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ABSTRACT 

In two-phase sampling, or double sampling, from a population with size N we take one, relatively large, sample size n. 
From this relatively large sample we take a small sub-sample size m, which usually costs more per sample unit than the 
first one. In double sampling with regression estimators, the sample of the first phase n is used for the estimation of the 
average of an auxiliary variable X, which should be strongly related to the main variable Y (which is estimated from the 
sub-sample m). Sampling optimization can be achieved by minimizing cost C with fixed varY , or by finding a mini- 
mum varY

 , , ,

 for fixed C. In this paper we optimize sampling with use of Lagrange multipliers, either by minimizing 
variance of Y and having predetermined cost, or by minimizing cost and having predetermined variance of Y.  
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1. Introduction 

All decision-making requires information. In forestry, 
this information is acquired by means of forest invento-
ries, systems for measuring the extent, quantity and con-
dition of forests [1]. More specifically, the purpose of 
forest inventories is to estimate means and totals for 
measures of forest characteristics over a defined area. 
Such characteristics include the volume of the growing 
stock, the area of a certain type of forest and nowadays 
also measures concerned with forest biodiversity, e.g. the 
volume of dead wood or vegetation. 

The main method used in forest inventories in the 19th 
century was complete enumeration, but it was soon noted 
that there was a possibility to reduce costs by using rep-
resentative samples [2]. Sampling-based methods were 
used in forestry a century before the mathematical foun-
dations of sampling techniques were described [3-9]. In 
this paper we attempt to optimize sampling with use of 
Lagrange multipliers, either by minimizing variance of 
the forest variable we are interested in and having fixed 
cost, or by minimizing cost and having fixed variance of 
the variable in question. 

2. The Method of Lagrange Multipliers 

Lagrange multipliers is a method of evaluating maxima 
or minima of a function of possibly several variables, 
subject to one or more constraints [10]. This method, 
which is due to Joseph Louis de Lagrange (1736-1813), 

is used to optimize a real-valued function 1 2 nf x x x


, 
where x1, x2, , xn are subject to m (<n) equality con-
straints of the form 

 
 

 

1 1 2

2 1 2

1 2

, , , 0

, , , 0

, , , 0,

n

n

m n

g x x x

g x x x

g x x x













     
1

m

j j
j

            (1) 

where g1, g2, , gn are differentiable functions. 
This determination of the stationary points in this con-

strained optimization problem is done by first consider-
ing the function 

F x f x g x


 

 , , ,

          (2) 

where 1 2 nx x x x  



 and λ1, λ2, , λm are scalars 
called Lagrange multipliers. By differentiating (2) with 
respect to x1, x2, , xn and equating the partial deriva-
tives to zero we obtain 
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Equations (1) and (3) consist of m + n unknowns, 
namely, x1, x2, , xn; λ1, λ2, , λm. The solutions for x1, 
x2, , xn determine the locations of the stationary points. 
The following argument explains why this is the case. 

Suppose that in Equation (1) we can solve for m xi’s, 
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for example, x1, x2, , xn, in terms of the remaining n – 
m variables. By Implicit Function Theorem (see Appen-
dix 1), this is possible whenever 

 
 

1 2

1 2

g g

x x





, , ,
0

, , ,
m

m

g

x





 
 

 

1 2

1 2

1 2

, , ,

, , ,

, , , .

m m n

m m n

m n

.           (4) 

In this case, we can write 
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Thus f(x) is a function of only n – m variables, namely, 
xm+1, xm+2, , xn. If the partial derivatives of f with re-
spect to these variables exist and if f has a local optimum, 
then these partial derivatives must necessarily vanish, 
that is,  
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Now, if Equations (5) are used to substitute h1, h2, , 
hm for x1, x2,  xn, respectively, in Equation (1), then we 
obtain the identities 
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By differentiating these identities with respect to xm+1, 
xm+2, , xn we obtain 
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Let us now define the vectors 
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Equations (6) and (7) can then be written as 
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  δ δ δ η η η        (8) 

 1 2: : : 0m ψ η η η τ            (9) 

 1 2 mwhere : : :  Γ  , which is a nonsingular m × 
m matrix if condition (4) is valid.  

