
Int. J. Communications, Network and System Sciences, 2012, 5, 154-164
http://dx.doi.org/10.4236/ijcns.2012.53020 Published Online March 2012 (http://www.SciRP.org/journal/ijcns)

Cryptanalysis of a Substitution-Permutation Network
Using Gene Assembly in Ciliates

Arash Karimi, Hadi Shahriar Shahhoseini*
Electrical Engineering Department, Iran University of Science and Technology, Tehran, Iran

Email: ar_karimi@elec.iust.ac.ir, *bhshsh@iust.ac.ir

Received November 26, 2011; revised January 12, 2012; accepted January 27, 2012

ABSTRACT

In this paper we provide a novel approach for breaking a significant class of block ciphers, the so-called SPN ciphers,
using the process of gene assembly in ciliates. Our proposed scheme utilizes, for the first time, the Turing-powerful
potential of gene assembly procedure of ciliated protozoa into the real world computations and has a fewer number of
steps than the other proposed schemes to break a cipher. We elaborate notions of formal language theory based on AIR
systems, which can be thought of as a modified version of intramolecular scheme to model the ciliate bio-operations,
for construction of building blocks necessary for breaking the cipher, and based on these nature-inspired constructions
which are as powerful as Turing machines, we propose a theoretical approach for breaking SPN ciphers. Then, we
simulate our proposed plan for breaking these ciphers on a sample block cipher based on this structure. Our results
show that the proposed scheme has 51.5 percent improvement over the best previously proposed nature-inspired scheme
for breaking a cipher.

Keywords: Nature-Inspired Computation; Accepting Intramolecular Recombination (AIR) Systems; Cryptanalysis;

Gene Assembly; Block Ciphers

1. Introduction

L. Adleman, during a laboratory experiment, for the first
time discovered the potential of DNA molecules to solve
computationally hard problems [1]. His revolutionary
paper started the interdisciplinary area of DNA comput-
ing. Since then, a bulk of research has tried to concen-
trate on the theoretical ability of DNA strands to solve
hard problems. Specifically, language theory has helped
researchers find mathematical constructions to build com-
puting machines based on ability of biomolecules repre-
sented in form of words. Natural computing which util-
izes the potential of biomolecules in their living envi-
ronments (i.e. cells) is of special interest. In this respect,
Kari et al. in [2,3] considered the gene assembly process
in ciliates and demonstrated that it has computational
capability just like Turing machines. Their findings aroused
a hot line of research in cellular computing.

Ciliates are single-celled eukaryotes that have special
features which make them appealing and distinctive.
They possess cilia which are used for their motion and
also for making a current of water to sweep bacteria and
other nutrients into their oral cavities. In addition, they
have two different sorts of nuclei: A diploid micronu-
cleus and a polyploid macronucleus. The former is germ-

line nucleus which is activated only during the sexual
process of conjugation and remains dormant in the vege-
tative cycle. And the latter is the somatic nucleus which
is the housekeeping nucleus responsible for production of
RNA transcripts which is a must for cell development
during its life cycle. A species of ciliated protozoa Oxy-
tricha trifallax is shown in Figure 1.

Ciliates do sorting, inversion and excision of their
DNA sequences. We adopt the strategy of encoding all
solution candidates into a micronuclear gene, then as-
sembling the gene using intramolecular model [4] and
ultimately filtering the results and checking through the
cipher to find the right key.

In [5], Adleman et al. proposed a scheme to break the
Data Encryption Standard using DNA molecules, by
molecular biology tools.

In this paper we want to replace formal biological op-
erations by ciliate bio-operations for cryptanalysis of
SPN ciphers. For this reason, we use language-theoretic
notions to describe the process of cryptanalysis and by
utilizing an encoding scheme of the words of our con-
structed notion to the MIC genes of a hypothetical cili-
ated protozoa from the Stichotrichous family as shown in
Figure 2, we design AIR systems which simulate dif-
ferent blocks necessary to do the cryptanalysis of a large
class of block ciphers, called substitution-permutation *Corresponding author.

Copyright © 2012 SciRes. IJCNS

A. KARIMI ET AL. 155

Figure 1. Ciliated protozoa Oxytrichia trifallax.

Figure 2. Ciliated protozoa Stichotricha.

networks and then using these Turing machine construc-
tions, we simulate our theoretical attack on this structure
defined by specific and predefined blocks.

The rest of this paper is organized as follows. In Sec-
tion 2, the substitution-permutation networks are intro-
duced which constitute a large class of block ciphers, in
Section 3.1, the concept of splicing schemes that is nec-
essary to understand AIR systems which is a variant of
intramolecular operations for modeling ciliate bio-op-
erations is briefly introduced. In Section 3.2, we define
the accepting intramolecular recombination systems (or
AIR systems) on which our proposed scheme to break
the cipher is based. In Section 4, we propose and build
the necessary blocks which we need for cryptanalysis of
the cipher. In Section 5, based on our previously designed
AIR systems, we devise a theoretical approach to attack
the cipher. In Section 6, we evaluate the performance of
our proposed scheme and derive the total bio-steps nec-
essary to mount the attack. In Section 7, our simulations
are discussed and the results are reported. Finally, in Sec-
tion 8, we summarize our paper and conclusions are
drawn, and the plans for the future research based on this
work are presented.

2. Substitution-Permutation Networks

A variety of modern block ciphers are built using an it-
erative structure of Substitution-Permutation Networks or
SPN for short. AES (Rijndael), Shark, Khazad and Anu-

bis are good examples for SPN ciphers [6]. The selected
example SPN is as shown in Figure 3 and we will fo-
cus our discussion on this network. As demonstrated in
Figure 3, the block size of our cipher is 16-bits and each
block of the plaintext is processed by repeating basic
operations of a round which are substitution, permutation
and key mixing. Indeed, our considered scheme is similar
to what is found in many modern block ciphers including
Rijndael from basic operations viewpoint and provides us
with an insight into cryptanalysis of the real-world block
ciphers using natural computing methods.

