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ABSTRACT 

Self-Organising Feature Map (SOFM) along with 
learning vector quantizers (LVQ) have been designed 
to identify the alterations in brain electrical poten-
tials due to exposure to high environmental heat in 
rats. Three groups of rats were considered—acute 
heat stressed, chronic heat stressed and control 
groups. After long EEG recordings following heat 
exposure, EEG data representing three different vi-
gilance states such as slow wave sleep (SWS), rapid 
eye movement (REM) sleep and AWAKE were visu-
ally selected and further subdivided into 2 seconds 
long epoch. In order to evaluate the performance of 
artificial neural network (ANN) in recognizing 
chronic and acute effects of heat stress with respect to 
the control subjects, unsupervised learning algorithm 
was applied on EEG data. Mean performance of 
SOFM with quadratic taper function was found to be 
better (chronic-92.6%, acute-93.2%) over the other 
two tapers. The effect of LVQ after the initial SOFM 
training seems explicit giving rise to considerable 
improvements in performance in terms of selectivity 
and sensitivity. The percentage increase in selectivity 
with uniform taper function is maximum for chronic 
and its control group (4.01%) and minimum for 
acute group (1.29%) whereas, with Gaussian it is al-
most identical (chronic-2.57%, acute-2.03%, control- 
2.33%). Quadratic taper function gives rise to an in-
crease of 2.41% for chronic, 1.96% for acute and 
2.91% for control patterns. 
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1. INTRODUCTION 

The scientific interest of stress in relevance to health and 
disease began to develop in the 20th century, when Selye 
started his work on stress with more suited scientific 

analysis, and now stress has been accepted to be a state, 
comprised of certain psychophysiological reactions that 
prepare an organism for action. It is usually described to 
be an essential component that is enabling the organism 
to survive in the hostile environment and to make an 
effort to compensate with the altered situation of the 
stressful conditions. Stress has been defined as nonspe-
cific responses of the body to any demand. Though in 
some respect, every demand made on the body is unique 
and specific, but all stress, however, have one thing in 
common; they increase the demand for the readjustment 
for performance of adaptive functions, which reestablish 
normally. Generally, stress is meant to be acute or at 
least of a limited duration. The time limited nature of 
this process renders its accompanying antianabolic, 
catabolic and immunosuppressive effects temporarily 
beneficial and of no adverse consequences. Chroni-
cally and excessiveness of stress system activation, on 
the other hand, would lead to the syndromal state that 
severe chronic disease of any etiology could present 
with anorexia, loss of weight, depression, and peptic 
ulcers. 

Although, the problems of heat-afflicted illness are 
receiving increased importance in view of the current 
estimates of global warming and its impact on biological 
systems, the etiological factors that lead to heat exhaus-
tion and heat stroke have not been well established. 
However, the failure of cardiovascular system had been 
thought to be an important factor. Inadequate acclimati-
zation also appears to be a significant factor predispos-
ing to the onset of heat stroke. Review of literature re-
vealed that the afflictions and damages to the central 
nervous system (CNS) imposed by high environmental 
temperature have largely been ignored as the likely 
cause of heat induced mortality, although it is well 
known that neurochemical and cellular mechanisms of 
neural issues are highly temperature sensitive [1]. The 
conventional long term paper recording of EEG signals 
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following stress events such as heat stress is not of much 
diagnostic value. So, computer and digital signal process-
ing tools have been used to quantify the EEG signals for 
all three sleep-wake stages after acute and chronic heat 
stress. Since, long-term EEG recordings, in addition to 
other two channels of electrophysiological signals, EOG 
(Electrooculogram) and EMG (Electromyogram), reflect 
the variations in sleep-wake states, so the changes in sleep 
parameters following acute as well as chronic states were 
also observed. Further, to reduce the labor involved in the 
manual sleep staging and to analyze psychophysiological 
alterations, artificial neural network’s architectures were 
designed. Present study signifies the computerized recogni-
tion of different sleep-wake states and the changes occurred 
in EEG signals due to exposure to high environmental heat. 

