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ABSTRACT

By a regular act we mean an act that all its cyclic subacts are projective. In this paper we introduce P-regularity of acts
over monoids and will give a characterization of monoids by this property of their right (Rees factor) acts.
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1. Introduction

Throughout this paper S will denote a monoid. We refer
the reader to ([1]) and ([2]) for basic results, definitions
and terminology relating to semigroups and acts over
monoids and to [3,4] for definitions and results on flat-
ness which are used here.

A monoid S is called left (right) collapsible if for
every s,s'eS there exists zeS such that zs=zs'
(sz=s'z). A submonoid P of a monoid S is called
weakly left collapsible if for all s,s'eP, zeS the
equality (sz= s’z) implies that there exists an element
ueP suchthat us=us'.

A monoid S is called right (left) reversible if for
every s,s'e S, there exist u,veS such that us=vs'
(su=s'v). A right ideal K of a monoid S is called left
stabilizing if for every k e K, there exists 1 e K such
that Ik =k and itis called left annihilating if,

(VteS)(Vx,y e S\K)(xt, yt € K = xt = yt).

If forall s,teS\K and all homomorphisms
f: (SsUSt)—> S
f(s), f(t)eK= f(s)="f(t)

then K is called strongly left annihilating.

Aright S-act A satisfies Condition (P) if
as=a's'for a,a’e A, s,5'eS, implies the existence
of a"€A, uveS such that a=a"u,a’=a"v and
us =vs'.

A right S-act A is called connected if for a,a’e A
there exist s;,t,---,s,,t, €S and a,---,a,, €A such
that

as, =l
as, = at,
a, s, =a't,
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We use the following abbreviations:
Strong flatness = SF ;

Pullback flatness = PF;

Weak pullback flatness = WPF ;

Weak kernelflatness = WKF ;

Principal weak kernelflatness = PWKF ;
Translation kernelflatness = TKF ;
Weak homoflatness = (WP);

Principal weak homoflatness = (PWP) ;
Weak flatness = WF ;

Principal weak flatness = PWF ;
Torsion freeness = TF .

2. Characterization by P-Regularity of Right
Acts

Definition 2.1. Let S be a monoid. A right S-act A is
called P-regular if all cyclic subacts of A satisfy Condi-
tion (P).

We know that a right S-act A is regular if every cy-
clic subact of A is projective. It is obvious that every
regular right act is P-regular, but the converse is not true,
for example if S isanon trivial group, then S isright
reversible, and so by ([2, Ill, 13.7]), ®, is P-regular,
but by ([2, 111, 19.4]), ®; is not regular, since S has
no left zero element.

Theorem 2.1. Let S be a monoid. Then:

1) O is P-regular if and only if S is right reversi-
ble.

2) Sy is P-regular if and only if all principal right
ideals of S satisfy Condition (P).

3) If A is aright S-act and A,iel, are subacts of
A, then U, A is P-regular if and only if A is
P-regular for every iel.

4) Every subact of a P-regular right S-act is P-regular.

Proof. It is straightforward. g.e.d.

Here we give a criterion for a right S-act to be P-
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regular.

Theorem 2.2. Let S be a monoid and A a right S-
act. Then A is P-regular if and only if for every ae A
and x,yeS, ax=ay implies that there exist u,ve S
suchthat a=au=av and ux=vy.

Proof. Suppose that A is a P-regular right S-act and
let ax=ay, for ae A and x,yeS. Then aS satis-
fies Condition (P). But aS = S/ker 4, , and so by ([2,
111, 13.4]), we are done.

Conversely, we have to show that aS satisfies Con-
dition (P) for every aeA. Since aS=S/ker 4, , then
it suffices to show that S/ker 4, satisfies condition (P)
and this is true by ([2, 111, 13.4]). g.e.d.

We now give a characterization of monoids for which
all right S-acts are P-regular.

Theorem 2.3. For any monoid S the following state-
ments are equivalent:

1) All right S-acts are P-regular.

2) All finitely generated right S-acts are P-regular.

3) All cyclic right S-acts are P-regular.

4) All monocyclic right S-acts are P-regular.

5) All right Rees factor S-acts are P-regular.

6) S is a group or a group with a zero adjoined.

Proof. Implications (1) = (2) = (3) = (4) and
(3) = (5) are obvious.

(4) = (6). By assumption all monocyclic right S-
acts satisfy Condition (P), and so by ([2, IV, 9.9]), S is
a group or a group with a zero adjoined.