3. Preliminary Definitions

Our proposed scheme to break the cipher is based on
Accepting intramolecular recombination systems (AIR
systems) which is a variant of intramolecular models of
gene assembly in ciliated protozoa. In this section we
bring some basic notions and notations that are necessary
to conceive the attack procedure.

3.1. Splicing Schemes

A splicing scheme [7] is defined as a pair , ~R   in
which  is an alphabet and ~ is a binary relation over
 2* * 

 
. Assuming that this relation exists between

two triples of strings as follows  , , ~ , ,p p    

z x p y

we say that given the abovementioned binary relation,
strings 1     2z y p x and     can be ob-
tained by recombination from x x p x  
y y p y

 and
    .

3.2. AIR Systems

An accepting intramolecular recombination system is
defined as a quadruple in , ~, ,G    in which

 , ~R   is the splicing scheme and in and  are
input and the target words, respectively. Considering a
splicing scheme,  , ~R  

*, , , , , , ,x u u v x y y z       

, we define the contextual
intramolecular operations of translocation, trl, and dele-
tion, del, which are generalizations of dlad and ld in-
tramolecular operations, respectively, as follows [8].

Assuming and x x ,
uqy u u    vqz v,    xpu x , 
ypv y y

,
    z z,     The trl operation with re-

spect to R is defined as

 
,, p qp q trltrl xpuqypvqz xpvqypuqz (1)

Therefore, in the ,p q operation the strings of u and
v which are flanked by pointers p and q are swapped. The
del operation with respect to R is also defined as:

trl

 
pp deldel xpupy xpy (2)

   , , ~ , ,p pwhere      *, , ,x u u     and for  
,

,
x x u u u   y y,    . Hence, intuitively, 

Copyright © 2012 SciRes. IJCNS

A. KARIMI ET AL. 156

Figure 3. The basic substitution-permutation network.

if the contexts of occurrences p are in the relation ~, the

pdel
R

 operation removes the string u that is flanked by
two occurrences of p. We can now define the set of
all contextual intramolecular operations under guidance
of ~ as:

 , , ,m p q m 

*w

,p qR trl del (3)

Accordingly, we can define the language that is ac-
cepted by the AIR system, G, as all the words 

op R 
inw

for which by consecutive application of any number of

 operations from  , we can get to the target
word  .

4. Constructing Necessary Building Blocks
for Attacking the Cipher

Our proposed scheme to break the SPN family of block
ciphers considers the modified approach of intramolecu-
lar recombination for modeling gene assembly process in
ciliates, and then applies this approach in constructing
necessary building blocks for breaking the cipher. Our

attack approach is brute force in which we assume that
we possess a (plaintext, ciphertext) pair and by exhaust-
tive search over all possible keys, we aim to find the
correct key of the cipher. Therefore, in the first step, we
should produce all genes of a hypothetical ciliate each of
which codes for an individual key of the cipher and then
using gene assembly process that naturally happens in
ciliated protozoa, we construct Turing machines that
imitate main operations that we need in the procedure of
cryptanalysis such as the substitution, permutation and
logical XOR, and ultimately, we can find the key that
when mixed with the plaintext, gives the ciphertext if in
each step of the computation the micronuclear (MIC)
genes are assembled to the expected macronuclear (MAC)
genes. In the next section we introduce the main opera-
tions needed for cryptanalysis and then, build Turing
machines that imitate these operations.

4.1. Generation of All Possible Keys

In order for generation of all genes that code for all pos-
sible combinations of the key, we utilize the graph of
Figure 4 in which all possible paths that start from b
and terminate at e code for a different n-bit key. We
use intramolecular model of gene assembly in ciliates.
Therefore, beginning with a single MIC gene pattern for
which there exist more than two occurrences of a pointer,
we can assemble different MAC gene patterns that code
for different keys of the cipher. Now, assuming that
graph of Figure 4 is demonstrated with

a
a

 ,G V E for
which V and E denote sets of vertices and edges, re-
spectively, we define an encoding of G in the MIC gene
pattern in terms of MDS descriptors as follows: we asso-
ciate a pointer p to each vertex of G and to each directed
edge  ,p q  ,p q

npp p p q
 we associate MDS of . Therefore, a

path 1 2 of G can be encoded by an interme-
diate MDS  , ,p p p p q

p s
1 2 k in which p and q are the

incoming and outgoing pointers, respectively, and i ,
1 i k  are those pointers for which MIC MDSs that
correspond with edges      , , , , , ,p p p p p q1 1 2 k be-
longing to set of edges of G, have been spliced. Note that
MIC MDSs are spliced on their common pointers. For
our graph of representation of all possible keys (graph of
Figure 4) we have

 1 1 1 1, , , , , , , , ,b n n n n eV a a b b a b b a a  

and

       
   

1 1 1 1 1 1 2

1 2 1

, , , , , , , ,

, , , ,

b

n e

E a a a b a b b a

b a a a



 

hence, for instance, we associate an MDS
 1 1 2 2 1b n e to a path 1 1 2 2 1b n ea a  and
with different strategies to the same MIC gene pattern,
we can obtain different MAC genes which represent all

, ,a a b a b a a b a b a a

Copyright © 2012 SciRes. IJCNS

A. KARIMI ET AL.

 IJCNS

157

Copyright © 2012 SciRes.

2a

2b nb

3a na

ba

1a

1b

ea

1na 

1b 2b bn


a a
 , ,b ea u a
 1 1i n

Figure 4. The graph for generation of all possible keys.

possible keys. According to the universality result of [9]
for intramolecular operations, each path of G can be as-
sembled using intramolecular ciliate operations ld, hi and
dlad. Since we are looking for all those paths that start
from b and end at e , our desired assembled MAC
gene would be of the form, , in which u is any
path that contains all ’s ia   


 and all differ-

ent i’s or i ’s . Therefore, if each edge of G
is encoded as a MIC MDS then, we show that one can
produce all possible keys of the cipher using ld operation
only from a single string of MDS descriptors that dem-
onstrate all edges of G as shown in Theorem 1. For this
reason, we say that a descriptor

b b n1 i 

G is associated to G if
it is of the form where   2, ,a a   1 1, ,n

G n ea a 

 ,p q E

 ld

ld

 , ,p q
G b 

G   is defined as a descriptor that en-

codes all edges of G.
Theorem 1. Any successfully assembled

ld GMDS   1n  a
b

 for which all i ’s and a total
number of n of either i’s or ib ’s appear and

2MDS V , produces any possible path that is rep-
resentative for every one of possible keys of the cipher.

