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ABSTRACT 

This paper deals with the Dirichlet problem for convex differential (PC) inclusions of elliptic type. On the basis of con-
jugacy correspondence the dual problems are constructed. Using the new concepts of locally adjoint mappings in the 
form of Euler-Lagrange type inclusion is established extremal relations for primary and dual problems. Then duality 
problems are formulated for convex problems and duality theorems are proved. The results obtained are generalized to 
the multidimensional case with a second order elliptic operator. 
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1. Introduction 

The present paper is devoted to an optimal control prob-
lems described by so-called discrete and differential in-
clusions of elliptic type. A lot of problems in economic 
dynamics, as well as classical problems on optimal con-
trol in vibrations, chemical engineering, heat, diffusion 
processes, differential games, and so on, can be reduced 
to such investigations with ordinary and partial differen-
tial inclusions [1-15]. We refer the reader to the survey 
papers [11,16-20]. The present paper is organized as fol-
lows. 

In Section 2 first are given some suitable definitions, 
supplementary notions and results considered by author 
in [18,19]. Then a certain extremal Dirichlet’s problem is 
formulated for so-called elliptic differential (PC) inclu-
sions with Laplace’s operator and with second order el-
liptic operator in the multidimensional case. In the re-
viewed results for optimality the arisen adjoint inclusions 
using the locally adjoint multivalued (LAM) functions 
are stated in the Euler-Lagrange form [9,18,19]. It turn 
out that such form of optimality conditions automatically 
implies the Weierstrass-Pontryagin maximum condition. 
Apparently it happens because the LAM is more applica-
ble apparat in different type of problems governed by 
differential inclusions [16-20].  

In Section 3 the main problem is to formulate and 
study the dual problems to the stated problems with con-
vex structures. Convexity is a crucial marker in classify-
ing optimization problems, and it’s often accompanied 
by interesting phenomena of duality. It is well known 

that duality theory by virtue of its applications is one of 
the central directions in convex optimality problems. In 
mathematical economics duality theory is interpreted in 
the form of prices, in mechanics the potential energy and 
complementary energy are in a mutually dual relation, 
the displacement field and the stress field are solutions of 
the direct and the dual problems, respectively. 

To establish the dual problem we use the duality theo-
rems of operations of addition and infimal convolution of 
convex functions. Here a remarkable specific feature of 
second order elliptic partial differential inclusions in com- 
parisons with ordinary ones is that they admit valuable 
results in the case of multidimensional domain. Our ap- 
proach to establish duality theory for continuous problem 
is based on the passage to the formal limit from duality 
problem in approximating problem. But to avoid difficult 
and fatiguing calculations we omit it and announce only 
dual problem constructed for continuous problems (PC) 
and then (PM). Consequently construction of duality 
problem in our paper is an unforeseen part of the “ice-
berg”. Further it is shown that direct and duality prob-
lems are connected to each other by the duality relations. 
The proved duality theorems allow one to conclude that a 
sufficient condition for an extremum is an extremal rela-
tion for the primary and dual problems. It means that if 
some pair of feasible solutions (u(.),u*(.)) satisfy this re- 
lation, then u(.) and u*(.) are solutions of the primary and 
dual problem, respectively. We note that a considerable 
part of the investigations of Ekeland and Temam [7] for 
simple variational problem is devoted to such problems. 
Besides there are similar results for ordinary differential 
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inclusions in [17-19]. Some duality relations and opti-
mality conditions for an extremum of different control 
problems with partial differential inclusions can be found 
in [18,19]. At the end of Section 3 we consider a linear 
optimal control problem of elliptic type. 

Furthermore, observe that in elliptic differential inclu-
sions for simplicity of the exposition the solution is taken 
in the space of classical solutions. Apparently by passing 
to more general function spaces of generalized solutions 
the most natural approach for elliptic differential inclu- 
sions is the use of single-valued selections of a multi- 
valued mapping [1,3,8,9]. 