In the last decade, several works introduced the use of 
artificial neural network (ANN) as a tool for automated 
sleep scoring. Most of the system used spectral in-
formation of the signal using Fourier transformation 
[2]. Computerized EEG and other electrophysiological 
parameters monitoring reduces the problem of huge data 
handling. Computerization has led to more sophisticated 
use of EEG, even in effective disorders, where percep-
tual processes are significantly distorted [3-5]. Fourier 
transformation, as a conventional method, has been 
widely used for the standard quantitative analysis of the 
spectral decomposition and the clinical application of 
EEG signals [6]. The ANN programs were developed for 
the analysis of most of the works that rely on spectral 
analysis and power spectrum method to evaluate elec-
trographic data. In an attempt to classify sleep-wake 
stages determined, power of FFT or power spectrum 
band were used for better performance of the system 
[3,7]. The numerical values of the power of different 
frequency bands were used as inputs to ANN. As multi-
layer perceptron neural network (MLPNN) undergoes 
some limitations, the performance of SOFM has also 
been tested to solve the problem at hand. In the present 
study, an effort has been made to exploit the inherent 
qualities of SOFM. The results obtained from computer 
simulations have been found to be very encouraging. 

In addition to widespread application of artificial 
neural networks (ANNs) in diagnosis, much develop-
mental work is being undertaken in signal processing 
and analysis of bioelectric signals. ANNs are widely 
used as to process raw electroencephalogram (EEG) data 
or features. Recently, ANNs have been employed suc-
cessfully for many pattern recognition problems of elec-
troencephalogram (EEG) spectral component [8-11], 
K-complex detection [12-13], event related potentials 
(ERPs) detection [14-15], classification of the evoked 
potentials [16-17] and the recognition of epileptic spike 
patterns [18-19]. 

Review of literature reveals that supervised ANNs 

have been used many times for sleep-wake state identi-
fication, but the literature on the methodology for use of 
unsupervised ANNs are still obscure. The SOFM as 
proposed by T. Kohonen [20-21] follows unsupervised 
learning (competitive learning) and consists of a single 
layer feed-forward network or lattice, the neurons of 
which become specifically tuned to various input pat-
terns through a self-organizing process. The spatial loca-
tion of a neuron then corresponds to a particular feature, 
or group of features, of the input patterns. Output neu-
rons of a topographic map are usually arranged such that 
each neuron has a set of neighbours. Each node of the 
output layer is connected with all other nodes of the 
same layer with inhibitory weights and competitive 
learning occurs among all the nodes of the output layer. 
The most highly activated node which has least Euclid-
ean distance becomes the winner for a particular pattern. It 
has been realized that the trained and calibrated Self-Or-
ganising Feature Map (SOFM) alone can not be used as a 
classifier. Hence, to increase the performance of the pattern 
classifier, Learning Vector Quantizers (LVQ) is applied in 
the trained SOFM [22]. In the present study, unsupervised 
ANN system using both SOFM and LVQ has been de-
signed for classification of heat stressed spectra. 

2. MATERIALS AND METHODS 

2.1. Subjects and Electrode Implantation 

The experiments were carried out with male Charles 
Foster rats of age 12-14 weeks and weight around 180- 
200 grams. The rats were individually housed in poly-
propylene cages (30 cm × 20 cm × 15 cm) with drinking 
water and food (Hindustan Liver Limited, India) ad libi-
tum. All rats were kept in an ambient environment tem-
perature of 23 ± 1°C from birth and the animal room was 
artificially illuminated with 12 : 12 hours Light : Dark 
cycle, changed at 7 o’clock and 19 o’clock Indian Stan-
dard Time (IST). The technique of electrode implanta-
tion for polygraphic sleep recordings have been used as 
suggested earlier [7]. 

2.2. Heat Stress Model 

In order to produce the effects of heat stress, rats were 
subjected to the Biological Oxygen Demand (BOD) in-
cubator at preset temperature of 38 ± 1℃ and relative 
humidity 45-50%, simulated with the environmental 
conditions of Varanasi (India) in the months of May and 
June. For chronic heat stress, rats were subjected to the 
incubator for one hour daily for 21 days of chronic heat 
exposure from 8.00 a.m. to 9.00 a.m. and electrophysio-
logical signals were recorded on 22nd day whereas, acute 
heat stressed rats were subjected to the incubator for 
continuous four hours of heat exposure from 8.00 a.m. to 
12.00 p.m. for a single day, just before the recording of 
electrophysiological signals. Respective control groups 
of rats were placed in the incubator at room temperature 
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(23 ± 1℃) and whole procedure was followed exactly 
similar to that of their stressed groups. 