Implementation of logical XOR using ciliate bio

operations is explained in Section 4.2. 2MDS V  ,
produces any possible path that is representative for
every one of possible keys of the cipher.

Implementation of logical XOR using ciliate bio
operations is explained in Section 4.2.

4.2. An Intramolecular Model for Computing
Logical XOR

We define logical XOR as satisfiability of a Boolean
relationship that is depicted in Equation (4).

   C x y x y    (4)

And here we provide a ciliate solution for Equation (4)
using intramolecular model which computes the result of
XOR in polynomial time. For this reason, we construct
an AIR system  , ~, ,G YES  0 [9] that evaluates
the output of Equation (4). The circuit that implements
XOR is depicted in Figure 5.

As can be seen in Figure 5, the circuit is composed of
three layers and we show its output with the following
notation demonstrated in Equation (5).

 31 21 11 11 21 22 12 12 22
31

[] []c c c c c c c c c c
c x y x y    

c

thi

 (5)

In the above notation, each gate is shown with ij in
which i denotes number of layer of the circuit and j de-
notes number of that gate in the layer and and
 and   denote logical AND, OR and NOT gates,

respectively. In this circuit we have where  ,C V E
 11 12 21 22 31, , , ,V c c c c c and
       , , , , , , ,E c c c c c c c c 11 21 12 22 21 31 22 31 . Now we con-

struct an AIR system for the Boolean circuit of Figure 5
as  , ~,cG V YES

  

 where

 11 11 12 12 21 21 22 22 31 31 11 12 21 22 31, , , , , , ,$ [,] ,[,] , , , , , (,) , , , , ,c c c c c c c c c cV V X Y T F Y E S             

$ 

YES is the axiom and and are not included in

alphabet of the Turing machine. Furthermore,  , ~V  is
the splicing scheme. Assuming that F is used instead
of logical zero and is used instead of logical one, x

and y are encoded into inputs for by utilizing the
mapping

T

cG
   ,i T F   ,i x y

   

 in which is the set
of inputs of the circuit. Now, if we consider Equations (6)
and (7):

   
31 21 11 11 21 22 12 12 22 311 31 21 11 11 21 22 12 12 22 31([] [])c c c c c c c c c cx y x y                        (6)

         
             

11 12 12 12 12 21 21 21 21

22 22 22 22 31 31 31 31

] $ [] $ [()] $ $

$ $ $() $() $

c c c c c c c c c c

c c c c c c c c

y x x x y x y

x y x y x y x y x y x y

          

               

 G

11 11 112 $ [] $ [c cy  
 (7)

     
11 1111 11 11 11,[, ~ $,[, , ,c c iju T T Sub u    The input of our AIR system c is then

0 1 2

 (8)
YE ES  and cG accepts the input string if re-

sult of XOR is 1 and the axiom YES is produced. There-
fore if result of XOR equals 1, Gc accepts input string in
4 steps. In the following we construct splicing schemes
necessary for computation of XOR in the proposed AIR
system.

     
11 1111 11 11 11,] , ~ ,] ,$, ,c c iju T T Sub u     (9)

   
   

11 1111 11 11

11 11

,[, ~ $,[, ,

,

c c

ij

u F

T Sub u Sub u

  

  
 (10)

A. KARIMI ET AL. 158

11c 12c

21c

22c

     
21 2121 21 21 21, , ~ $, , ,c cu F F Sub u     

C

31c

x

y

Figure 5. Operation of XOR.

 
 

1111 11 11

11

,] ,

, ijT Sub u

  

 

 
 
11

11

~ ,] ,$,c cu F

Sub u

  12ij Sub u 

  12ijT Sub u 

 
 

12

12

,[, ~ $,[, ,cu F

Sub u

 
 

12 12

12

~ ,] ,$,c cu F

Sub u





   
21 21, , ,u T F Sub u

  21F Sub u

 (11)

  12 1212 12 12,[, ~ $,[, , ,c cu T T   (12)

  12 1212 12 12 ,] , ~ ,] ,$, ,c cu T  

   

 (13)

 
12 12 12 12

12 ,

c

ijT Sub u 

 12 12 12 ,] , 

 (14)

 12 , ijT Sub u 

 21 21 21 21, , ~ $c c    

 (15)

 (16)

  21 2121 21 21, , ~ , ,$,c cu T     (17)

 (18)

     
21 2121 21 21 21, , ~ , ,$,c cu F F Sub u      (19)

     
22 2222 22 22 22, , ~ $, , ,c cu T F Sub u      (20)

     
22 2222 22 22 22, , ~ , ,$,c cu T F Sub u      (21)

     
22 2222 22 22 22, , ~ $, , ,c cu F F Sub u      (22)

     
22 2222 22 22 22, , ~ , ,$,c cu F F Sub u      (23)

   
   

31 3131 31 31

31 31

, (, ~ $, (,

,

c c

ij

u T

T Sub u Sub u

  

  
 (24)

   
   

31 3131 31 31

31 31

,) , ~ ,) ,$

,

c c

ij

u T

T Sub u Sub u

  

  
 (25)

     
31 3131 31 31 31, (, ~ $, (, , ,c c iju T T Sub u     (26)

     
31 3131 31 31 31,) , ~ ,) ,$, ,c c iju T T Sub u     (27)

   
31 31

, , () ~ $, , , if result is onec cY E T E S 

, 1 , 3iju i j 

 
 
 

      
11 21 22 12 12 22

, , 1

, 1, 2

, 2, 1

, 2, 2

[] [] , 3, 1c c c c c c

y i j

x i j

y x i j

x y i j

y x x y i j

  
    
    
    
            

 

 (28)

Furthermore, in Equations (8)-(28) are
defined as shown in Equation (29).

