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ABSTRACT 

In this paper we provide a novel approach for breaking a significant class of block ciphers, the so-called SPN ciphers, 
using the process of gene assembly in ciliates. Our proposed scheme utilizes, for the first time, the Turing-powerful 
potential of gene assembly procedure of ciliated protozoa into the real world computations and has a fewer number of 
steps than the other proposed schemes to break a cipher. We elaborate notions of formal language theory based on AIR 
systems, which can be thought of as a modified version of intramolecular scheme to model the ciliate bio-operations, 
for construction of building blocks necessary for breaking the cipher, and based on these nature-inspired constructions 
which are as powerful as Turing machines, we propose a theoretical approach for breaking SPN ciphers. Then, we 
simulate our proposed plan for breaking these ciphers on a sample block cipher based on this structure. Our results 
show that the proposed scheme has 51.5 percent improvement over the best previously proposed nature-inspired scheme 
for breaking a cipher.  
 
Keywords: Nature-Inspired Computation; Accepting Intramolecular Recombination (AIR) Systems; Cryptanalysis; 

Gene Assembly; Block Ciphers 

1. Introduction 

L. Adleman, during a laboratory experiment, for the first 
time discovered the potential of DNA molecules to solve 
computationally hard problems [1]. His revolutionary 
paper started the interdisciplinary area of DNA comput- 
ing. Since then, a bulk of research has tried to concen- 
trate on the theoretical ability of DNA strands to solve 
hard problems. Specifically, language theory has helped 
researchers find mathematical constructions to build com- 
puting machines based on ability of biomolecules repre-
sented in form of words. Natural computing which util-
izes the potential of biomolecules in their living envi-
ronments (i.e. cells) is of special interest. In this respect, 
Kari et al. in [2,3] considered the gene assembly process 
in ciliates and demonstrated that it has computational 
capability just like Turing machines. Their findings aroused 
a hot line of research in cellular computing.  

Ciliates are single-celled eukaryotes that have special 
features which make them appealing and distinctive. 
They possess cilia which are used for their motion and 
also for making a current of water to sweep bacteria and 
other nutrients into their oral cavities. In addition, they 
have two different sorts of nuclei: A diploid micronu- 
cleus and a polyploid macronucleus. The former is germ- 

line nucleus which is activated only during the sexual 
process of conjugation and remains dormant in the vege- 
tative cycle. And the latter is the somatic nucleus which 
is the housekeeping nucleus responsible for production of 
RNA transcripts which is a must for cell development 
during its life cycle. A species of ciliated protozoa Oxy- 
tricha trifallax is shown in Figure 1. 

Ciliates do sorting, inversion and excision of their 
DNA sequences. We adopt the strategy of encoding all 
solution candidates into a micronuclear gene, then as- 
sembling the gene using intramolecular model [4] and 
ultimately filtering the results and checking through the 
cipher to find the right key.  

In [5], Adleman et al. proposed a scheme to break the 
Data Encryption Standard using DNA molecules, by 
molecular biology tools.  

In this paper we want to replace formal biological op- 
erations by ciliate bio-operations for cryptanalysis of 
SPN ciphers. For this reason, we use language-theoretic 
notions to describe the process of cryptanalysis and by 
utilizing an encoding scheme of the words of our con- 
structed notion to the MIC genes of a hypothetical cili- 
ated protozoa from the Stichotrichous family as shown in 
Figure 2, we design AIR systems which simulate dif- 
ferent blocks necessary to do the cryptanalysis of a large 
class of block ciphers, called substitution-permutation  *Corresponding author. 
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Figure 1. Ciliated protozoa Oxytrichia trifallax. 
 

 

Figure 2. Ciliated protozoa Stichotricha. 
 
networks and then using these Turing machine construc- 
tions, we simulate our theoretical attack on this structure 
defined by specific and predefined blocks.  

The rest of this paper is organized as follows. In Sec- 
tion 2, the substitution-permutation networks are intro- 
duced which constitute a large class of block ciphers, in 
Section 3.1, the concept of splicing schemes that is nec- 
essary to understand AIR systems which is a variant of 
intramolecular operations for modeling ciliate bio-op- 
erations is briefly introduced. In Section 3.2, we define 
the accepting intramolecular recombination systems (or 
AIR systems) on which our proposed scheme to break 
the cipher is based. In Section 4, we propose and build 
the necessary blocks which we need for cryptanalysis of 
the cipher. In Section 5, based on our previously designed 
AIR systems, we devise a theoretical approach to attack 
the cipher. In Section 6, we evaluate the performance of 
our proposed scheme and derive the total bio-steps nec- 
essary to mount the attack. In Section 7, our simulations 
are discussed and the results are reported. Finally, in Sec- 
tion 8, we summarize our paper and conclusions are 
drawn, and the plans for the future research based on this 
work are presented. 

2. Substitution-Permutation Networks 

A variety of modern block ciphers are built using an it- 
erative structure of Substitution-Permutation Networks or 
SPN for short. AES (Rijndael), Shark, Khazad and Anu- 

bis are good examples for SPN ciphers [6]. The selected 
example SPN is as shown in Figure 3 and we will fo- 
cus our discussion on this network. As demonstrated in 
Figure 3, the block size of our cipher is 16-bits and each 
block of the plaintext is processed by repeating basic 
operations of a round which are substitution, permutation 
and key mixing. Indeed, our considered scheme is similar 
to what is found in many modern block ciphers including 
Rijndael from basic operations viewpoint and provides us 
with an insight into cryptanalysis of the real-world block 
ciphers using natural computing methods. 

3. Preliminary Definitions 

Our proposed scheme to break the cipher is based on 
Accepting intramolecular recombination systems (AIR 
systems) which is a variant of intramolecular models of 
gene assembly in ciliated protozoa. In this section we 
bring some basic notions and notations that are necessary 
to conceive the attack procedure.  

3.1. Splicing Schemes 

A splicing scheme [7] is defined as a pair , ~R    in 
which  is an alphabet and ~ is a binary relation over 
 2* * 

 
. Assuming that this relation exists between 

two triples of strings as follows  , , ~ , ,p p    

z x p y

 
we say that given the abovementioned binary relation, 
strings 1     2z y p x  and      can be ob- 
tained by recombination from x x p x  
y y p y

 and  
    . 