2.3. EEG Data Acquisition 

Four hours of continuous recordings of EEG, electro-
oculogram (EOG) and electromyogram (EMG) were 
performed from 12 o’clock to 16 o’clock IST on the re-
cording day for chronic and acute heat stressed rats 
through the 8 channels Electroencephalograph (EEG - 8, 
Recorders & Medicare Systems, India). The paper re-
cordings were performed with standard amplifier setup 
[23] and at the chart speed of 7.5 mm/sec. The digitized 
data (at sampling frequency of 256 Hz) was collected, 
stored and processed with the help of data acquisition 
system (ADLiNK, 8112 HG, NuDAQ, Taiwan) and 
processing software (Visual Lab.-M, Version 2.0 c, 
Blue Pearl Laboratory, USA). 

2.4. Self-Organising Feature Map and Learning 
Vector Quantiser 

With self-organised learning, no external teacher is re-
quired in order to adjust the weights of the ANN, but the 
choice of the input data set will still reflect the general-
izing ability of the ANN (as for the supervised case). It 
presents a method of identifying similarities (or features) 
in a vast (unlabelled) training set. An important advan-
tage of self-organising ANNs over their supervised 
counterparts is that they can be exposed to and make use 
of vast quantities of input data for training purposes 
without the need for assigning labels to each input for-
warded to the ANN. Let m, x, and α be the weight vector, 
input vector and learning rate parameter respectively 
then with the following rules the weights of the winning 
neuron as well as its neighbours are updated. 

)()];()([)()()1( tNifortwtxRttwtw ciiii    
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where, Nc is a topological neighbourhood function 
centered around the winning neuron c and Ri  is the 
neighbourhood taper function. Three different taper 
function-uniform, Gaussian, and Quadratic have been 
used for training the network, the mathematical expres-
sions of which are as followed: 
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where, di is the Euclidean distance between the weight 
vector wi and the winning weight vector wc. Learning rate (η) 
and neighbourhood size (Nc) are assumed to be time vary-
ing. Two types of monotonically decreasing functions are 
considered here, a piecewise linear decreasing function and 

an exponential decreasing function. The piecewise linear 
function is given by: 
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where, in both cases, η0 and N0 give the initial learning 
rate and neighborhood radius respectively, whereas ηmin 
and Nmin give the respective minimum values. Here, k 
and µ denote iteration number and fraction of total 
number of iteration respectively. 

To achieve improved classification performance, 
training and calibration of the SOFM with a supervised 
learning scheme is followed. Learning vector quantization 
(LVQ) is one such technique, developed by Kohonen 
to fine-tune the weights of the trained SOFM in a 
supervised manner [22]. LVQ is a supervised technique 
that uses class information to move Voronoi vectors 
slightly in such a way as to improve the quality of the 
classifier decision regions. The initial values of wi before 
the fine-tuning with LVQ, must be such that wi represent 
the overall statistical density function of the input. The 
SOFM is suited to achieve this. Out of the three versions 
of the LVQ algorithm, LVQ1 has been applied in the 
present work, which follows the following weight update 
rules: 

)]()()[()()1( twtxttwtw iii   , 

if i = c and x is classified correctly. 

)]()()[()()1( twtxttwtw iii    

if i = c and x is classified correctly. 

)]()()[()()1( twtxttwtw iii    for i ≠ c. 

2.5. Data Preparation and Simulation 

The EEG data set prepared for input space of the net-
work was divided into training data set and test data set. 
The training data set consists of the raw EEG signals of 
SWS, REM and AWAKE states, each having matrix size 
of [1, 512]. So, the total size of the input vectors for one 
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presentation at the input layer of SOFM is [1, 1536], in 
which all the three sleep states have been equally pre-
sented. This constitutes one training epoch. The training 
set was used to repeatedly train a 2-D lattice of neurons 
of different sizes and varying SOFM training parameters. 
The input data was presented to the network 600 times 
with different values of learning rate parameter (η), 
topological neighborhood function (N) centered around the 
winning neuron and neighborhood taper function (h). The 
weights of the trained SOFM now get ordered in the input 
space such that they represent the underlying densities of 
the inputs. 

 JBiSE 

The program searches the position of the weight vectors 
in relation to the input vectors after different iterations dur-
ing training SOFM of different sizes such as 4 × 4, 8 × 8, 10 
× 10, 14 × 14. The distribution of the model vectors in the 
n-dimensional space will approximate the probability dis-
tribution of the input vectors. The topographic organization 
of the map will also approximate the metric ordering rela-
tions in the input space. Thus similar inputs project near 
each other onto the map. The map thus forms an “elastic 
surface” in the input space, which approximates the prob-
ability density function of the input samples. Increasing the 
number of locations (neurons in the lattice) increases the 
accuracy of the approximation. After training a 2-D lattice 
of neurons by SOFM, each trained map was calibrated and 
learning vector quantizer (LVQ) algorithm (a supervised 
learning technique) was applied in each case for fine tuning 
the weights of the trained SOFM. 