2. Necessary Concepts and Problems  
Statements 

Throughout this section and the next sections we use 
special notation conventional in the [18,19]. Let  be 
the n-dimensional Euclidian space, 1 2  is a pair of 
elements 1 2 and 

nR
u u ,

,  nu u R 1 2,u u

n n
 is their inner product. 

A multivalued mapping :F R P R  (  nP R  de- 
notes the family of all subsets of ) is convex if its 
graph 

nR
      , :gph F u v v F u


 is a convex subset of 

. It is convex-valued if 2nR F u


 is a convex set for 
each . Let us introduce the 
notations: 

  :  u F uu dom F  

    * *, sup ,
v

: ,M u v v v v F u   

     *, , ,M u v* *

*

, :

n

F u v v F u v v

v R

 


 

For convex F we let    if F u  
 *,

*,   M u v   . 
Obviously the function M and the sets F u v

nR nR

   *
 ,gph F

 can be 
interpreted as Hamiltonian function and argmaximum 
sets, respectively.  

Definition 2.1. For a convex mapping F a multivalued 
mapping from  into  defined by  

   * * *, , : ,* *F v u v u u v  K u v

 u v   * ,

 

is called the locally adjoint mapping (LAM) to F at the 
point where  gph F,  ,gph F K u v


 is the dual to 

the basic cone  ,gph FK u v . We refer to [1,6,8,9] for 
various definitions in this direction.  

It is clear that for a convex F the Hamiltonian is con-
cave on u and convex on  function. Let us denote *v

    * * * *, inf , , :   H u v u u v v u,v gph F   . 

It is clear that by the conjugacy correspondence of 
convex analysis [4],[6-9]: 

    
    

* *

*
* *

,

.

* *, inf ,

.,

u
H u v u u

M v  

M u v

u

 



 

 

Corollary 2.1. 
 * * * ,u F v u v and equality  The inclusion 

   * * * *, , ,H u v u u M u v   are equivalent. 

In Section 3 we study the following problem for ellip-
tic differential inclusion with homogeneous boundary 
value conditions: 

minimize     . : , du g u x x x 


, J

subject to  

    , ,  u x F u x x x R   ,         (1) 

and 

  0,   u x x B  ,                (2) 

  is a Laplace’s operator,  where 
  ., : n nF x R P R  is multivalued mapping for all 

 ,1 2x x x 1 1R R 
B

1: n

 in the bounded region , a closed 
piecewise-smooth simple curve  is its boundary,  
g R R  u

d d d
 is a continuous convex function on  

and 1 2x x x . We label this continuous problem 
 PC  and call it Dirichlet problem for elliptic differen-
tial inclusions. The problem is to find a solution  u x  
of the boundary value problem (1), (2) that minimizes the 
cost functional   . .J u  Here, a feasible solution is 
understood to be a classical solution for simplicity of the 
exposition. 

The subject of the research in Section 6 in the follow-
ing multidimensional optimal control problem  MP  for 
elliptic differential inclusions: 
minimize  

     . : , d
G

u g u x x x J , 

subject to 

    , , ,Lu x F u x x x G           (3) 

and 

  0,u x x S               (4)  

where   1 1., :F x R P R  is a convex closed multi-
valued mapping for all n-dimensional vectors  

 , ,1 nx x x  nG R
S

1 1:

 in the bounded set , a closed 
piecewise-smooth surface  is its boundary,  
g R G R 

1 2d d d d n

 is a continuous and convex on u func- 
tion, x x x x  . L is a second-order elliptic ope- 
rator: 

   
, 1 1

: ,
n n

ij i
i j ii j i

u u
Lu a b x c x u

x x x 

   
       
   

          1 1, ,ij ia x C G b x C G c x C G    

   ija xwhere  is a positively definite matrix, u x  
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and  1C G
G

    are the spaces of continuous functions and 
functions having a continuous derivative in , respec-
tively. 