(5) = (6). By assumption all right Rees factor S-acts
satisfy Condition (P) and again by ([2, IV, 9.9]), S is a
group or a group with a zero adjoined.

(6) = (1). By ([2, 1V, 9.9]), all cyclic right S-acts
satisfy condition (P), and so by definition all right S-
acts are P-regular as required. g.e.d.

Notice that freeness of acts does not imply P-regu-
larity, for if S ={0,1,x}, with x*=0,then S, is free,
but S is not P-regular, otherwise xS ={0,x} satis-
fies Condition (P) as a cyclic subact of Sy, and so
x.x=X.0, implies the existence of u,ve S such that
X=xu=xv and ux=VvO0, and this is a contradiction.

Theorem 2.4. For any monoid S the following state-
ments are equivalent:

1) All right S-acts satisfying Condition (E) are P-
regular.

2) All finitely generated right S-acts satisfying Condi-
tion (E) are P-regular.

3) All cyclic right S-acts satisfying Condition (E)
are P-regular.

4) All SF right S-acts are P-regular.

5) All SF finitely generated right S-acts are P-regular.

6) All SF cyclic right S-acts are P-regular.

7) All projective right S-acts are P-regular.

8) All finitely generated projective right S-acts are P-
regular.
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9) All projective cyclic right S-acts are P-regular.

10) All projective generators in Act-S are P-regular.

11) All finitely generated projective generators in Act-
S are P-regular.

12) All cyclic projective generators in Act-S are P-
regular.

13) All free right S-acts are P-regular.

14) All finitely generated free right S-acts are P-regu-
lar.

15) All free cyclic right S-acts are P-regular.

16) All principal right ideals of S satisfy Condition
(P).
17) (Vvs,t,ze€S)

(zs=2t=(3u,veS)(z=zu=2vAus=vt)).

Proof. Implications (1) = (2) = 3) = (6) =
9 = (12 = (15,1 = 4 = 6 = (6), 4
=7 =08 =0, = 100 = 11) =
(12) and (10) = (13) = (14) = (15) are obvious.

(15) = (16). As a free cyclic right S-act Sy is
P-regular, and so by (2) of Theorem 2.1, all principal
right ideals of S satisfy Condition (P).

(16) < (17). By ([2, 111, 13.10]), it is obvious.

(17) = (1). Suppose the right S-act A satisfies
Condition (E)andlet ax=ay,for ae A and
X,y €S. Then there exist a'e A and ueS such that
a=a'u and ux=uy. Thus by assumption there exist
s,teS suchthat u=us=ut and sx=ty. Therefore
a=a'u=a'us=as, a=au=aut=at, sx=ty, and so
by Theorem 2.2, A is P-regular. g.e.d.

Notice that cofreeness does not imply P-regularity,
otherwise every act is P-regular, since by ([2, 11, 4.3]),
every act can be embedded into a cofree act. But if
S={0Lx}, with x’*=0, then aswe saw before, S is
not P-regular, and so we have a contradiction.

Theorem 2.5. For any monoid S the following state-
ments are equivalent:

1) All divisible right S-acts are P-regular.

2) All principally weakly injective right S-acts are P-
regular.

3) All fg-weakly injective right S-acts are P-regular.

4) All weakly injective right S-acts are P-regular.

5) All injective right S-acts are P-regular.

6) All injective cogenerators in Act-S are P-regular.

7) All cofree right S-acts are P-regular.

8) All right S-acts are P-regular.

9) Sis a group or a group with a zero adjoined.

Proof. Implications (1) = (2) = 3) = (4) =
(5) = (6)and (5) = (7) are obvious.

(6) = (8). Suppose that A is a right S-act, B is
an injective cogenerator in Act-S and C is an injective
envelope of A (C exists by [2, I11, 1.23]). By ([5, Theo-
rem2]), D=BIIC isan injective cogenerator in Act-S,
and so by assumption D is P-regular. Since AcC, we
have Ac D, and so by Theorem 2.1, A is P-regular.
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(7) = (8). Let A be aright S-act. Then by ([2, II,
4.3]), A can be embedded into a cofree right S-act. Since
A is a subact of a cofree right S-act, by assumption A is a
subact of a P-regular right S-act, and so by Theorem 2.1,
A is P-regular.

(8) < (9). By Theorem 2.3, it is cbvious.

(8) = (1). Itisobvious. g.e.d.

Theorem 2.6. Let S be a monoid. Then every strongly
faithful right S-act is P-regular.

Proof. By Theorem 2.2, it is obvious. g.e.d.