2.6. Body Temperature 

Core body temperature was recorded as stress markers for 
both acute and chronic stress group of rats through the 
thermistor probe connected to 6-channel telethermometer. 
The marked probe at 4 cm was inserted to the rectum of the 
animal and kept static for one minute to record the body 
temperature. For acute stress group, body temperature was

recorded before and after the heat exposure. While for 
the chronic stress group, the body temperature was re-
corded on every third day just before putting them into 
the incubator for chronic heat stress. 

3. RESULTS 

With the processed EEG data sets as shown in Figure 1, 
the network was simulated number of times and the per-
formance was calculated for some of the simulations 
employing two decay functions of learning rate and 
neighborhood size, three neighborhood tapering schemes, 
and different number of training iterations. Use of linear 
decay and exponential decay for learning rate and 
neighborhood size did not show any fixed trend such 
that conclusion could be drawn precisely. A few graphs 
showing the mean change in Euclidian distance between 
weight vectors of SOFM of varying sizes at successive 
epochs during the training process, have been presented 
in Figure 2. The first subscript denotes decay mode of 
learning rate and neighborhood distance whereas, letters 
1 and 2 stand for linear and exponential decay respec-
tively. The second subscript denotes taper function, 
where 1, 2 and 3 represent linear, Gaussian, and quad-
ratic functions respectively. Time span of the ordering 
phase and fine adjustment phase can distinctly be seen in 
the curves of Figure 2. The ordering phase occurs within 
the first 10%-20% of the training process and is char- 
acterized by large changes in the Euclidean distances. 
The fine adjustment phase is characterized by smaller 
changes in the distances. Substantial increase in per-
formance was seen in the simulation of 8 × 8 SOFM in 
acute heat stress. Number of iterations of the input vec-
tors required for simulation was set to 500 and 200 times 
the number of neurons of the Kohonen layer. The results 
as shown in the tables (Tables 1 and 2) suggest that iter-
ating 200 × size of the SOFM produces almost identical 

 

 
Figure 1. Processed sleep EEG of awake, slow save sleep and REM. 
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Figure 2. The mean change in euclidean distance between weight vectors during training of SOFM of varying 
sizes. The first subscript corresponds to decay mode of learning rate and neighbourhood distance whereas the 
second subscript denotes the type of taper function. 

 
results as iterating 500 × size of SOFM. In some simula-
tions, for both stress conditions, better network per-
formance has been obtained by iterating 200 × size of 
the SOFM. For 14 × 14 SOFM used in chronic heat 
stress, it was found to be 94.6% whereas, mean per-
formance of only 91.1% was obtained when the network 
was iterated by 500 × size of the SOFM. All simulations 
were performed on two different values of ηmin, where 
comparatively, ηmin = 0.001 offered better performance. 

As the SOFM size decreases, the mean changes in-
crease and the SOFM become more settled. 14 × 14 
SOFM acquires the optimum set of weight vectors al-

most after 20% of the training whereas for 8 × 8 SOFM 
it is 60%. It is also obvious that with the change of net-
work size, learning rate and neighborhood decay func-
tion, training time of the network as well as its conver-
gence are being directly affected. Having trained the-
network, calibration of SOFM is accomplished, in which 
a class label has been assigned to each neuron ac cording 
to the maximum voting criteria. Each neuron is also as-
signed a value, which provides the confidence level with 
which each neuron represents that class. The boundaries 
between the three patterns of heat stress-chronic, acute 
and respective control groups (symbolized by-‘ch’, ‘ac’ 
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Table 1. Mean performance of SOFM in chronic heat stress under varying conditions after simulation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Mean performance of SOFM in acute heat stress under varying conditions after simulation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
and ‘co’ respectively) as shown in Figures 3–5, are well 
demarcated showing topological ordering of the neurons. 

It is important to note that topological ordering is ob-
served, both in the plots of the weight vectors in the in-
put space and in the assigning of labels during calibra-
tion. Labels form neat clusters with easily distinguish-
able boundaries. It is at the boundary that the confidence 
labels assigned to neurons are at the weakest, due to 
overlapping of the input distributions. Another important 

point is that the SOFM assigns equal number of neurons 
to each class, if the three classes were equally repre-
sented in the training set. When a particular class is un-
der represented in the input set, it will also be under rep-
resented in the SOFM, because fewer weight vectors 
will be assigned to represent that class of input data. 
Results (Figure 3) also indicate that to some data set no 
decision has been taken by the output layer nodes and 
hence tie between the adjacent nodes seems to appear. 