A function  in  u x     ,C G C G

  

 MP

 

2

 u x





.,

 that satisfies 
the inclusion (3) in G and the boundary condition (4) on 
S we call a classical solution of the problem posed, where 

is the space of functions u x  having conti- 
nuous all second-order derivatives. It is required to find a 
classical solution of the boundary value problem 

 that minimizes the cost functional J(u(.)). 

2C G

 MP
In the next theorem is referred sufficient conditions for 

optimality for problems  and  of Mahmu- 
dov [18]. 

 CP

Theorem 2.1. Assume that a continuous function g is 
convex with respect to u, and F x

 u x
 CP

 *u x

   ,u x x 

  , ,

 is a convex map-
ping for all fixed x. Then for the optimality of the solu-
tion  among all feasible solutions in convex prob-
lem  it is sufficient that there exist a classical solu-
tion  such that the following condition: 

a)    *u x x u   * *F u  , ,x

               g u x x

  0, x B 

 1 2,x x 

 P

   ,u x x 

  ,

  

*u x ,  

b) .      *, , ,u x F u x u x x   x

  , ,x L

For a problem   the Euler-Lagrange type inclu-
sion (a) and argmaximum condition (b) consist of the 
following conditions, respectively:  

i)     * * * *L u x F u x u

g u x x 

  0,x x S  

L L

  * * , d

, 

ii)       * *, , ,Lu x F u x u x u 
*

 x

 *, ,

where  is the operator adjoint to . 

3. On Duality in Elliptic Differential  
Inclusions 

According to the definition in [4,8,9,18,19] 
Let us denote 

    
    

* *
*

* *

,J u x z x

H u x z x x g   


u x z x x x 
 

 

where H  is a Hamiltonian  function and  * * ,g z x  is 
conjugate function to function  ,g x  for every fixed 

1 1x R R 

    * *,u x z x

 CP

. Then the problem of determining the maxi-
mum  

 
* *

*

*
( ), ( ), ,
( ) 0,

maximizeD
u x z x x
u x x B

P J


 


 

is called the dual problem to the primaryconvex problem 
. It is assumed that  

     * 2 *,   u x C C z x C    

  ,u x x
 P

. 

Theorem 3.1. Assume that  is an arbitrarily 
feasible solution of the primary problem C  and  
    * *,u x z x  is a feasible solution of the dual problem 
 DP      *

*. Then the inequality J u x J u x  is va- 
lid. 

Proof. It is clear from the definitions of the functions 
*H  and g  that the following inequalities hold: 

       
         

* * *

* * *

, ,

, ,

H u x z x u x x

u x z x u x u x u x

 

    
 

         * * *, , ,g z x x z x u x g u x x   

Therefore; 

          
          

* * * * *

* *

, , ,

, , , .

H u x z x u x x g z x x

u x u x u x u x g u x x

  

    
 (5) 

   * 0, 0,u x u x x BThen since   

   

, by the familiar 
Green theorem [21] we have  

   

       

* *

*
*

, , d

, , d 0
B

u x u x u x u x x

u x u x
u x u x s

n n

    

  
   

   







 u x

 (6) 

where n is outher normal for a curve B. Then integrating  
both sides of the inequality (5) due to (6) we obtain the 
required inequality. 

Theorem 3.2. If the feasible solutions  and  
    * *,u x z x ,     * ,z x g u x x   satisfy the condi- 
tions of Theorem 2.1, then they are optimal solutions of 
the primary  P  C  and dual DP  problems, respec- 
tively, and their values are equal . 

Proof. To proceed, first note that by Theorem 2.1 
 u x  is a solution of the primary problem P

    * *,u x z x
C . We 

need to prove that the pair  is a solution 
to problem  DP . By Definition 2.1 of a LAM, the con-
dition (a) of the Theorem 2.1 is equivalent to the ine-
quality   

     
   

* *

*

,

, 0,

u x z x u u x

u x v u x

  

  




 

   , , ,u v gphF x .   