3.2. AIR Systems 

An accepting intramolecular recombination system is 
defined as a quadruple in , ~, ,G     in which  

 , ~R    is the splicing scheme and in  and   are 
input and the target words, respectively. Considering a 
splicing scheme,  , ~R  

*, , , , , , ,x u u v x y y z       

, we define the contextual 
intramolecular operations of translocation, trl, and dele- 
tion, del, which are generalizations of dlad and ld in- 
tramolecular operations, respectively, as follows [8]. 

Assuming  and x x , 
uqy u u    vqz v,    xpu x , 
ypv y y

,  
    z z,      The trl operation with re- 

spect to R is defined as 

 
,, p qp q trltrl xpuqypvqz xpvqypuqz        (1) 

Therefore, in the ,p q  operation the strings of u and 
v which are flanked by pointers p and q are swapped. The 
del operation with respect to R is also defined as: 

trl

 
pp deldel xpupy xpy           (2) 

   , , ~ , ,p pwhere      *, , ,x u u     and for  
,

, 
x x  u u u   y y,    . Hence, intuitively,  
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Figure 3. The basic substitution-permutation network. 
 
if the contexts of occurrences p are in the relation ~, the 

pdel
R

 operation removes the string u that is flanked by 
two occurrences of p. We can now define the set  of 
all contextual intramolecular operations under guidance 
of ~ as: 

 , , ,m p q m 

*w

,p qR trl del         (3) 

Accordingly, we can define the language that is ac- 
cepted by the AIR system, G, as all the words 

op R 
inw

 
for which by consecutive application of any number of 

 operations from  , we can get to the target 
word  . 

4. Constructing Necessary Building Blocks 
for Attacking the Cipher 

Our proposed scheme to break the SPN family of block 
ciphers considers the modified approach of intramolecu- 
lar recombination for modeling gene assembly process in 
ciliates, and then applies this approach in constructing 
necessary building blocks for breaking the cipher. Our 

attack approach is brute force in which we assume that 
we possess a (plaintext, ciphertext) pair and by exhaust- 
tive search over all possible keys, we aim to find the 
correct key of the cipher. Therefore, in the first step, we 
should produce all genes of a hypothetical ciliate each of 
which codes for an individual key of the cipher and then 
using gene assembly process that naturally happens in 
ciliated protozoa, we construct Turing machines that 
imitate main operations that we need in the procedure of 
cryptanalysis such as the substitution, permutation and 
logical XOR, and ultimately, we can find the key that 
when mixed with the plaintext, gives the ciphertext if in 
each step of the computation the micronuclear (MIC) 
genes are assembled to the expected macronuclear (MAC) 
genes. In the next section we introduce the main opera- 
tions needed for cryptanalysis and then, build Turing 
machines that imitate these operations.  

4.1. Generation of All Possible Keys 

In order for generation of all genes that code for all pos- 
sible combinations of the key, we utilize the graph of 
Figure 4 in which all possible paths that start from b  
and terminate at e  code for a different n-bit key. We 
use intramolecular model of gene assembly in ciliates. 
Therefore, beginning with a single MIC gene pattern for 
which there exist more than two occurrences of a pointer, 
we can assemble different MAC gene patterns that code 
for different keys of the cipher. Now, assuming that 
graph of Figure 4 is demonstrated with 

a
a

 ,G V E  for 
which V and E denote sets of vertices and edges, re- 
spectively, we define an encoding of G in the MIC gene 
pattern in terms of MDS descriptors as follows: we asso- 
ciate a pointer p to each vertex of G and to each directed 
edge  ,p q  ,p q

npp p p q
 we associate MDS of . Therefore, a 

path 1 2  of G can be encoded by an interme- 
diate MDS  , ,p p p p q

p s
1 2 k  in which p and q are the 

incoming and outgoing pointers, respectively, and i , 
1 i k   are those pointers for which MIC MDSs that 
correspond with edges      , , , , , ,p p p p p q1 1 2 k  be- 
longing to set of edges of G, have been spliced. Note that 
MIC MDSs are spliced on their common pointers. For 
our graph of representation of all possible keys (graph of 
Figure 4) we have  

 1 1 1 1, , , , , , , , ,b n n n n eV a a b b a b b a a    

and  

       
   

1 1 1 1 1 1 2

1 2 1

, , , , , , , ,

, , , ,

b

n e

E a a a b a b b a

b a a a



 
 

hence, for instance, we associate an MDS 
 1 1 2 2 1b n e  to a path 1 1 2 2 1b n ea a   and 
with different strategies to the same MIC gene pattern, 
we can obtain different MAC genes which represent all  

, ,a a b a b a a b a b a a
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Figure 4. The graph for generation of all possible keys. 
 

possible keys. According to the universality result of [9] 
for intramolecular operations, each path of G can be as- 
sembled using intramolecular ciliate operations ld, hi and 
dlad. Since we are looking for all those paths that start 
from b  and end at e , our desired assembled MAC 
gene would be of the form, , in which u is any 
path that contains all ’s ia   


 and all differ- 

ent i’s or i ’s . Therefore, if each edge of G 
is encoded as a MIC MDS then, we show that one can 
produce all possible keys of the cipher using ld operation 
only from a single string of MDS descriptors that dem- 
onstrate all edges of G as shown in Theorem 1. For this 
reason, we say that a descriptor 

b b n1 i 

G  is associated to G if 
it is of the form  where    2, ,a a   1 1, ,n

G n ea a 

 ,p q E

 ld

ld

 , ,p q
G b 

G    is defined as a descriptor that en- 

codes all edges of G. 
Theorem 1. Any successfully assembled  

ld GMDS   1n  a
b

 for which all  i ’s and a total 
number of n of either i’s or ib ’s appear and  

2MDS V , produces any possible path that is rep- 
resentative for every one of possible keys of the cipher. 

Implementation of logical XOR using ciliate bio 

operations is explained in Section 4.2. 2MDS V  , 
produces any possible path that is representative for 
every one of possible keys of the cipher. 

