retract of D. Then D has property b).

We define $f_1: D \to \mu^{-1}([0,t_0])$ by

$$f_1(x,t) = \begin{cases} x & \text{if } t = 0, \\ g_n(t), & \text{if } (x,t) \in \{i_{B_n}\} \times [0, \mu(B_n)]. \end{cases}$$

It is easy to prove that f_1 is a map. Since D has property b), there exists a map $h_3:D\to\mathbb{R}$ such that $\exp\circ h_3=f\circ f$ and $h_3\left(i_{B_1},0\right)=h_0\left(f_1\left(i_{B_1},0\right)\right)_1$. Then $h_3\big|_{X\times\{0\}}=h_0\circ f_1\big|_{X\times\{0\}}$. Thus, given $n\in\mathbb{N}\cup\{0\}$, it can prove that $h_3\big|_{\{i_{B_n}\}\times\left[0,\mu(B_n)\right]}=h_{B_n}\circ f_1\big|_{\{i_{B_n}\}\times\left[0,\mu(B_n)\right]}$. Hence,

 $h(B_0) = \lim h(B_n)$.

This proves that $\mu^{-1}([0,t])-\{A_0\}$ has property b).

Theorem 4.2. Let $X = I \cup R$ be an Elsa continuum and let $A \in C(I)$. Then A does not make a hole in C(X).

Proof. In light of Proposition 8 of [2], it suffices to prove that there exist two connected and closed subsets \mathcal{A} and \mathcal{B} of $C(X) - \{A\}$, which have property b) and the intersection of them is connected.

Let $\mu: C(X) \to [0,1]$ be a Whitney map. Let

$$\begin{split} t &= \mu(A) \;, \quad \mathcal{A} = \mu^{-1}\big(\big[t,1\big]\big) - \big\{A\big\} \quad \text{and} \\ \mathcal{B} &= \mu^{-1}\big(\big[0,t\big]\big) - \big\{A\big\} \;\;. \quad \text{Clearly} \quad \mathcal{A} \cup \mathcal{B} = C\big(X\big) - \big\{A\big\} \;\;, \\ \mathcal{A} \quad \text{and} \quad \mathcal{B} \quad \text{are connected and closed subsets of} \\ C(X) - \big\{A\big\} \;. \end{split}$$

By Lemma 13 of [2, p. 2004], \mathcal{A} has property b) and, by Lemma 4.1, \mathcal{B} has property b).

In order to show that $A \cap B$ is connected, notice that $A \cap B = \mu^{-1}(\{t\}) - \{A\}$ and $A \in \mu^{-1}(\{t\}) \cap C(I)$. By Corollary 3 of [11, p. 386],

 $\mu^{-1}(\{t\}) = \left(\mu^{-1}(\{t\}) \cap C(I)\right) \cup \left(\mu^{-1}(\{t\}) \cap C(R)\right) \text{ and } \mu^{-1}(\{t\}) \cap C(R) \text{ approximates the whole continuum } \mu^{-1}(\{t\}) \cap C(I). \text{ Hence, } \mathcal{A} \cap \mathcal{B} \text{ is connected.}$

Theorem 4.3. Let $X = I \cup R$ be an Elsa continua. If $A \in C(X)$ such that A is homeomorphic to X, then A does not make a hole in C(X).

Proof. In light of Proposition 2.4 of [3, p. 3], it suffices to prove that there exists a closed neighborhood \mathcal{W} of A in C(X) such that $\mathcal{W}-\{A\}$ has property b) and $bd_{C(X)}(\mathcal{W})$ is connected $(bd_{C(X)}(\mathcal{W}))$ denotes the boundary of \mathcal{W} in C(X).

Let $\mu: C(X) \to [0,1]$ be a Whitney map. Let $\mathcal{W} = \mu^{-1}([\mu(I),1])$. Clearly \mathcal{W} is a closed neighborhood of A. Since $bd_{C(X)}(\mathcal{W}) = \mu^{-1}(\mu(I))$, $bd_{C(X)}(\mathcal{W})$ is connected. By [12, Theorem 4.3, p. 217], \mathcal{W} is a 2-cell. Moreover, A is an element of its manifold boundary (see [11, Lemma 2, p. 386]). Then $\mathcal{W} - \{A\}$ is contractible. Therefore $\mathcal{W} - \{A\}$ has property b) (see [2, Proposition 9, p. 2001]).

Classification

Theorem 4.4. Let $X = I \cup R$ be an Elsa continuum and let $A \in C(X)$. Then A makes a hole in C(X) if and only if A is a free arc pq such that $p,q \notin int(pq)$.

Proof. Let $A \in C(X)$ be such that A makes a hole in C(X). By Theorem 3 of [2, p. 2001] and Theorems 4.2 and 4.3, A is an arc pq contained in R. So, A is a free arc in X. By Theorem 4 of [2, p. 2001], $p, q \notin int(pq)$.

The sufficiency follows from Theorem 1 of [2, p. 2001].

REFERENCES

- A. Illanes and S. B. Nadler Jr., "Hyperspaces: Fundamentals and Recent Advances," Marcel Dekker, Inc., New York, 1999.
- [2] J. G. Anaya, "Making Holes in Hyperspaces," *Topology and Its Applications*, Vol. 154, No. 10, 2007, pp. 2000-2008. doi:10.1016/j.topol.2006.09.017
- [3] J. G. Anaya, "Making Holes in the Hyperspace of Subcontinua of a Peano Continuum," *Topology Proceedings*, Vol. 37, 2011, pp. 1-14.
- [4] S. Eilenberg, "Transformations Continues en Circonférence et la Topologie du Plan," Fundamenta Mathematicae, Vol. 26, 1936, pp. 61-112.
- [5] C. Eberhart, "A Note on Smooth Fans," Colloquium Mathematicum, Vol. 20, 1969, pp. 89-90.
- [6] C. Eberhart and S. B. Nadler Jr., "Hyperspaces of Cones and Fans," *Proceedings of the American Mathematical Society*, Vol. 77, No. 22, 1979, pp. 279-288. doi:10.1090/S0002-9939-1979-0542098-5
- [7] S. B. Nadler Jr., "Continua Whose Cone and Hyperspace Are Homeomorphic," *Transactions of the American Mathematical Society*, Vol. 230, 1977, pp. 321-345. doi:10.1090/S0002-9947-1977-0464191-0
- [8] S. B. Nadler Jr., "Arc Components of Certain Chainable Continua," *Canadian Mathematical Bulletin*, Vol. 14, No. 2, 1971, pp. 183-189. doi:10.4153/CMB-1971-033-8
- [9] S. B. Nadler Jr., "Continuum Theory: An Introduction," Marcel Dekker, Inc., New York, 1992.
- [10] A. Illanes, "Multicoherence of Whitney Levels," *Topology and Its Applications*, Vol. 68, No. 3, 1996, pp. 251-265. doi:10.1016/0166-8641(95)00064-X
- [11] W. J. Charatonik, "Some Counterexamples Concerning Whitney Levels," *Bulletin of the Polish Academy of Sciences Mathematics*, Vol. 31, 1983, pp. 385-391.
- [12] C. B. Hughes, "Some properties of Whitney continua in the hyperspace C(X)," *Topology Proceedings*, Vol. 1, 1976, pp. 209-219.