Parameter Mean performance (%) 8 × 8 SOFM 

Decay Linear 90.1 Exponential 92.3 - 

Iterations 500 × (SOFM Size) 91.4 200 × (SOFM Size) 92.3 - 

min 0.01, 92.4 0.001, 92.8 - 

Nc tapper Uniform 90.73 Gaussian 91.38 Quadratic 92.6 

Algorithm SOFM 90.6 LVQ1 92.8 - 

Parameter Mean performance (%) 10 × 10 SOFM 

Decay Linear 80.2 Exponential 79.4 - 

Iterations 500 × (SOFM Size) 83.2 200 × (SOFM Size) 83.0 - 

min 0.01, 80.2 0.001, 79.1 - 

Nc tapper Uniform 80.4 Gaussian 80.3 Quadratic 82.6 

Algorithm SOFM 80.1 LVQ1 92.8 - 

Parameter Mean performance (%) 14 × 14 SOFM 
Decay Linear 93.1 Exponential 94.6 - 

Iterations 500 × (SOFM Size) 91.1 200 × (SOFM Size) 94.6 - 

min 0.01, 93.4 0.001, 93.7 - 

Nc tapper Uniform 92.9 Gaussian 94.1 Quadratic 94.3 

Algorithm SOFM 93.6 LVQ1 92.9 - 

Parameter Mean performance (%) 8 × 8 SOFM 

Decay Linear 84.4 Exponential 88.3 - 

Iterations 500 × (SOFM Size) 88.1 200 × (SOFM Size) 87.8 - 

min 0.01, 91.3 0.001, 92.45 - 

Nc tapper Uniform 90.73 Gaussian 92.3 Quadratic 93.2 

Algorithm SOFM 90.8 LVQ1 93.6 - 

Parameter Mean performance (%) 10 × 10 SOFM 

Decay Linear 91.5 Exponential 91.7 - 

Iterations 500 × (SOFM Size) 91.0 200 × (SOFM Size) 92.3 - 

min 0.01, 92.4 0.001, 92.2 - 

Nc tapper Uniform 91.1 Gaussian 91.5 Quadratic 90.6 

Algorithm SOFM 91.4 LVQ1 92.8 - 

Parameter Mean performance (%) 14 × 14 SOFM 

Decay Linear 94.1 Exponential 94.8 - 

Iterations 500 × (SOFM Size) 93.1 200 × (SOFM Size) 94.2 - 

min 0.01, 93.6 0.001, 92.1 - 

Nc tapper Uniform 91.8 Gaussian 92.1 Quadratic 94.3 

Algorithm SOFM 90.7 LVQ1 93.5 - 
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Figure 3. Topological ordering of the output neurons of 8 × 8 SOFM 
representing three patterns of heat stress-chronic, acute, and control (rep-
resented by class labels-cr, ac and co respectively). 
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Figure 4. Topological ordering of the output neurons of 4 × 4 SOFM 
representing three patterns of heat stress-chronic, acute, and control (rep-
resented by class labels-cr, ac and co respectively). 
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Figure 5. Topological ordering of the output neurons of 10 × 10 SOFM 
representing three patterns of heat stress-chronic, acute, and control (rep-
resented by class labels-cr, ac and co respectively).    



536                  P. K. Upadhyay et al. / J. Biomedical Science and Engineering 3 (2010) 529-537 

Copyright © 2010 SciRes.                                                                   JBiSE 

Depending on the individual performance of several 
SOFM networks, 10 × 10 SOFM was selected and 
trained for recognizing three clusters. In heat stress de-
tection, using 10 × 10 SOFM, average selectivity table 
(Table 3) confirms the presence of three separate pat-
terns-chronic, acute and control groups. For acute and 
control patterns, Gaussian taper function finds advantage 
over the other two functions. Again training of SOFM 
followed by fine-tuning with LVQ increases the per-
formance. This percentage increase in selectivity with 
uniform taper function is maximum for chronic and its 
control group (4.01%) and minimum for acute group 
(1.29%) whereas, with Gaussian it is almost identical 
(chronic-2.57%, acute-2.03%, control-2.33%). Quadratic 
taper function gives rise to an increase of 2.41% for 
chronic, 1.96% for acute and 2.91% for control patterns. 
The study of average sensitivity of 10 × 10 SOFM (Ta-
ble 4) ascertains the appearance of three distinct patterns 
in which all three taper functions were found to offer 
identical results. However, small variation in the average 
sensitivity can be realized for LVQ. 