Although strong faithfulness implies P-regularity, but
faithfulness does not imply P-regularity, since every mo-
noid as an act is faithful, S={0,1,x} with x*=0 is
faithful, but as we saw before, S is not P-regular. Now
see the following theorem.

Theorem 2.7. For any monoid S the following state-
ments are equivalent:

1) All faithfull right S-acts are P-regular.

2) All finitely generated faithfull right S-acts are P-
regular.

3) All faithfull right S-acts generated by at most two
elements are P-regular.

4) S is a group or a group with a zero adjoined.

Proof. Implications (1) = (2) = (3) are obvious.

(3) = (4). By Theorem 2.3, it suffices to show that
every cyclic right S-act is P-regular. Thus we consider a
cyclic right S-act aS and let A, =aSIIS;. Since S
is faithful, A, is faithful, also A is generated by at
most two elements, thus by assumption A is P-regular.
Since aS is a subact of A, by (4) of Theorem 2.1,
aS is P-regular as required.

(4) = (1). By Theorem 2.3, it is obvious. g.e.d.

Since regularity does not imply flatness in general,
P-regularity also does not imply flatness in general, but
as the following theorem shows, for regular monoids P-
regularity implies flatness.

Theorem 2.8. Let S be a regular monoid. Then every
P-regular right S-act is flat.

Proof. Suppose that S is a regular monoid, (M is a
left S-actand A is a P-regular right S-act. Let
a®m=a'®m’ in A® M for a,a’ €A and
m,m'e ;M. We show a®m=a'®m’ holds also in
A® (SmUSm’). Since a®m=a'®m’ in A®; M,
we have a tossing

sm =m
as, =a s,m, =tm
as, =, $;M; =t,m,
a_ s =a't, m'=tm,

of length k,where s,,---,s,,t,--,t, €S,
a, €A, m,--,m e M.
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If k=1, thenwe have

sm =m
m=tm.

Since S is regular, the equality as, =a't, implies
that a't, =a'ts;s,, for s/ eV(s). Since A is P-re-
gular, there exist a"e A, and u,veS such that
a’'=a’u=a’v and ut =vts;s,. From the last equality
we obtain um’ =ut,m, =vt;s/s;m, =vt;sm. Since
m=sm,, weget s;s5m=m, and so we have

as, =a'

a®m=a®ssm=as ®sm=a't, ®sm
=a'u, ®sm=a’'vt, ®sm=a"®@vt;sm
=a"®um'=a"u®m'=a’'@m'’

in A® (SmUsSm’).

We now suppose that k>2 and that the required
equality holds for every tossing of length less than k.
From as, =a;t, we obtain equalities at, =a;ts/s, for
s;eV(s,) and as =astt, for teV(t). Since A
is P-regular, there exist a/,a; € A; and uj,u,,

v,,V, €S such that a =al, =a¥, ut =vtsss and
a=a,u, =a,v,,u,s, =v,stt,. Thus we have the fol-
lowing tossing
u,s;m, =u,m
au,s; =atyt,  us,m, =utm
of length 1 and
U S,m, =utm
alys, =at, s;my=t,m,
a,,S =at m'=tm,

of length k —1.

From the tossing of length 1, we have
a,®u,m=a'®u;s,m, in A® M, and so we have
a, ®u,m=a/®u;s,m, in A® (Su,mUSu;s,m,).

Since

Us,m, =utm =Vvit;ssm =v,t;sim e Sm,
we have a; ®u,m=a/®u;s,m,in A®, (SmUsSm’).

Also from the tossing of length k —1, we have
a’®utm =a'®m’ in A®; M . Thus we have
a’®utm =a'®m’ in A®(Sutm USm’) Since

utm =vtsmeSm,
we have a/®utm =a'®m’ in A®(SmUSm’), and
S0
a®m=aju, ®m=a;, ®u,m=a’®u,s,m,
=a/®utm =a'®m’

in A® (SmUSm’) as required. g.e.d.
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3. Characterization by P-Regularity of Right
Rees Factor Acts

In this section we give a characterization of monoids by
P- regularity of right Rees factor acts.

Theorem 3.1. Let S be a monoid and K  a right
ideal of S. Then S/Kg is P-regular if and only if
Ks=S and S is right reversible or |K|=1 and all
principal right ideals of S satisfy Condition (P).

Proof. Let K be a right ideal of S and suppose that
S/Ks is P-regular. Then S/K; satisfies Condition (P)
If Kg =S, then by ([2, Ill, 13.7]), S is right reversible,
otherwise by ([2, Ill, 13.9]), |Ks|=1,andso S/K; =S.
Thus by (2) of Theorem 2.1, all principal right ideals of S
satisfy Condition (P).