 

 
11 11

[]c ciju  

 


12 12

21 11

[]c c

c c

 

  

 (29)

and the computed words in each step of computation can be written as Equations (30)-(33):

     
             
   

31 21 11 11 21 22 12 12 22 31

12 12 12 12 21 21 21 21 22 22

0 31 21 11 11 21 22 12 12 22 31([] [])

$[] $[] $[] $[] $ $ $

c c c c c c c c c c

c c c c c c c c c c

YE x y x y

y y x x x y x y x y

y x

                      

                

   
11 11 11 11

22 22 31
$ $(

c c c c

c c cx y x     

 (30)

    
31 31 31

) $ () $c c cy x y x y ES    

       
         

     

31 21 11 11 21 22 12 12 22 31

11 11 12 12 12 12 21 21 21 21

22 31

1 31 21 21 22 22 31

12 12

([] [])

$[] $[] $[()] $[] $ $

$ $ $(

c c c c c c c c c c

c c c c c c c c c c

c c c

YE x y x y

y y x x x y x y

x y x y

                  

                

   
11 11

22 22 22

11 11c c

c cx y     

 (31)

       
31 31 31

) $ () $c c cx y x y x y ES     

       
         

       

31 21 21 22 22 31 11 11 11 11

12 12 21 11 11 21 21 21

22 22 22 31

2 31 31 11 11

21 21

22

() $[] $[]

] $ [] $)

$ $(

c c c c c c c c c c

c c c c c c c c

c c c c

YE x y x y y y

x x x y x y

x y x y x y

                  

           

            
12 12

22 12 12

12 12

22

$[] $[

$ []

c c

c c c

  

   

    
31 31

$ () $c cx y x y   

 (32)
31

)cx y

ES



Copyright © 2012 SciRes. IJCNS

A. KARIMI ET AL. 159

            
           

   

31 31 11 11 11 11 12 12 12

21 11 11 21 21 21 22 12 12 22 22

31 21 21 22 22

3 11 11 1

21 21 22 22

31

() $[] $[] $[] $[

$ [] $ $ []

$(

c c c c c c c

c c c c c c c c c c

c c c c c

YE x y x y y y x

x y x y x y

x y x y

               

                  

         

12

22

2 12]

$

c c c

c c

x

x y  

    
31 31 3131) $ () $c c cx y x y ES   

 (33)

In the next step, by applying deletion operation to 2 ,

if the result of the computation equals one, the axiom
YES will be produced.

4.3. Simulation of S-Box with AIR Systems

We assume the word of Equation (34) as input to
S-boxes of Figure 3

 

1 1 1 2 2 2

4 4 4 1 1 1

2 2 3 3 3

4 4

{ } { }

{ } ${ } ${

${ } ${ } ${

${ } $!, 1 4

iS i i i i

i i i i i

i i i i i

i i

OK x x 3 3 3

1 2 2

3 4 4

{ }

} ${ }

} ${ }

i i i i i

i i i i

i i i

x

x T F T

F T



in of

F T

F K i

   

 

 

 (34)

The following splicing rules will be used to guide re-
combinations of our AIR system for simulating S-boxes.

   1 1 1 1,{ , , ~ $,{ , ifi i i i ix T x  T LUT S

in of i

 (35)

   1 1 1 1,} , ~ ,} ,$ ifi i i ix T x

   

T LUT S

in of i

 (36)

1 1 1 1,{ , , ~ $,{ , ifi i i ix F x

   ,} , ~ ,} ,$ if

F LUT S

in of

  (37)

1 1 1 1i i i i ix F x F LUT S

in of i

 (38)

   2 2 2 2,{ , , ~ $,{ , ifi i i ix T x  T LUT S

in of

 (39)

   2 2 2 2,} , ~ ,} ,$ ifi i i i ix T x T LUT S

in of

 (40)

   2 2 2 2,{ , , ~ $,{ , ifi i i i ix F x  F LUT S

in of i

 (41)

   2 2 2 2,} , ~ ,} ,$ ifi i i ix F x F LUT S

in of

 (42)

   3 3 3 3,{ , , ~ $,{ , ifi i i i ix T x 

   ,} , ~ ,} ,$ if

T LUT S

in of i

 (43)

3 3 3 3i i i ix T x T LUT S

in of

 (44)

   13 3 3 3,{ , , ~ $,{ , ifi i i ix F x  F LUT S

in of

 (45)

   3 3 3 3,} , ~ ,} ,$ ifi i i i ix F x F LUT S

in of i

 (46)

   4 4 4 4,{ , , ~ $,{ , ifi i i ix T x  T LUT S

in of

 (47)

   4 4 4 4,} , ~ ,} ,$ ifi i i i ix T x T LUT S

in of

 (48)

   4 4 4 4,{ , , ~ $,{ , ifi i i i ix F x  F LUT S

in of i

 (49)

   4 4 4 4,} , ~ ,} ,$ ifi i i ix F x F LUT S

 

1 1 2 2 3 3 4 4

1 1 1 1 1 2 2 2 2 2 3 3 3

3 3 4 4 4 4 4

{ } { } { } { }

${ } ${ } ${ } ${ } ${ }

${ } ${ } ${ } $!, 1 4

iS i i i i i i i i

i i i i i i i i i i i i i

i i i i i i i

OK T T T T

x F x F x

F x F K i

     



 

 (50)

As can be seen in splicing relations of S-boxes, trl op-
eration is applied to the input word in a parallel fashion
in accordance with the look-up table of the correspond-
ing S-box and therefore, all input bits are assigned a True
or a False value at the same time.

After applying the above splicing rules, the following
word is obtained in which we assumed that the 4-bits of
input in S-box i are all mapped to logical one or T. Other
mappings can be defined as well according to the look-up
table of each S-box.