From Equation (8) we have 

    1
1 2 1 2: : : : : :m m

  Γ η η η δ δ δ  

By making the proper substitution in Equation (9) we 
obtain 

 1 2: : : 0m ψ δ δ δ λ
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where 
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Equations (10) can then be expressed as 
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From Equation (11) we also have 
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Equations (12) and (13) can now be combined into a sin-
gle vector equation of the form  
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which is the same as Equation (3). We conclude that at a 
stationary point of f, the values of x1, x2, , xn and the 
corresponding values of λ1, λ2, , λm must satisfy Equa-
tions (1) and (3). 

3. Lagrange Multipliers in Sampling  
Optimization 

In two-phase sampling, or double sampling, from a popu- 
lation with size N we take one, relatively large, sample 
size n. From this relatively large sample we take a small 
sub-sample size m, which usually costs more per sample 
unit than the first one. In double sampling with regres-
sion estimators, the sample of the first phase n is used for 
the estimation of the average of an auxiliary variable X, 

1X , which should be strongly related to the main vari-
able Y.  

In the sub-sample m both auxiliary X and main Y vari-
ables are measured, in order to estimate their means X   2

and 2Y , respectively. The regression estimator Ŷ  and 

its estimated variance ˆvarY  are ([7,11-13]): 

 2 1 2Ŷ Y b X X    
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Solving the system of Equations (14), (15) and (16) we 
find n, m and λ. The reverse problem, viz. finding 

where 
mYs  is the variance of Y in the sub-sample m, and 

r is the estimated correlation coefficient between X and 
Y. varY  

for fixed C, is solved in a similar way. 
In order to explain how Lagrange multipliers wo

describe the following example: Assume 
cost C of an industry producing two products x and y, is 
gi

An approximate cost function could be 

1 2C nC mC  , 

where 
C: total sampling cost; 
C1: sampling cost of the first phase; 
C2: sampling cost of the second phase. 
Sampling optimization can be achieved by minimizing 

cost C with fixed varY , applying the following proce-
dure:  

We assume an approximately normal distribution of Ŷ , 
so that the 95% confidence interval for Y  would be: 

0.975
ˆ ˆ ˆvarY Z Y Y Y  0.975

ˆvarZ Y  , 

where  0.95 0.050.975 1 2 1     . 
Now we must choose n and m in such a way, that half 

a confidence interval does not exceed a value D, fixed a 
priori, where D also may be expressed as a fraction (E)  

of ˆvarY : 
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To this end we construct the Lagrange function:  
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that the total 

ven by the equation 2 23 6C x y xy   . The produc-
tion is limited with a limitation of 20 units, t
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By solving the equatio
find that x = 13, y = 7 and λ = –71. Consequently, 

2 23 13 6 7 13 7C      
The economic meaning of λ is this: λ is the reduction 

of the total cost
of 20 units. In o
du

the marginal effect on the cost function, when production 
lim

y variables correlated 
se 
he 

ca ville and Särndal [14] is an 

ns’ system (a), (b) and (c), we 

710 . 

 to the limit, if production was 19 instead 
ther words, if we required 19 total pro-

ction units, the total cost would be reduced by 71 
monetary units (710 – 71 = 639). Generally, λ represents 

itation is increased by one unit. 

4. Other Uses of Lagrange Multipliers in  
Forest Inventories 

If there are not enough sample plots to give sufficiently 
good inventory results using only forest measurements, 
we may try to make use of auxiliar
with forest variables. The most obvious way is to u
ratio or regression estimators (see Appendix 2). T

libration estimator of De
extension of the regression estimator for obtaining popu-
lation totals using auxiliary information. Both regression 
and calibration estimators can be employed if there are 
auxiliary variables for inventory sample plots known for 
which the population totals are also known, e.g. variables 
obtained from remote sensing or from GIS systems. The 
appeal of calibration estimators for forest inventories 
comes from the fact that they lead to estimators which 
are weighted sums of the sample plot variables, where 
the weight can be interpreted as the area of forest in the 
population that is similar to the sample plot. 

The basic features of the calibration estimator of De-
ville and Särndal [14] in terms of estimating means can 
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be described as follows. Consider a finite population U 
consisting of N units. Let j denote a general unit, thus 

 1, , , ,U j N   . In a forest inventory the population 
is a region where units are pixels or potential sample 

 a vector of 

plo

yj and

ts. The units in a forest inventory will be referred to 
here as pixels, and it will be assumed that an inventory 
sample plot gives values to the forest variables for an 
associated pixel. Each unit j is associated with a variable 

auxiliary variables xj. The population 
mean of x, 1

jU
N  X x  is assumed to be known. 