Implementation of logical XOR using ciliate bio 
operations is explained in Section 4.2.  

4.2. An Intramolecular Model for Computing 
Logical XOR 

We define logical XOR as satisfiability of a Boolean 
relationship that is depicted in Equation (4). 

   C x y x y                (4) 

And here we provide a ciliate solution for Equation (4) 
using intramolecular model which computes the result of 
XOR in polynomial time. For this reason, we construct 
an AIR system  , ~, ,G YES  0  [9] that evaluates 
the output of Equation (4). The circuit that implements 
XOR is depicted in Figure 5. 

As can be seen in Figure 5, the circuit is composed of 
three layers and we show its output with the following 
notation demonstrated in Equation (5). 

 31 21 11 11 21 22 12 12 22
31

[ ] [ ]c c c c c c c c c c
c x y x y    

c

thi

    (5) 

In the above notation, each gate is shown with ij  in 
which i denotes number of layer of the circuit and j de- 
notes number of that gate in the  layer and  and 
  and    denote logical AND, OR and NOT gates, 

respectively. In this circuit we have  where  ,C V E
 11 12 21 22 31, , , ,V c c c c c  and  
       , , , , , , ,E c c c c c c c c 11 21 12 22 21 31 22 31 . Now we con- 

struct an AIR system for the Boolean circuit of Figure 5 
as  , ~,cG V YES

  

 where  
 

 11 11 12 12 21 21 22 22 31 31 11 12 21 22 31, , , , , , ,$ [ , ] ,[ , ] , , , , , ( , ) , , , , ,c c c c c c c c c cV V X Y T F Y E S             

$ 

 

 
YES is the axiom and  and  are not included in 

alphabet of the Turing machine. Furthermore,  , ~V   is 
the splicing scheme. Assuming that F  is used instead 
of logical zero and  is used instead of logical one, x 

and y are encoded into inputs for  by utilizing the 
mapping 

T

cG
   ,i T F   ,i x y

   

 in which  is the set 
of inputs of the circuit. Now, if we consider Equations (6) 
and (7): 

 

   
31 21 11 11 21 22 12 12 22 311 31 21 11 11 21 22 12 12 22 31( [ ] [ ] )c c c c c c c c c cx y x y                          (6) 

         
             

11 12 12 12 12 21 21 21 21

22 22 22 22 31 31 31 31

] $ [ ] $ [ ( )] $ $

$ $ $( ) $( ) $

c c c c c c c c c c

c c c c c c c c

y x x x y x y

x y x y x y x y x y x y

          

               

 G

11 11 112 $ [ ] $ [c cy  
            (7) 

 

     
11 1111 11 11 11,[ , ~ $,[ , , ,c c iju T T Sub u    The input of our AIR system c  is then  

0 1 2

  (8) 
YE ES   and cG  accepts the input string if re- 

sult of XOR is 1 and the axiom YES is produced. There- 
fore if result of XOR equals 1, Gc accepts input string in 
4 steps. In the following we construct splicing schemes 
necessary for computation of XOR in the proposed AIR 
system. 

     
11 1111 11 11 11, ] , ~ , ] ,$ , ,c c iju T T Sub u       (9) 

   
   

11 1111 11 11

11 11

,[ , ~ $,[ , ,

,

c c

ij

u F

T Sub u Sub u

  

  
        (10) 
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21c

22c

     
21 2121 21 21 21, , ~ $, , ,c cu F F Sub u     

C

31c

x 

y 

 

Figure 5. Operation of XOR. 
 

 
 

1111 11 11

11

, ] ,

, ijT Sub u

  

 

 
 
11

11

~ , ] ,$ ,c cu F

Sub u

  12ij Sub u 

  12ijT Sub u 

 
 

12

12

,[ , ~ $,[ , ,cu F

Sub u

 
 

12 12

12

~ , ] ,$ ,c cu F

Sub u





   
21 21, , ,u T F Sub u

  21F Sub u

        (11) 

  12 1212 12 12,[ , ~ $,[ , , ,c cu T T    (12) 

  12 1212 12 12 , ] , ~ , ] ,$ , ,c cu T  

   

 (13) 

 
12 12 12 12

12 ,

c

ijT Sub u 

 12 12 12 , ] , 

       (14) 

 12 , ijT Sub u 

 21 21 21 21, , ~ $c c    

       (15) 

 (16) 

  21 2121 21 21, , ~ , ,$ ,c cu T      (17) 

 (18) 

     
21 2121 21 21 21, , ~ , ,$ ,c cu F F Sub u       (19) 

     
22 2222 22 22 22, , ~ $, , ,c cu T F Sub u       (20) 

     
22 2222 22 22 22, , ~ , ,$ ,c cu T F Sub u       (21) 

     
22 2222 22 22 22, , ~ $, , ,c cu F F Sub u       (22) 

     
22 2222 22 22 22, , ~ , ,$ ,c cu F F Sub u       (23) 

   
   

31 3131 31 31

31 31

, ( , ~ $, ( ,

,

c c

ij

u T

T Sub u Sub u

  

  
       (24) 

   
   

31 3131 31 31

31 31

, ) , ~ , ) ,$

,

c c

ij

u T

T Sub u Sub u

  

  
       (25) 

     
31 3131 31 31 31, ( , ~ $, ( , , ,c c iju T T Sub u      (26) 

     
31 3131 31 31 31, ) , ~ , ) ,$ , ,c c iju T T Sub u      (27) 

   
31 31

, , ( ) ~ $, , , if result is onec cY E T E S 

, 1 , 3iju i j 

 
 
 

      
11 21 22 12 12 22

, , 1

, 1, 2

, 2, 1

, 2, 2

[ ] [ ] , 3, 1c c c c c c

y i j

x i j

y x i j

x y i j

y x x y i j

  
    
    
    
            

 

  (28) 

Furthermore, in Equations (8)-(28)  are 
defined as shown in Equation (29). 