(51)

Then, the following splicing scheme is applied to the
resultant word. Then, the following splicing scheme is
applied to the resultant word.

   1 1 1 2 2 2 3 3 3 4 4 4, , { } { } { } { } ~ $, ,!i i i i i i i i i i i iO K u u u u K    

2i KS del

(52)

After applying the above rule, a deletion rule (which is
based on ld operation) is applied as follows.

 (53)  

Therefore, axiom OK! Is produced which implies that
the S-box has been calculated.

The start sequence for calculation of the substituted
words for computing S-box can be written as shown in
Equation (54), in which p and  

1 1 1 2 2 2 3 3 3 4 4 4

1 1 1 1 2 2 2 2 3 3

3 3 4 4 4 4

{ } { } { } { }

${ } ${ } ${ } ${ } ${ }

${ } ${ } ${ } $

iS i i i i i i i i i i i i

i i i i i i i i i i

i i i i i i

x x x x

p T F T F T

F T F p





    




iS

 are assumed blank
symbols.

 (54)

After applying the splicing rules of Equations (35)-(50)
to  we can obtain

iS as written in Equation (55).

1 1 2 2 3 3 4 4

1 1 1 1 1 2 2 2 2 2

3 3 3 3 3 4 4 4 4 4

{ } { } { } { }

${ } ${ } ${ } ${ }

${ } ${ } ${ } ${ } $

iS i i i i i i i i

i i i i i i i i i i

i i i i i i i i i i

T T T T

p x F x F

x F x F p

     

 (55)

 

Now, we can obtain the output of S-boxes by applying
a deletion rule which is guided by the splicing scheme
which is written in Equation (56).

 
 

1 1 1 2 2 2 3 3 3 4 4 4{ } { } { } { } , ,$

~ $, ,

i i i i i i i i i i i iu u u u     

 



 (56)

In Equation (56), shows the blank symbol and
 , , , 1, , 4u T F i j  ji in which j is the number of

output bit of S-boxes and i is number of S-boxes. There-
fore, after applying the above rules, we can write the
output of S-boxes as shown in Equation (57).

Copyright © 2012 SciRes. IJCNS

A. KARIMI ET AL. 160

1 1 1 2 2 2 3 3{ } { } {
iS i i i i i i i iu u     3 4 4 4} { }i i i iu u 

, , 4i 
iS

 (57)

In Equation (57), ji and  , ,u T F 1,j  

is the output of S-box number i.

4.4. Simulation of P-Box with AIR Systems

In this section, we build a Turing machine based on AIR
systems that simulates P-boxes of Figure 3. For this rea-
son, we write the input word and splicing schemes for
P-box as shown in Equation (58).

 

1 1 1 2 2 2

1 1 1 2 2 2

1 16

{ } { }

${ } ${ } $

, , , 1 16

P

i

x x

p u u

u x x i

16 16 16

16 16 16

{ }

${ } $,

x

u p

     



 




 

u
1 16i 

$, 1 16iu i  

16 16 16

16 16 16

{ }

{ } $

16

u p

u p

 



P

 (58)

In the above equation which describes input to the
P-boxes of “Figure 3”, we further assume that all i ,

 are distinctive and p is the blank symbol.
Therefore, we can write the splicing schemes as shown in
Equation (59).

      ,{ , ~ $,{ , , ,} , ~ ,} ,i i i i i i ix u x (59)

After applying trl rules in a parallel fashion, such that
they are guided by splicing rules of Equation (59), we
can get to the word that is shown in Equation (60).

 

1 1 1 2 2 2

1 1 1 2 2 2

1 16

{ } { }

${ } ${ } $ $

, , 1

,

P

i

i j

u u

u u

u x x i

u u i j

    

 

 





 (60)

Then, a deletion rule as shown in Equation (61) which
is guided by splicing rule of Equation (62) produces the
output of P-boxes. The output word of P-boxes is de-
monstrated in Equation (63).

P del P  

  ,$ ~ $, ,  

16 16 16{ } { } { }u u u      

 (61)

 1 1 1 2 2 2 16 16 16{ } { } { } ,u u u     (62)

1 1 1 2 2 2P  (63)

In Equation (63), P is the output of P-box.

5. The Proposed Attack Plan

In order to demonstrate our algorithm, we use the attack
graph of Figure 6 in each node of which a fraction of the
attack takes place. In the following, we explain the op-
erations that are accomplished in each node of the graph
of Figure 6.

In node in , all possible keys are generated the proc-
ess of which was explained in Section 4.1. In node 11 ,
all possible keys that were generated in in are bitwise
XORed with the given plaintext using AIR system of
Section 4.2 that is guided by splicing rules of Equations

(8)-(28). Then, the generated strings are forwarded to
S-boxes 1 4 of Figure 3 and in node , S-
boxes are applied in parallel to the output of node 11 in
accordance with splicing relations of Section (4.3). In 13
the generated strings are permuted in a fashion dictated
by the cipher instructions according to the splicing rela-
tions of Equations (59) and (62). The process of consecu-
tive mixing with subkey and applying substitution and
permutation operations go on in an iterated fashion in the
next nodes such that in node 1n , 2n and 3nY mixing
with the subkey, the round substitution and the

 round permutation take place, respectively, and in

1n

Y
Y

, ,S S 12Y
Y

Y

Y Y
thn thn

thn
Y

Y

 these gained strings are XORed with corresponding
bits of the 1stn  subkey and eventually, in node outY
the generated bits are compared with the given ciphertext
and we can find the key of the cipher if they are equal.