Conversely, suppose that K is a right ideal of S.
If Ki =S andSis right reversible, then by (1) of Theo-
rem 2.1, S/Ks =@ is P-regular. If |K|=1 and all
principal right ideals of S satisfy Condition (P) then
by (2) of Theorem 2.1, S/Kg =S is P-regular. g.e.d.

Although freeness of acts implies Condition (P) in
general, but notice that freeness of Rees factor acts does
not imply P-regularity, for if S ={0,1x}, with x*=0,
and Kg =0S, then S/K;=S/0S=S; as a Rees fac-
tor act is free, but as we saw before, S is not P-regu-
lar.

Now let see the following theorem.

Theorem 3.2. Let S be a monoid and (U) be a
property of S-acts implied by freeness. Then the follow-
ing statements are equivalent:

1) All right Rees factor S-acts satisfying property (U )
are P-regular.

2) Al right Rees factor S-acts satisfying property (U )
satisfy Condition (P) and either S contains no left zero
or all principal right ideals of S satisfy Condition (P).

Proof. (1) = (2). By definition all right Rees factor
S-acts satisfying property (U) satisfy Condition (P).
Suppose now that S contains a left zero z,. Then
Ks =2,S ={z,} isarightideal of S, andso
S/Ks =S . Since Sg is free, Sy is P-regular, by as-
sumption, and so all principal right ideals of S satisfy
Condition (P).

(2) = (1). Let S/K, satisfies property (U) for
the right ideal Kg of S. Then by assumption S/Kg
satisfies Condition (P). Now there are two cases as
follows:

Case 1. Ky =S.Then S/Kg =0, and so by ([2, III,
13.7]), S s right reversible, thus by (1) of Theorem 2.1,
S/Ks =0O; is P-regular.

Case 2. K isa proper right ideal of S . Then by ([2,
I1,13.9]), |Ks|=1.Thus Kg={z,}, forsome z,€§,
and so z, is left zero. Thus by assumption all principal
right ideals of S satisfy Condition (P) , that is
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S/Ks =S is P-regular. g.e.d.

Corollary 3.1. For any monoid S the following state-
ments are equivalent:

1) All right Rees factor S-acts satisfying Condition
(P) are P-regular.

2) All. WPF right Rees factor S-acts are P-regular.

3) All PF right Rees factor S-acts are P-regular.

4) All SF right Rees factor S-acts are P-regular.

5) All projective right Rees factor S-acts are P-regular.

6) All Rees factor projective generators in Act-S are
P-regular.

7) All free right Rees factor S-acts are P-regular.

8) S contains no left zero or all principal right ideals
of S satisfy Condition (P).

Proof. By Theorem 3.2, it is obvious. g.e.d.

Corollary 3.2. For any monoid S the following state-
ments are equivalent:

1) All WF right Rees factor S-acts are P-regular.

2) All flat right Rees factor S-acts are P-regular.

3) S is not right reversible or no proper right ideal Kj,
|Ks|>=2 of S is left stabilizing, and if S contains a
left zero, then all principal right ideals of S satisfy
Condition (P).

Proof. It follows from Theorem 3.2, ([2, 1V, 9.2]), and
that for Rees factor acts weak flatness and flatness are
coinside. g.e.d.

Corollary 3.3. For any monoid S the following state-
ments are equivalent:

1) All. PWF right Rees factor S-acts are P-regular.

2) S s right reversible, no proper right ideal K,
|Ks|=2 of S is left stabilizing, and if S contains a
left zero, then all principal right ideals of S satisfy Con-
dition (P).

Proof. It follows from Theorem 3.2, and ([2, IV, 9.7]).
g.e.d.

Corollary 3.4. For any monoid S the following state-
ments are equivalent:

1) All TF right Rees factor S-acts are P-regular.

2) Either S is a right reversible right cancellative
monoid or a right cancellative monoid with a zero ad-
joined, and if S contains a left zero, then all principal
right ideals of S satisfy Condition (P).

Proof. It follows from Theorem 3.2, and ([2, 1V, 9.8]).
g.e.d.

Corollary 3.5. For any monoid S the following
statements are equivalent:

1) All right Rees factor S-acts satisfying Condition
(WP) are P-regular.

2) S is not right reversible or no proper right ideal
Ks, |Ks|=2 of S is left stabilizing and strongly left
annihilating, and if S contains a left zero, then all prin-
cipal right ideals of S satisfy Condition (P).