 

 

 
11 11

[ ]c ciju  

 


12 12

21 11

[ ]c c

c c

 

  

            (29) 

and the computed words in each step of computation can be written as Equations (30)-(33): 

     
             
   

31 21 11 11 21 22 12 12 22 31

12 12 12 12 21 21 21 21 22 22

0 31 21 11 11 21 22 12 12 22 31( [ ] [ ] )

$[ ] $[ ] $[ ] $[ ] $ $ $

c c c c c c c c c c

c c c c c c c c c c

YE x y x y

y y x x x y x y x y

y x

                      

                

   
11 11 11 11

22 22 31
$ $(

c c c c

c c cx y x     

 (30) 

    
31 31 31

) $ ( ) $c c cy x y x y ES    

       
         

     

31 21 11 11 21 22 12 12 22 31

11 11 12 12 12 12 21 21 21 21

22 31

1 31 21 21 22 22 31

12 12

( [ ] [ ] )

$[ ] $[ ] $[ ( ) ] $[ ] $ $

$ $ $(

c c c c c c c c c c

c c c c c c c c c c

c c c

YE x y x y

y y x x x y x y

x y x y

                  

                

   
11 11

22 22 22

11 11c c

c cx y     

     (31) 

       
31 31 31

) $ ( ) $c c cx y x y x y ES     

       
         

       

31 21 21 22 22 31 11 11 11 11

12 12 21 11 11 21 21 21

22 22 22 31

2 31 31 11 11

21 21

22

( ) $[ ] $[ ]

] $ [ ] $ )

$ $(

c c c c c c c c c c

c c c c c c c c

c c c c

YE x y x y y y

x x x y x y

x y x y x y

                  

           

            
12 12

22 12 12

12 12

22

$[ ] $[

$ [ ]

c c

c c c

  

   

    
31 31

$ ( ) $c cx y x y   

             (32) 
31

)cx y

ES


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            
           

   

31 31 11 11 11 11 12 12 12

21 11 11 21 21 21 22 12 12 22 22

31 21 21 22 22

3 11 11 1

21 21 22 22

31

( ) $[ ] $[ ] $[ ] $[

$ [ ] $ $ [ ]

$(

c c c c c c c

c c c c c c c c c c

c c c c c

YE x y x y y y x

x y x y x y

x y x y

               

                  

         

12

22

2 12 ]

$

c c c

c c

x

x y  

    
31 31 3131) $ ( ) $c c cx y x y ES   

 (33) 

 
In the next step, by applying deletion operation to 2 , 

if the result of the computation equals one, the axiom 
YES will be produced. 

4.3. Simulation of S-Box with AIR Systems 

We assume the word of Equation (34) as input to 
S-boxes of Figure 3 

 

1 1 1 2 2 2

4 4 4 1 1 1

2 2 3 3 3

4 4

{ } { }

{ } ${ } ${

${ } ${ } ${

${ } $ !, 1 4

iS i i i i

i i i i i

i i i i i

i i

OK x x 3 3 3

1 2 2

3 4 4

{ }

} ${ }

} ${ }

i i i i i

i i i i

i i i

x

x T F T

F T



in of

F T

F K i

   

 

 

  (34) 

The following splicing rules will be used to guide re- 
combinations of our AIR system for simulating S-boxes. 

   1 1 1 1,{ , , ~ $,{ , ifi i i i ix T x  T LUT S

in of i

 (35) 

   1 1 1 1,} , ~ ,} ,$ ifi i i ix T x

   

T LUT S

in of i

 (36) 

1 1 1 1,{ , , ~ $,{ , ifi i i ix F x

   ,} , ~ ,} ,$ if

F LUT S

in of

   (37) 

1 1 1 1i i i i ix F x F LUT S

in of i

 (38) 

   2 2 2 2,{ , , ~ $,{ , ifi i i ix T x  T LUT S

in of

 (39) 

   2 2 2 2,} , ~ ,} ,$ ifi i i i ix T x T LUT S

in of

 (40) 

   2 2 2 2,{ , , ~ $,{ , ifi i i i ix F x  F LUT S

in of i

 (41) 

   2 2 2 2,} , ~ ,} ,$ ifi i i ix F x F LUT S

in of

 (42) 

   3 3 3 3,{ , , ~ $,{ , ifi i i i ix T x 

   ,} , ~ ,} ,$ if

T LUT S

in of i

 (43) 

3 3 3 3i i i ix T x T LUT S

in of

 (44) 

   13 3 3 3,{ , , ~ $,{ , ifi i i ix F x  F LUT S

in of

 (45) 

   3 3 3 3,} , ~ ,} ,$ ifi i i i ix F x F LUT S

in of i

 (46) 

   4 4 4 4,{ , , ~ $,{ , ifi i i ix T x  T LUT S

in of

 (47) 

   4 4 4 4,} , ~ ,} ,$ ifi i i i ix T x T LUT S

in of

 (48) 

   4 4 4 4,{ , , ~ $,{ , ifi i i i ix F x  F LUT S

in of i

 (49) 

   4 4 4 4,} , ~ ,} ,$ ifi i i ix F x F LUT S

 

1 1 2 2 3 3 4 4

1 1 1 1 1 2 2 2 2 2 3 3 3

3 3 4 4 4 4 4

{ } { } { } { }

${ } ${ } ${ } ${ } ${ }

${ } ${ } ${ } $ !, 1 4

iS i i i i i i i i

i i i i i i i i i i i i i

i i i i i i i

OK T T T T

x F x F x

F x F K i

     



 

 (50) 

As can be seen in splicing relations of S-boxes, trl op- 
eration is applied to the input word in a parallel fashion 
in accordance with the look-up table of the correspond- 
ing S-box and therefore, all input bits are assigned a True 
or a False value at the same time.  

After applying the above splicing rules, the following 
word is obtained in which we assumed that the 4-bits of 
input in S-box i are all mapped to logical one or T. Other 
mappings can be defined as well according to the look-up 
table of each S-box. 

(51) 

Then, the following splicing scheme is applied to the 
resultant word. Then, the following splicing scheme is 
applied to the resultant word.  

   1 1 1 2 2 2 3 3 3 4 4 4, , { } { } { } { } ~ $, ,!i i i i i i i i i i i iO K u u u u K    

2i KS del

 

(52) 

After applying the above rule, a deletion rule (which is 
based on ld operation) is applied as follows.  