6. Performance Evaluation of the Proposed
Scheme

Considering that the operations of each node take place
concurrently for all strings that exist in that node, we can
find the number of steps that takes to produce the key of
the cipher. In node in by applying different combina-
tions of consecutive ciliate bio-operations to a single
initial word which is applied in parallel and takes one
step, we can produce all possible key of the cipher. In
node 11 the XOR operation is applied between the
generated words of node and the plaintext and consider-
ing that each XOR operation has a depth of three, four
steps are required to evaluate XOR of two bits that pro-
duces output of one. In node 12 two steps are required
to produce the resulting words. In node 13 two steps
should be accomplished to evaluate P-boxes. So, there
will be the same steps for other nodes of 1 2 3i i i for

Y

Y

Y
Y

, ,Y Y Y
2,3, ,i n 

Y 2 2 4n n n   

. We further assume that there are n-rounds
of substitutions and permutations. So, before the last
node, out , we need to do 1 4 opera-
tions. The operations of the last node can be carried out
as follows: Those bits that have been generated in node

Figure 6. The attack graph for breaking the cipher.

Copyright © 2012 SciRes. IJCNS

A. KARIMI ET AL. 161

out are XORed with the corresponding given ciphertext
bits which take 4-steps and then, the AND operation is
applied to the results of XORs which takes one step. So,
altogether steps are mandatory to accomplish
our attack in which n is the number of SP rounds.

Y

8 10n 

, ,S S

Assuming that we use our proposed scheme to break
16-Round DES cipher (n = 16) which has a Feistel struc-
ture which can be assumed as a variant of SPN ciphers,
using the analysis of Section 6, we need 138 steps of
computation which gives it a superior performance over
the proposed schemes of breaking DES using DNA
computer [10] which requires 916 steps and membrane
computing [11] which requires 278 steps of computations
as well as breaking DES using network of evolutionary
processors with parallel string rewriting rules (NEPPS)
which requires 268 steps [12]. Furthermore, our proposed
scheme, as opposed to [11] which needs exponential
space, does not need exponential space and for a specific
set of instructions of a given cipher, utilizes a constant
number of splicing rules. The performance of our pro-
posed scheme for cracking 16R-DES cipher in compare-
son with the previously proposed schemes has been de-
picted in Figure 7.

7. Simulation of the Proposed Attack

We conduct a computer simulation to test our proposed
theoretical scheme to break a sample cipher based on the
SPN of Figure 3 and in this section, first, we introduce
the parameters of the sample cipher which we aim to
cryptanalyze and then we explain the steps of our simu-
lations and finally, we present the results of simulations.

7.1. Parameters of the Considered Cryptosystem

In what follows, we introduce the cryptosystem under
consideration for simulation in this paper. As can be seen
in Figure 3, the input block size of our cryptosystem
equals to 16 bits and a certain operation takes place for n
rounds. Each round consists of substitution block, per-
mutation and mixture of bits. This structure looks like the
one that is used in DES and other modern block ciphers
such as Rijndael [13]. The utilized blocks of the cipher
can be defined as follows.

7.1.1. Substitution Block
In the cipher of Figure 3, we break the 16-bit block of
input into four 4-bit blocks. Each sub-block constitutes
an input to each S-box (a 4-to-4-bit S-box) that can be
realized with a look-up table containing sixteen 4-bit
values that can be defined with the integer numbers that
are shown in the input bits of Table 1. The considered
S-box is non-linear and the output bits of each S-box
cannot be written as a linear combination of the inputs
bits. Furthermore, it is assumed that all substitution

boxes of 1 4 are equivalent. Our considered sub-
stitution box for the cipher is shown in Table 1.

7.1.2. Permutation Block
The considered permutation schedule for the cipher of
Figure 3 is shown in Table 2. Numbers of this table
show the position of the bits in the block such that 1
shows the leftmost bit and 16 is the rightmost bit of the
input block.

7.1.3. Mixing with Subkey
We define the operation of mixture with the key to be
simply equal to applying the XOR gate between round
key bits and the input block to the round.

In what follows, we design different sub-systems nec-
essary for implementation of our proposed theoretical
attack to the cipher.

Considering the above parameters in the cipher of

Figure 7. Graph of comparison for performance evaluation.

Table 1. Look-up table for the considered S-box.

Input 0 1 2 3 4 5 6 7

Output E 4 D 1 2 F B 8

Input 8 9 10 11 12 13 14 15

Output 3 A 6 C 5 9 0 7

Table 2. Bit permutation schedule of Figure 3.

Input 0 1 2 3 4 5 6 7

Output 1 5 9 13 2 6 10 14

Input 8 9 10 11 12 13 14 15

Output 3 7 11 15 4 8 12 16

Copyright © 2012 SciRes. IJCNS

A. KARIMI ET AL. 162

Figure 3 and using splicing rules derived in Section 4,
we simulate the proposed attack on the cipher.

We utilize Turing Machine Simulator software [14] to
simulate our proposed attack on the cipher. For this rea-
son, based on the splicing rules of Section 4, we write an
initial program to simulate the main blocks of cryptana-
lysis according to the cipher parameters (such as genera-
tion of all keys, doing XOR, S-boxes and P-boxes). We
write appropriate programs for each block to do compu-
tations on the words written on the tape of the Turing
machine which simulate the AIR systems designed in
Sections 4.1-4.4. Then we combine all the written pro-
grams based on the graph of Figure 4. In our simu- la-
tion, we consider the following assumptions: we as-
sume the number of rounds of the cipher equal to 1.
Therefore we have one subkey string which is same as
the main key and has a length of 16 bits. We further as-
sume that the plaintext equals to “0000000000000000”
and also the ciphertext is assumed to be “01011110011
00110”. Now, based on the our designed AIR system, we
write the applied algorithm for cryptanalysis as follows.

Initially, by applying different splicing rules on an ini-
tial sequence, we can produce all possible combinations
of the key on the tape and then we put these strings on
different segments of the tape with a certain distance
from each other. Then, according to the splicing rules of
Equations (8)-(28) we apply bitwise XOR operation be-
tween key bits of each key and the corresponding plain-
text bits and their output is placed in another place on the
tape. Then, by using splicing rules of Equations (35)-(50)
and (56), we apply the substitution boxes of Table 1 to
the derived words in a parallel fashion and the resultant
words are rewritten on the same words. Then, P-box of
Table 2 is applied in to the derived words in a parallel
manner which utilizes the splicing rules of Equations (59)
and (62) and we rewrite them on the previously derived
words. Then, we apply the logical XOR operation be-
tween bits of the resultant words of this stage and the key
bits which had been mixed with the resultant sequence of
the previous steps (which have known location on the
tape) and therefore, we can get to the enciphered mes-
sage. Now, in accordance with the proposed operations
in the last node of the graph of Figure 4, in this node, the
achieved strings must be compared with the predefined
ciphertext and if all the corresponding bits were equal,
the used key is known as the cipher key.