The latter yields  

        * * *, , ,u x z x u x domH x    

 

,       (7) 

where 

    * * * *, , : , : , ,domH x u v H u v x     . 
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Further, since [4,6,8,9]    *, ,g u x  domg x

 * * ,domg x 



 it is clear 
that  

 z x .            (8) 

Consequently, it can be concluded from (7.3), (7.4) 
that the indicated pair of functions    * *,u x z x

 

 is a 
feasible solutions, i.e. the set of feasible solutions to 

DP
 * ,u x 

 is nonempty. Let us now justify the optimality of 
the solution   to problem  *z x DP . By the 
Corollary 2.1  

  
 

* *

* * *

, , ,

: , , ,

F v u v x

u H u v x u u   * *, , .M u v x
 

Using this formula and the condition (a) of the Theo-
rem 2.1 we get 

      
          *, , .x u x x

* * *

* *

, ,

,

H u x z x u x x

u x u x z x M u

 

   
 

Now based on the condition (c) of Theorem 2.1 we 
have the following equality  

        * *, , ,x u x xu x u x M u  .  

Thus   

      
         

* * *

* *

, ,H u x z x u x x

u x u x z x

 

     *, , .u x u x
   (9) 

On the other hand the inclusion     ,g u x x *z x  
is equivalent with the equality  

         ,* * *, ,g z x x u x z x g u x x 

    * *,

.  (10) 

Then in view of (8)-(10) as in the proof of Theorem 
3.1 it is not hard to show that  

   *J u x J u x z x

 P

   

. This completes the proof 
of the theorem.  

Now let us formulate the dual problem to the convex 
problem   with homogeneous boundary conditions. 
In this case the duality problem consists in the following 

   * *, ,u x z x

  * ,

* *

*

*
( ), ( ), ,
( ) 0,

maximizeMD
u x z x x G
u x x S

P J


 

 

Here  

    
      

* *
*

* * * * *

,

, ,
G

J u x z x

dH L u x z x u x x g  z x x   x
 

     
 

* 2

1, , .n

u x C G C G z

x x x

 

 

   *, ,x C G



 

Now by replacing the Laplace operator  with the 
second order elliptic operator L and using the idea sug-

gested in the proofs of Theorems 3.1 and 3.2 it is easy to 
get the following theorem. 

 u x  and pair of functions  Theorem 3.3. If 
    * *,u x z x , are feasible solutions to the primary 
convex problem  P

 
  with homogeneous boundary 

value conditions and dual problem MD , respectively, 
then 

P

      * *,*J u x J u x z x . In addition, if the 
assertions (i), (ii) for sufficiency of optimality are valid 
here and      * ,z x g u x x 


, then the values of the 

cost functionals are equal and    * *,u x z x  is solu- 
tion of the dual problem  MD

Let us consider the following example: 
. P

       minimize , dLD
R

P J u x g u x x x   

       ,u x Au x Bw x w x V   , subject to 
n nwhere A  is   matrix,  is a rectangular B n r  

matrix,  is a closed convex set and rV R g  is con-
tinuously differentiable function on u. It is required to 
find a controlling parameter  such that the fea- 
sible solution corresponding to it minimizes 

 w x V
  J u  . 

 FLet us introduce a convex mapping u Au BV  . 
By elementary calculations, it can be shown, that 

   
 

* * * *

,

* * * * *

* * *

, inf , , :

, ,

,

u w

V

H u v u u Au Bw v w V

M B v u A v

u A v

   

  
 

 

 * * * *sup , .V
w V

M B w w B w


where  

Then obviously the duality problem for primary prob-
lem  LDP

   
 has a form: 

 * *
* , ,J u x z x  maximize 

     * * * * , ,u x z x A u x x R     

 * 0, ,u x x B 

    
* *

*

* * * *

( ( ), ( ))

( , d .V

J u x z x

 

where 

B u x g z x x x


 M   
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