            (53)  

Therefore, axiom OK! Is produced which implies that 
the S-box has been calculated.  

The start sequence for calculation of the substituted 
words for computing S-box can be written as shown in 
Equation (54), in which p and  

1 1 1 2 2 2 3 3 3 4 4 4

1 1 1 1 2 2 2 2 3 3

3 3 4 4 4 4

{ } { } { } { }

${ } ${ } ${ } ${ } ${ }

${ } ${ } ${ } $

iS i i i i i i i i i i i i

i i i i i i i i i i

i i i i i i

x x x x

p T F T F T

F T F p





    




iS

 are assumed blank 
symbols. 

 (54) 

After applying the splicing rules of Equations (35)-(50) 
to   we can obtain 

iS  as written in Equation (55). 

1 1 2 2 3 3 4 4

1 1 1 1 1 2 2 2 2 2

3 3 3 3 3 4 4 4 4 4

{ } { } { } { }

${ } ${ } ${ } ${ }

${ } ${ } ${ } ${ } $

iS i i i i i i i i

i i i i i i i i i i

i i i i i i i i i i

T T T T

p x F x F

x F x F p

     

  (55) 

 

Now, we can obtain the output of S-boxes by applying 
a deletion rule which is guided by the splicing scheme 
which is written in Equation (56).  

 
 

1 1 1 2 2 2 3 3 3 4 4 4{ } { } { } { } , ,$

~ $, ,

i i i i i i i i i i i iu u u u     

 



 (56) 

In Equation (56),  shows the blank symbol and  
 , , , 1, , 4u T F i j  ji  in which j is the number of 

output bit of S-boxes and i is number of S-boxes. There- 
fore, after applying the above rules, we can write the 
output of S-boxes as shown in Equation (57). 
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1 1 1 2 2 2 3 3{ } { } {
iS i i i i i i i iu u     3 4 4 4} { }i i i iu u 

, , 4i 
iS

 (57) 

In Equation (57), ji  and  , ,u T F 1,j    

is the output of S-box number i.  

4.4. Simulation of P-Box with AIR Systems 

In this section, we build a Turing machine based on AIR 
systems that simulates P-boxes of Figure 3. For this rea-
son, we write the input word and splicing schemes for 
P-box as shown in Equation (58).  

 

1 1 1 2 2 2

1 1 1 2 2 2

1 16

{ } { }

${ } ${ } $

, , , 1 16

P

i

x x

p u u

u x x i

16 16 16

16 16 16

{ }

${ } $ ,

x

u p

     



 




 

u
1 16i 

$ , 1 16iu i  

16 16 16

16 16 16

{ }

{ } $

16

u p

u p

 



P

  (58) 

In the above equation which describes input to the 
P-boxes of “Figure 3”, we further assume that all i , 

 are distinctive and p is the blank symbol. 
Therefore, we can write the splicing schemes as shown in 
Equation (59).   

      ,{ , ~ $,{ , , ,} , ~ ,} ,i i i i i i ix u x (59) 

After applying trl rules in a parallel fashion, such that 
they are guided by splicing rules of Equation (59), we 
can get to the word that is shown in Equation (60). 

 

1 1 1 2 2 2

1 1 1 2 2 2

1 16

{ } { }

${ } ${ } $ $

, , 1

,

P

i

i j

u u

u u

u x x i

u u i j

    

 

 





   (60) 

Then, a deletion rule as shown in Equation (61) which 
is guided by splicing rule of Equation (62) produces the 
output of P-boxes. The output word of P-boxes is de- 
monstrated in Equation (63).  

P del P  

  ,$ ~ $, ,  

16 16 16{ } { } { }u u u      

              (61) 

 1 1 1 2 2 2 16 16 16{ } { } { } ,u u u      (62) 

1 1 1 2 2 2P      (63) 

In Equation (63), P  is the output of P-box. 

5. The Proposed Attack Plan 

In order to demonstrate our algorithm, we use the attack 
graph of Figure 6 in each node of which a fraction of the 
attack takes place. In the following, we explain the op-
erations that are accomplished in each node of the graph 
of Figure 6.  

In node in , all possible keys are generated the proc- 
ess of which was explained in Section 4.1. In node 11 , 
all possible keys that were generated in in  are bitwise 
XORed with the given plaintext using AIR system of 
Section 4.2 that is guided by splicing rules of Equations 

(8)-(28). Then, the generated strings are forwarded to 
S-boxes 1 4  of Figure 3 and in node , S- 
boxes are applied in parallel to the output of node 11  in 
accordance with splicing relations of Section (4.3). In 13  
the generated strings are permuted in a fashion dictated 
by the cipher instructions according to the splicing rela- 
tions of Equations (59) and (62). The process of consecu- 
tive mixing with subkey and applying substitution and 
permutation operations go on in an iterated fashion in the 
next nodes such that in node 1n , 2n  and 3nY  mixing 
with the  subkey, the  round substitution and the 

 round permutation take place, respectively, and in 

1n

Y
Y

, ,S S 12Y
Y

Y

Y Y
thn thn

thn
Y

Y

  these gained strings are XORed with corresponding 
bits of the 1stn   subkey and eventually, in node outY  
the generated bits are compared with the given ciphertext 
and we can find the key of the cipher if they are equal. 

6. Performance Evaluation of the Proposed 
Scheme 

Considering that the operations of each node take place 
concurrently for all strings that exist in that node, we can 
find the number of steps that takes to produce the key of 
the cipher. In node in  by applying different combina- 
tions of consecutive ciliate bio-operations to a single 
initial word which is applied in parallel and takes one 
step, we can produce all possible key of the cipher. In 
node 11  the XOR operation is applied between the 
generated words of node and the plaintext and consider- 
ing that each XOR operation has a depth of three, four 
steps are required to evaluate XOR of two bits that pro- 
duces output of one. In node 12  two steps are required 
to produce the resulting words. In node 13  two steps 
should be accomplished to evaluate P-boxes. So, there 
will be the same steps for other nodes of 1 2 3i i i  for 

Y

Y

Y
Y

, ,Y Y Y
2,3, ,i n 

Y 2 2 4n n n   

. We further assume that there are n-rounds 
of substitutions and permutations. So, before the last 
node, out , we need to do 1 4  opera- 
tions. The operations of the last node can be carried out 
as follows: Those bits that have been generated in node  
 

 

Figure 6. The attack graph for breaking the cipher. 
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out  are XORed with the corresponding given ciphertext 
bits which take 4-steps and then, the AND operation is 
applied to the results of XORs which takes one step. So, 
altogether  steps are mandatory to accomplish 
our attack in which n is the number of SP rounds. 