We wrote appropriate programs to accomplish the
abovementioned instructions and ultimately, we suc-
cessfully derived the secret key equal to “0001001000
110100” which was predicted.

It is noteworthy that breaking the cipher of “Figure 3”
with more rounds can be done in the same way. But for
the sake of demonstration of our algorithm and also the
problem of taking a long time for execution of the pro-

gram we tested it on the cipher with 1 round of opera-
tions.

The codes shown in Appendix 1 are our specifically
written programs to simulate Turing machines related to
different building blocks necessary for the cryptanalysis
procedure as demonstrated in Section 4 which are appro-
priate for execution on the Turing Machine Simulator
software [14].

Note that all the written programs halt and generate
appropriate output strings in a finite number of iterations
The results of execution of codes of Appendix 1 for the
considered cipher, defined in Section 7.1, are shown in
Tables 3-6.

8. Conclusion

In this paper, we proposed a language-theoretic notion to
break SPN class of block ciphers which is based on the
gene assembly process that naturally occurs in ciliated
protozoa during the procedure of converting scrambled
MIC gene to MAC gene. Our scheme utilizes the AIR
system which includes two modified versions of in-
tramolecular ciliate bio-operations pdel and ,p qtrl which
renders it the computational flavor of Turing machine.
Assuming that we use our proposed scheme to break
16-Round DES cipher (n = 16) which has a Feistel struc-
ture which can be assumed as a variant of SPN ciphers,
using the analysis of Section 6, we need 138 steps of
computation which gives it a superior performance over
the proposed schemes of breaking DES using DNA
computer [13] which requires 916 steps and membrane

Table 3. Results of simulation of S-boxes.

Number of parallel
operations

Initial state Final state
Number of
iterations

16 A0 HALT 80

Table 4. Results of simulation of P-boxes.

Number of parallel
operations

Initial state Final state
Number of
iterations

1 A0 HALT 17

Table 5. Results of simulation of mixing with subkey.

Number of parallel
operations

Initial state Final state
Number of
iterations

16 R2 HALT 12

Table 6. All operations of attack on the cipher.

Number of parallel
operations

Initial state Final state
Number of
iterations

16-16-1-16 R2 HALT 121

Copyright © 2012 SciRes. IJCNS

A. KARIMI ET AL.

Copyright © 2012 SciRes. IJCNS

163

computing [14] which requires 278 steps of computations
as well as breaking DES using network of evolutionary
processors with parallel string rewriting rules (NEPPS)
which requires 268 steps [15]. Furthermore, our proposed
scheme, as opposed to [14] which needs exponential
space, does not need exponential space and for a specific
set of instructions of a given cipher, utilizes a constant
number of splicing rules. Finding nature-inspired com-
putational models like L-systems or modified versions of
P-systems or our utilized model, seem to be promising in
developing efficient computational models which simu-
late universal Turing machines and for future works,
other computational problems can be suggested to be
solved using these models.

REFERENCES
[1] L. M. Adleman, “Molecular Computation of Solutions to

Combinatorial Problems,” Science, Vol. 266, No. 5187,
1994, pp. 1021-1024. doi:10.1126/science.7973651

[2] L. Kari and L. F. Landweber, “Computational Power of
Gene Rearrangement,” In: V. E. Winfree and D. K. Gif-
ford, Eds., Proceedings of DNA Bases Computers, Ame-
rican Mathematical Society, 1999, pp. 207-216.

[3] L. F. Landweber and L. Kari, “The Evolution of Cellular
Computing: Nature’s Solution to a Computational Prob-
lem,” Proceedings of the 4th DIMACS Meeting on DNA-
Based Computers, Philadelphia, 15-19 June 1998, pp. 3-
15.

[4] R. Lipton, “Using DNA to Solve NP-Complete Prob-
lems,” Science, Vol. 268, 1995, pp. 542-545.
doi:10.1126/science.7725098

[5] L. M. Adleman, P. W. K. Rothemund, S. Roweis and E.
Winfree, “On Applying Molecular Computation to the
Data Encryption Standard,” Proceedings of 2nd Annual
Meeting on DNA Based Computers, DIMACS Workshop,
Princeton University, Princeton, 10-12 June 1996, pp.

28-48.

[6] D. R. Stinson, “Cryptography: Theory and Practice,”
CRC Press, Boca Raton, 2002.

[7] T. Head, “Formal Language Theory and DNA: An Ana-
lysis of the Generative Capacity of Specific Recombinant
Behaviors,” Bulletin of Mathematical Biology, Vol. 49,
No. 6, 1987, pp. 737-759.

[8] T.-O. Ishdorj and I. Petre, “Gene Assembly Models and
Boolean Circuits,” International Journal of Foundations
of Computer Science, Vol. 19, No. 5, 2008, pp. 1133-
1145. doi:10.1142/S0129054108006182

[9] T.-O. Ishdorj, I. Petre and V. Rogojin, “Computational
Power of Intramolecular Gene Assembly,” International
Journal of Foundations of Computer Science, Vol. 18, No.
5, 2007, pp. 1123-1136.
doi:10.1142/S0129054107005169

[10] W. Stallings, “Cryptography and Network Security Prin-
ciples and Practices,” 4th Edition, Prentice Hall, Upper
Saddle River, 2005, pp. 134-173.

[11] http://www3.wittenberg.edu/bshelburne/Turing.htm

[12] J. Castellanos, C. Martin-Vide, V. Mitrana and J. Sem-
pere, “Networks of Evolutionary Processors,” Acta In-
formatica, Vol. 39, No. 6-7, 2003, pp. 517-529.