Proof. It follows from Theorem 3.2, and ([3, Proposi-
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tion 3.26]). g.e.d.

Corollary 3.6. For any monoid S the following state-
ments are equivalent:

1) All right Rees factor S-acts satisfying Condition
(PWP) are P-regular.

2) S is right reversible and no proper right ideal Kg,
|Ks|=2 of S is left stabilizing and left annihilating, and
if S contains a left zero, then all principal right ideals of S
satisfy Condition (P).

Proof. It follows from Theorem 3.2, and ([3, Corollary
3.27]). g.e.d.

Here we consider monoids over which P-regularity of
Rees factor acts implies other properties.

Theorem 3.3. Let S be a monoid and (U) be a prop-
erty of S-acts implied by freeness. Then all P-regular
right Rees factor S-acts satisfy property (U ) if and only
if S is not right reversible or @ satisfies property (U).

Proof. Suppose that S is right reversible. By (1) of
Theorem 2.1, ®; =S/Sg is P-regular, and so by as-
sumption © satisfies property (U).

Conversely, suppose S/Kg is P-regular for the right
ideal Ky of S.Then there are two cases as follows:

Case 1. Ky =S.Then S/K; =0 is P-regular, and
so by (1) of Theorem 2.1, S is right reversible.

Thus by assumption S/K =@, satisfies property (U).

Case 2. K is a proper right ideal of S. By Theo-
rem 3.1, |Ks|=1, and so S/Kg=S;. Thus S/K; is
free, and so satisfies property (U).g.e.d

Corollary 3.7. Let S be a monoid. Then all P-regu-
lar right Rees factor S-acts are free if and only if S is not
right reversible or S ={1}.

Proof. It follows from Theorem 3.3, and ([2, I, 5.23]).
g.e.d.

Corollary 3.8. Let S be a monoid. Then all P-regular
right Rees factor S-acts are projective if and only if S is
not right reversible or S contains a left zero.

Proof. It follows from Theorem 3.3, and ([2, I1I, 17.2]).

g.e.d.

Corollary 3.9. Let S be a monoid. Then all P-regular
right Rees factor S-acts are strongly flat if and only if S is
not right reversible or S is left collapsible.

Proof. It follows from Theorem 3.3, and ([2, 111, 14.3]).

g.ed
Theorem 3.4. For any monoid S the following state-
ments are equivalent:
1) All P-regular right Rees factor S-acts are WPF.
2) All P-regular right Rees factor S-acts are WKF.
3) All P-regular right Rees factor S-acts are PWKF
4) All P-regular right Rees factor S-acts are TKF.
5) S is not right reversible or S is weakly left collapsible.
6) S is not right reversible or for every left ideal | of S,
ker f is connected for every homomorphism
frgl > S,
7) S is not right reversible or for every zeS, kerp,
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is connected as a left S-act.

Proof. Implications (1) = (2) = (3) = (4) are
obvious.

(1) < (5). By Theorem 3.3, and ([4, Corollary 24])
it is obvious.

(2) < (6). By Theorem 3.3, and ([6, Proposition 8])
it is obvious.

(4) < (7). By Theorem 3.3, and ([6, Proposition 7])
it is obvious.

(4) = (). By ([6, Proposition 28]),

WPF <:>(P)/\TKF. Now if Ag is a P-regular right Rees
factor S-act, then it is obvious that A; satisfies Condi-
tion (P), also by assumption A is TKF, andso A
is WPF. g.e.d.

Corollary 3.10. For any monoid S the following state-
ments are equivalent:

1) ®, is WPF.

2) © is WKF.

3) S s right reversible and weakly left collapsible.

4) S s right reversible and for every left ideal 1 of
S, ker f is connected for every homomorphism
frgl > S

5) S s right reversible and for every zeS, kerp,
is connected as a left S-act.

Proof. Implication (1) = (2) is obvious.

(1) < (3). Itis obvious by ([6, Corollary 24]).

(B) © (@) < (5).Itisobvious by Theorem 3.4.

(3) < (4). Itisobvious by ([6, Proposition 8]). g.e.d.

Corollary 3.11. Let S be a right reversible monoid.
Then © is WPF ifandonlyif ©4 is TKF.

Proof. It is obvious that every WPF right S-act is
TKF. If ©5 is TKF, then by ([6, Proposition 7]), for
every zeS, kerp, isconnected as a left S-act, and so
by Corollary 3.10 ©, is WPF. g.e.d.
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