Y

8 10n 

, ,S S

Assuming that we use our proposed scheme to break 
16-Round DES cipher (n = 16) which has a Feistel struc- 
ture which can be assumed as a variant of SPN ciphers, 
using the analysis of Section 6, we need 138 steps of 
computation which gives it a superior performance over 
the proposed schemes of breaking DES using DNA 
computer [10] which requires 916 steps and membrane 
computing [11] which requires 278 steps of computations 
as well as breaking DES using network of evolutionary 
processors with parallel string rewriting rules (NEPPS) 
which requires 268 steps [12]. Furthermore, our proposed 
scheme, as opposed to [11] which needs exponential 
space, does not need exponential space and for a specific 
set of instructions of a given cipher, utilizes a constant 
number of splicing rules. The performance of our pro- 
posed scheme for cracking 16R-DES cipher in compare- 
son with the previously proposed schemes has been de- 
picted in Figure 7.  

7. Simulation of the Proposed Attack 

We conduct a computer simulation to test our proposed 
theoretical scheme to break a sample cipher based on the 
SPN of Figure 3 and in this section, first, we introduce 
the parameters of the sample cipher which we aim to 
cryptanalyze and then we explain the steps of our simu- 
lations and finally, we present the results of simulations. 

7.1. Parameters of the Considered Cryptosystem 

In what follows, we introduce the cryptosystem under 
consideration for simulation in this paper. As can be seen 
in Figure 3, the input block size of our cryptosystem 
equals to 16 bits and a certain operation takes place for n 
rounds. Each round consists of substitution block, per- 
mutation and mixture of bits. This structure looks like the 
one that is used in DES and other modern block ciphers 
such as Rijndael [13]. The utilized blocks of the cipher 
can be defined as follows. 

7.1.1. Substitution Block 
In the cipher of Figure 3, we break the 16-bit block of 
input into four 4-bit blocks. Each sub-block constitutes 
an input to each S-box (a 4-to-4-bit S-box) that can be 
realized with a look-up table containing sixteen 4-bit 
values that can be defined with the integer numbers that 
are shown in the input bits of Table 1. The considered 
S-box is non-linear and the output bits of each S-box 
cannot be written as a linear combination of the inputs 
bits. Furthermore, it is assumed that all substitution 

boxes of 1 4  are equivalent. Our considered sub- 
stitution box for the cipher is shown in Table 1. 

7.1.2. Permutation Block 
The considered permutation schedule for the cipher of 
Figure 3 is shown in Table 2. Numbers of this table 
show the position of the bits in the block such that 1 
shows the leftmost bit and 16 is the rightmost bit of the 
input block.  

7.1.3. Mixing with Subkey 
We define the operation of mixture with the key to be 
simply equal to applying the XOR gate between round 
key bits and the input block to the round.  

In what follows, we design different sub-systems nec- 
essary for implementation of our proposed theoretical 
attack to the cipher.  

Considering the above parameters in the cipher of  
 

 

Figure 7. Graph of comparison for performance evaluation. 
 

Table 1. Look-up table for the considered S-box. 

Input 0 1 2 3 4 5 6 7 

Output E 4 D 1 2 F B 8 

Input 8 9 10 11 12 13 14 15 

Output 3 A 6 C 5 9 0 7 

 
Table 2. Bit permutation schedule of Figure 3. 

Input 0 1 2 3 4 5 6 7 

Output 1 5 9 13 2 6 10 14 

Input 8 9 10 11 12 13 14 15 

Output 3 7 11 15 4 8 12 16 
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Figure 3 and using splicing rules derived in Section 4, 
we simulate the proposed attack on the cipher.  

We utilize Turing Machine Simulator software [14] to 
simulate our proposed attack on the cipher. For this rea- 
son, based on the splicing rules of Section 4, we write an 
initial program to simulate the main blocks of cryptana- 
lysis according to the cipher parameters (such as genera- 
tion of all keys, doing XOR, S-boxes and P-boxes). We 
write appropriate programs for each block to do compu- 
tations on the words written on the tape of the Turing 
machine which simulate the AIR systems designed in 
Sections 4.1-4.4. Then we combine all the written pro-
grams based on the graph of Figure 4. In our simu- la-
tion, we consider the following assumptions: we as- 
sume the number of rounds of the cipher equal to 1. 
Therefore we have one subkey string which is same as 
the main key and has a length of 16 bits. We further as-
sume that the plaintext equals to “0000000000000000” 
and also the ciphertext is assumed to be “01011110011 
00110”. Now, based on the our designed AIR system, we 
write the applied algorithm for cryptanalysis as follows.  

Initially, by applying different splicing rules on an ini- 
tial sequence, we can produce all possible combinations 
of the key on the tape and then we put these strings on 
different segments of the tape with a certain distance 
from each other. Then, according to the splicing rules of 
Equations (8)-(28) we apply bitwise XOR operation be- 
tween key bits of each key and the corresponding plain- 
text bits and their output is placed in another place on the 
tape. Then, by using splicing rules of Equations (35)-(50) 
and (56), we apply the substitution boxes of Table 1 to 
the derived words in a parallel fashion and the resultant 
words are rewritten on the same words. Then, P-box of 
Table 2 is applied in to the derived words in a parallel 
manner which utilizes the splicing rules of Equations (59) 
and (62) and we rewrite them on the previously derived 
words. Then, we apply the logical XOR operation be- 
tween bits of the resultant words of this stage and the key 
bits which had been mixed with the resultant sequence of 
the previous steps (which have known location on the 
tape) and therefore, we can get to the enciphered mes- 
sage. Now, in accordance with the proposed operations 
in the last node of the graph of Figure 4, in this node, the 
achieved strings must be compared with the predefined 
ciphertext and if all the corresponding bits were equal, 
the used key is known as the cipher key. 