[13] D. Boneh, C. Dunworth and R. Lipton, “Breaking DES
Using a Molecular Computer,” In: R. J. Lipton and E. B.
Baum, Eds., DNA Based Computers: Proceedings of a
DIMACS Workshop, Princeton, 10-12 June 1996, pp.
37-66.

[14] S. N. Krishna and R. Rama, “Breaking DES Using P
System,” Theoretical Computer Science, Vol. 299, No.
1-3, 2003, pp. 495-508.
doi:10.1016/S0304-3975(02)00531-5

[15] A. Choudhary and K. Krithivasan, “Breaking DES Using
Networks of Evolutionary Processors with Parallel String
Rewriting Rules,” International Journal of Computer
Mathematics, Vol. 86, No. 4, 2009, pp. 567-576.
doi:10.1080/00207160701351168

http://dx.doi.org/10.1126/science.7973651
http://dx.doi.org/10.1126/science.7725098
http://dx.doi.org/10.1142/S0129054108006182
http://dx.doi.org/10.1142/S0129054107005169
http://dx.doi.org/10.1016/S0304-3975(02)00531-5
http://dx.doi.org/10.1080/00207160701351168

A. KARIMI ET AL. 164

Appendix 1: Program Codes for Simulation
of the Proposed AIR Systems

In this section, the code lines written for simulation of
the proposed AIR systems for each building block of the
attack are shown. Note that the programs have been
written to be suitable for the Turing simulator software
that was used for our simulations. R and L in the written
programs demonstrate directions of right and left, re-
spectively, of head of the considered Turing machines on
the tape.

Code Lines for Simulation of S-Boxes Using AIR
Systems

(A0, 0, 1, B0, R) (B0, 0, 1, C0, R)
(C0, 0, 1, D0, R) (D0, 0, 0, E0, R)
(E0, , , E0, R) (E0, 0, 0, A1, R)
(A1, 0, 1, B1, R) (B1, 0, 0, C1, R)
(C1, 1, 0, D1, R) (D1, , , D1, R)
(D1, 0, 1, A2, R) (A2, 0, 1, B2, R)
(B2, 1, 0, C2, R) (C2, 0, 1, D2, R)
(D2, , , D2, R) (D2, 0, 0, A3, R)
(A3, 0, 0, B3, R) (B3, 1, 0, C3, R)
(C3, 1, 1, D3, R) (D3, , , D3, R)
(D3, 0, 0, A4, R) (A4, 1, 0, B4, R)
(B4, 0, 1, C4, R) (C4, 0, 0, D4, R)
(D4, , , D4, R) (D4, 0, 1, A5, R)
(A5, 1, 1, B5, R) (B5, 0, 1, C5, R)
(C5, 1, 1, D5, R) (D5, , , D5, R)
(D5, 0, 1, A6, R) (A6, 1, 0, B6, R)
(B6, 1, 1, C6, R) (C6, 0, 1, D6, R)
(D6, , , D6, R) (D6, 0, 1, A7, R)
(A7, 1, 0, B7, R) (B7, 1, 0, C7, R)
(C7, 1, 0, D7, R) (D7, , , D7, R)
(D7, 1, 0, A8, R) (A8, 0, 0, B8, R)
(B8, 0, 1, C8, R) (C8, 0, 1, D8, R)
(D8, , , D8, R) (D8, 1, 1, A9, R)
(A9, 0, 0, B9, R) (B9, 0, 1, C9, R)
(C9, 1, 0, D9, R) (D9, , , D9, R)
(D9, 1, 0, F0, R) (F0, 0, 1, G0, R)

(G0, 1, 1, H0, R) (H0, 0, 0, I0, R)
(I0, , , I0, R) (I0, 1, 1, F1, R)
(F1, 0, 1, G1, R) (G1, 1, 0, H1, R)
(H1, 1, 0, I1, R) (I1, , , I1, R)
(I1, 1, 0, F2, R) (F2, 1, 1, G2, R)
(G2, 0, 0, H2, R) (H2, 0, 1, I2, R)
(I2, , , I2, R) (I2, 1, 1, F3, R)
(F3, 1, 0, G3, R) (G3, 0, 0, H3, R)
(H3, 1, 1, I3, R) (I3, , , I3, R)
(I3, 1, 0, F4, R) (F4, 1, 0, G4, R)
(G4, 1, 0, H4, R) (H4, 0, 0, I4, R)
(I4, , , I4, R) (I4, 1, 0, F5, R)
(F5, 1, 1, G5, R) (G5, 1, 1, H5, R)
(H5, 1, 1, I5, R) (I5, , , I5, R)
(I5, , , Z, L)

Code Lines for Simulation of P-Boxes Using AIR
Systems

(A0, a, a, B0, R) (B0, b, e, C0, R)
(C0, c, i, D0, R) (D0, d, m, E0, R)
(E0, e, b, A1, R) (A1, f, f, B1, R)
(B1, g, j, C1, R) (C1, h, n, D1, R)
(D1, i, c, A2, R) (A2, j, g, B2, R)
(B2, k, k, C2, R) (C2, l, o, D2, R)
(D2, m, d, A3, R) (A3, n, h, B3, R)
(B3, o, l, C3, R) (C3, p, p, D3, R)
(D3, , , D3, R) (D3, , , Z, L)

Code Lines for Simulation of XOR Using AIR
Systems

(R2, 1, 1, R2, R) (R2, +, +, R2, R)
(R2, 0, 0, R2, R) (R2, 1, 1, R2, R)
(R2, 0, 0, R2, R) (R2, 1, 1, R2, R)
(R2, 0, 0, R2, R) (R2, , , L0, L)
(L0, 1, 0, L1, L) (L0, 0, 1, L0, L)
(L0, +, , R4, R) (R4, 1, , R4, R)
(R4, , , Z, R) (Z, , , Z, L)
(L1, +, +, L3, L) (L3, 1, 0, L3, L)
(L3, , 1, R2, R) (L3, 0, 1, R2, R).

Copyright © 2012 SciRes. IJCNS