4. DISCUSSION 

The changes in body temperature of the present rat mod-
el of heat stress due of acute or chronic heat stress is the 
sterotype phenomena of heat stress and thus confirms the 
stressful events along with EEG variations in these ex- 
 
Table 3. Average selectivity of 10 × 10 SOFM for heat stress 
detection. 

 
Table 4. Average sensitivity of 10 × 10 SOFM for heat stress 
detection. 

periments. Special features provided by unsupervised 
networks of labeling large quantities of data and training 
them in a self-organized manner have been successfully 
utilized in the present work. Since a number of training 
and testing parameters play important roles in the clus-
tering problems, the effect of the various parameters on 
the training of a SOFM has been studied by performing 
simulation in Matlab. To achieve better classification 
result, each parameter was varied one by one during si-
mulation and has been tabulated. Performance of differ-
ent SOFM was finally shown in terms of selectivity and 
sensitivity. SOFM and LVQ were primarily used for de-
tecting three different patterns-chronic, acute, and con-
trol. EEG data of control subjects of chronic group and 
acute group have been mixed together for training, as 
variation with respect to stressed subjects were not found 
to be much. Each simulation was performed on a differ-
ent input data set. After SOFM training was complete, 
LVQ was used to calibrate SOFM. 

Results obtained from the mean changes in Euclidian 
distance between weight vectors during training of 
SOFM of varying size and varying parameters indicated 
the time of commencement of ordering phase and fine 
tuning phase. The importance of appropriate selection of 
taper functions and decay functions has also been well 
studied by comparative analysis. After the LVQ was ap-
plied, all nodes in the output layer were found to be so 
tuned that three classes of heat stress become apparently 
separated. Observations suggest that the reason behind 
the largest change encountered in performance of many 
simulations, might have been due to the use of different 
neighborhood taper functions. Overall, performance was 
found to be better for quadratic taper over the other two 
tapers. In some simulations, it was witnessed that the 
increase in performance due to LVQ was negligible, 
which might have occurred owing to the fact that the 
input clusters were already reasonably well defined and 
with a minimal overlap. 

In the present work, an attempt has been made to 
classify stressful conditions by means of changes in 
EEG signals induced by high environmental tempera-
tures. The review of literature suggests that no work 
has been reported that classifies heat stressed condi-
tions from normal candidates with help of SOFM and 
LVQ. The ANN provides reliable information about 
the stressed and normal artifact-free EEG power spec-
tra. However, in practical applications, EEG artifacts 
can influence the sensitivity of the network. EEG pat-
tern recognition by ANN and clinical skill, are, how-
ever, not mutually exclusive but even reinforce each 
other, and it is believed that a human clinician must 
remain a necessary component of computerized diag-
nostic procedures to ensure a significant, high level of 
diagnostic validity [24]. 

Uniform taper 
 

Chronic Acute Control 

SOFM 88.42 88.91 87.86 

LVQ1 92.43 90.2 91.64 

 Gaussian taper 

SOFM 87.62 89.50 88.02 

LVQ1 90.19 91.53 90.35 

 Quadratic taper 

SOFM 87.09 88.87 87.09 

LVQ1 89.23 90.83 90 

Uniform taper  

Chronic Acute Control 

SOFM 88.30 87.54 87.81 

LVQ1 91.16 90.70 89.80 

 Gaussian taper 

SOFM 87.64 88.70 87.64 

LVQ1 89.97 90.65 90.23 

 Quadratic taper 

SOFM 86.89 88.58 86.98 

LVQ1 89.25 91.06 89.95 
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Studies indicate that, usually only 1-5% of the EEG 
record is in clinical interest [25]; neural networks can 
become useful for the on-line classification of EEG 
waves. Since, exposure to high environmental heat has 
significant effects on brain signal, SOFM with LVQ can 
be used efficiently to identify the changes in brain sig-
nals, occurred due the stressful events and can also be 
used further to develop an automated detection system 
for psychophysiological analysis. Although, in the pre- 
sent study, on-line classification was not carried out, it 
may be possible with the help of fast computers and spe-
cific software. Furthermore, EEG technicians can easily 
be trained for the manual selection of already detected 
events whereas; recognition of abnormal patterns in the 
background of the ongoing EEG requires substantial 
experience. 

JBiSE 
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