We wrote appropriate programs to accomplish the 
abovementioned instructions and ultimately, we suc- 
cessfully derived the secret key equal to “0001001000 
110100” which was predicted.  

It is noteworthy that breaking the cipher of “Figure 3” 
with more rounds can be done in the same way. But for 
the sake of demonstration of our algorithm and also the 
problem of taking a long time for execution of the pro- 

gram we tested it on the cipher with 1 round of opera- 
tions.  

The codes shown in Appendix 1 are our specifically 
written programs to simulate Turing machines related to 
different building blocks necessary for the cryptanalysis 
procedure as demonstrated in Section 4 which are appro- 
priate for execution on the Turing Machine Simulator 
software [14].  

Note that all the written programs halt and generate 
appropriate output strings in a finite number of iterations 
The results of execution of codes of Appendix 1 for the 
considered cipher, defined in Section 7.1, are shown in 
Tables 3-6.  

8. Conclusion 

In this paper, we proposed a language-theoretic notion to 
break SPN class of block ciphers which is based on the 
gene assembly process that naturally occurs in ciliated 
protozoa during the procedure of converting scrambled 
MIC gene to MAC gene. Our scheme utilizes the AIR 
system which includes two modified versions of in- 
tramolecular ciliate bio-operations pdel  and ,p qtrl  which 
renders it the computational flavor of Turing machine. 
Assuming that we use our proposed scheme to break 
16-Round DES cipher (n = 16) which has a Feistel struc-
ture which can be assumed as a variant of SPN ciphers, 
using the analysis of Section 6, we need 138 steps of 
computation which gives it a superior performance over 
the proposed schemes of breaking DES using DNA 
computer [13] which requires 916 steps and membrane  
 

Table 3. Results of simulation of S-boxes. 

Number of parallel 
operations 

Initial state Final state 
Number of 
iterations 

16 A0 HALT 80 

 
Table 4. Results of simulation of P-boxes. 

Number of parallel 
operations 

Initial state Final state 
Number of 
iterations 

1 A0 HALT 17 

 
Table 5. Results of simulation of mixing with subkey. 

Number of parallel 
operations 

Initial state Final state 
Number of 
iterations 

16 R2 HALT 12 

 
Table 6. All operations of attack on the cipher. 

Number of parallel 
operations 

Initial state Final state 
Number of 
iterations 

16-16-1-16 R2 HALT 121 
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computing [14] which requires 278 steps of computations 
as well as breaking DES using network of evolutionary 
processors with parallel string rewriting rules (NEPPS) 
which requires 268 steps [15]. Furthermore, our proposed 
scheme, as opposed to [14] which needs exponential 
space, does not need exponential space and for a specific 
set of instructions of a given cipher, utilizes a constant 
number of splicing rules. Finding nature-inspired com- 
putational models like L-systems or modified versions of 
P-systems or our utilized model, seem to be promising in 
developing efficient computational models which simu- 
late universal Turing machines and for future works, 
other computational problems can be suggested to be 
solved using these models.  

REFERENCES 
[1] L. M. Adleman, “Molecular Computation of Solutions to 

Combinatorial Problems,” Science, Vol. 266, No. 5187, 
1994, pp. 1021-1024. doi:10.1126/science.7973651  

[2] L. Kari and L. F. Landweber, “Computational Power of 
Gene Rearrangement,” In: V. E. Winfree and D. K. Gif- 
ford, Eds., Proceedings of DNA Bases Computers, Ame- 
rican Mathematical Society, 1999, pp. 207-216. 

[3] L. F. Landweber and L. Kari, “The Evolution of Cellular 
Computing: Nature’s Solution to a Computational Prob-
lem,” Proceedings of the 4th DIMACS Meeting on DNA- 
Based Computers, Philadelphia, 15-19 June 1998, pp. 3- 
15.  

[4] R. Lipton, “Using DNA to Solve NP-Complete Prob-
lems,” Science, Vol. 268, 1995, pp. 542-545.  
doi:10.1126/science.7725098 

[5] L. M. Adleman, P. W. K. Rothemund, S. Roweis and E. 
Winfree, “On Applying Molecular Computation to the 
Data Encryption Standard,” Proceedings of 2nd Annual 
Meeting on DNA Based Computers, DIMACS Workshop, 
Princeton University, Princeton, 10-12 June 1996, pp. 

28-48.  

[6] D. R. Stinson, “Cryptography: Theory and Practice,” 
CRC Press, Boca Raton, 2002.  

[7] T. Head, “Formal Language Theory and DNA: An Ana- 
lysis of the Generative Capacity of Specific Recombinant 
Behaviors,” Bulletin of Mathematical Biology, Vol. 49, 
No. 6, 1987, pp. 737-759.  

[8] T.-O. Ishdorj and I. Petre, “Gene Assembly Models and 
Boolean Circuits,” International Journal of Foundations 
of Computer Science, Vol. 19, No. 5, 2008, pp. 1133- 
1145. doi:10.1142/S0129054108006182 

[9] T.-O. Ishdorj, I. Petre and V. Rogojin, “Computational 
Power of Intramolecular Gene Assembly,” International 
Journal of Foundations of Computer Science, Vol. 18, No. 
5, 2007, pp. 1123-1136.  
doi:10.1142/S0129054107005169 

[10] W. Stallings, “Cryptography and Network Security Prin-
ciples and Practices,” 4th Edition, Prentice Hall, Upper 
Saddle River, 2005, pp. 134-173.  

[11] http://www3.wittenberg.edu/bshelburne/Turing.htm  

[12] J. Castellanos, C. Martin-Vide, V. Mitrana and J. Sem-
pere, “Networks of Evolutionary Processors,” Acta In-
formatica, Vol. 39, No. 6-7, 2003, pp. 517-529.  

[13] D. Boneh, C. Dunworth and R. Lipton, “Breaking DES 
Using a Molecular Computer,” In: R. J. Lipton and E. B. 
Baum, Eds., DNA Based Computers: Proceedings of a 
DIMACS Workshop, Princeton, 10-12 June 1996, pp. 
37-66.  

[14] S. N. Krishna and R. Rama, “Breaking DES Using P 
System,” Theoretical Computer Science, Vol. 299, No. 
1-3, 2003, pp. 495-508.  
doi:10.1016/S0304-3975(02)00531-5 

[15] A. Choudhary and K. Krithivasan, “Breaking DES Using 
Networks of Evolutionary Processors with Parallel String 
Rewriting Rules,” International Journal of Computer 
Mathematics, Vol. 86, No. 4, 2009, pp. 567-576. 
doi:10.1080/00207160701351168 

 
 

http://dx.doi.org/10.1126/science.7973651
http://dx.doi.org/10.1126/science.7725098
http://dx.doi.org/10.1142/S0129054108006182
http://dx.doi.org/10.1142/S0129054107005169
http://dx.doi.org/10.1016/S0304-3975(02)00531-5
http://dx.doi.org/10.1080/00207160701351168


A. KARIMI  ET  AL. 164 

Appendix 1: Program Codes for Simulation 
of the Proposed AIR Systems 

In this section, the code lines written for simulation of 
the proposed AIR systems for each building block of the 
attack are shown. Note that the programs have been 
written to be suitable for the Turing simulator software 
that was used for our simulations. R and L in the written 
programs demonstrate directions of right and left, re- 
spectively, of head of the considered Turing machines on 
the tape. 

Code Lines for Simulation of S-Boxes Using AIR 
Systems 

(A0, 0, 1, B0, R) (B0, 0, 1, C0, R) 
(C0, 0, 1, D0, R) (D0, 0, 0, E0, R) 
(E0, , , E0, R) (E0, 0, 0, A1, R) 
(A1, 0, 1, B1, R) (B1, 0, 0, C1, R) 
(C1, 1, 0, D1, R) (D1, , , D1, R) 
(D1, 0, 1, A2, R) (A2, 0, 1, B2, R) 
(B2, 1, 0, C2, R) (C2, 0, 1, D2, R) 
(D2, , , D2, R) (D2, 0, 0, A3, R) 
(A3, 0, 0, B3, R) (B3, 1, 0, C3, R) 
(C3, 1, 1, D3, R) (D3, , , D3, R) 
(D3, 0, 0, A4, R) (A4, 1, 0, B4, R) 
(B4, 0, 1, C4, R) (C4, 0, 0, D4, R) 
(D4, , , D4, R) (D4, 0, 1, A5, R) 
(A5, 1, 1, B5, R) (B5, 0, 1, C5, R) 
(C5, 1, 1, D5, R) (D5, , , D5, R) 
(D5, 0, 1, A6, R) (A6, 1, 0, B6, R) 
(B6, 1, 1, C6, R) (C6, 0, 1, D6, R) 
(D6, , , D6, R) (D6, 0, 1, A7, R) 
(A7, 1, 0, B7, R) (B7, 1, 0, C7, R) 
(C7, 1, 0, D7, R) (D7, , , D7, R) 
(D7, 1, 0, A8, R) (A8, 0, 0, B8, R) 
(B8, 0, 1, C8, R) (C8, 0, 1, D8, R) 
(D8, , , D8, R) (D8, 1, 1, A9, R) 
(A9, 0, 0, B9, R) (B9, 0, 1, C9, R) 
(C9, 1, 0, D9, R) (D9, , , D9, R) 
(D9, 1, 0, F0, R) (F0, 0, 1, G0, R) 

(G0, 1, 1, H0, R) (H0, 0, 0, I0, R) 
(I0, , , I0, R) (I0, 1, 1, F1, R) 
(F1, 0, 1, G1, R) (G1, 1, 0, H1, R) 
(H1, 1, 0, I1, R) (I1, , , I1, R) 
(I1, 1, 0, F2, R) (F2, 1, 1, G2, R) 
(G2, 0, 0, H2, R) (H2, 0, 1, I2, R) 
(I2, , , I2, R) (I2, 1, 1, F3, R) 
(F3, 1, 0, G3, R) (G3, 0, 0, H3, R) 
(H3, 1, 1, I3, R) (I3, , , I3, R) 
(I3, 1, 0, F4, R) (F4, 1, 0, G4, R) 
(G4, 1, 0, H4, R) (H4, 0, 0, I4, R) 
(I4, , , I4, R) (I4, 1, 0, F5, R) 
(F5, 1, 1, G5, R) (G5, 1, 1, H5, R) 
(H5, 1, 1, I5, R) (I5, , , I5, R) 
(I5, , , Z, L) 

Code Lines for Simulation of P-Boxes Using AIR 
Systems 

(A0, a, a, B0, R) (B0, b, e, C0, R) 
(C0, c, i, D0, R) (D0, d, m, E0, R) 
(E0, e, b, A1, R) (A1, f, f, B1, R) 
(B1, g, j, C1, R) (C1, h, n, D1, R) 
(D1, i, c, A2, R) (A2, j, g, B2, R) 
(B2, k, k, C2, R) (C2, l, o, D2, R) 
(D2, m, d, A3, R) (A3, n, h, B3, R) 
(B3, o, l, C3, R) (C3, p, p, D3, R) 
(D3, , , D3, R) (D3, , , Z, L) 

Code Lines for Simulation of XOR Using AIR 
Systems 

(R2, 1, 1, R2, R) (R2, +, +, R2, R) 
(R2, 0, 0, R2, R) (R2, 1, 1, R2, R) 
(R2, 0, 0, R2, R) (R2, 1, 1, R2, R) 
(R2, 0, 0, R2, R) (R2, , , L0, L) 
(L0, 1, 0, L1, L) (L0, 0, 1, L0, L) 
(L0, +, , R4, R) (R4, 1, , R4, R) 
(R4, , , Z, R) (Z, , , Z, L) 
(L1, +, +, L3, L) (L3, 1, 0, L3, L) 
(L3, , 1, R2, R) (L3, 0, 1, R2, R). 
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