The y variables in a forest inventory are forest variables 
and the x variables can be spectral variables from remote 
sensing or geographical or climatic variables obtained 
from GIS databases. 

Assume that a probability sample S is drawn, and yj 
and xj are ob j in S, the objective being to 
estimate the mean of y, 

served for each 
1

jU
Y N y  . Let πj be the 

inclusion probability and d j the basic sampling design 
weight   1

πj jd N


 , which can be used to compute the 
unbiased Horvitz-Thompson estimator 

ˆ
d j jS

Y d y  . 

A calibration estimator 

ˆ
j jS

Y w y                (17) 

is obtained by minimizing the sum of distances,  

 ,j j
S

G w d , between the prior weights dj and posterior  

w istance function G, taking ac-
count of the calibration equation 

eights wj for a positive d

j jS
w  x X .              (18) 

If the distance between dj and wj is defined as 

   2

1 ,j j j j jG w d w d d   , 

the calibration estimator will be the same as the regres-
sion estimator 

 ˆ ˆ ˆdr j j dS
Y w y Y     X X b ,     (19) 

where ˆ
dX  and b̂  (a weighted regression coefficient 

vector) are 

ˆ
d j jS

d X x              (20) 

and  

  1ˆ
j j j j j jS S

d d y


  b x x x .      (21) 

If the model contains an intercept, the corresponding 
variable x will be one for all observ

 Equation (18) will then guarantee that the 
s wj add up to one. This means that when estimat-

ing totals, the weights Nwj will add up to the
number of pixels in the population. Thus Nwj

te

ations, and the cali-
bration
weight

 known total 
 can be in-

rpreted as the total area, in pixel units, for plots of for-
est similar to plot j. The standard least squares theory 
implies that the regression estimator (19) can be ex-
pressed in the form 

ˆ ˆ
r j jS

Y w y   X b .            (22) 

It is assumed that the intercept is always among the 
parameters. Estimator (21) is defined if the moment ma-
trix j j jS

d  x x  is non-singular. 
Some of the weights wj in (17) implied by Equations 

(20)-(22) may be negative. Nonne
guaranteed if the distance function is
wj

inimization

gative weights are 
 infinite for negative 

. Deville and Särndal [14] presented four distance 
functions producing positive weights. 

M  of the sum  ,j j
S

satisfied is a non-linear constrained minimization prob-
lem. Using Lagrange multipliers, the problem can be 
reformulated as a non-linear system of equations which 
can be solved iteratively using Newton

G w d , so that (18) is  

’s method [14]. If 
th range multi
zero, t uce wj’s of

biased estimator of the variance in sys-
te

In both methods each sample plot 
re

e initial values of the Lag pliers are set to 
he first step will prod  the regression 

estimator (19). 
Since the calibration estimator is asymptotically equi- 

valent to the regression estimator, Deville and Särndal 
[14] suggest that the variance of the calibration estimator 
should be computed in the same way as the variance of 
the regression estimator using regression residuals. There 
is no design-un

matic sampling [7]. 
The emphasis on area interpretation for the weights 

has the same argument behind it as was used by Moeur 
and Stage [14] for the most similar neighbour method 
(MSN), where unknown plot variables are taken from a 
plot which is as similar as possible with respect to the 
known plot variables. 

presents a percentage of the total area, and all the forest 
variables are logically related to each other. The differ-
ence is that in the calibration estimator we obtain an es-
timate of the area of the sample plot for the whole popu-
lation whereas in the MSN method each pixel is associ-
ated with a sample plot. Since there is no straightforward 
way of showing that the MSN method produces optimal 
results in any way at the population level, it may be safer 
to use the calibration estimator for computing popula-
tion-level estimates for forest variables. The problem 
with the calibration estimator is that it does not provide a 
map. If a map is needed, then the weights provided by 
the calibration estimator need to be distributed over pix-
els using separate after-processing.  

Lappi [15] proposed a small-area modification of the 
calibration estimator which can be used when several 
subpopulation totals are required simultaneously. He 
used satellite data as auxiliary information for computing 
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ed for a given sub-
po

tergovernmental Panel 
Climate Change: IPCC National Greenhouse Gas Inven-
tories Progra al Environmental 
Strategies (IG awa Japan, 2003. 

g

ch, Eds., Forest Resource Inventory and Moni-

3rd Edition,” 

est Inventory,” Springer, 

inventory results for counties. Sample plots in the sur-
rounding inclusion zone are also us

pulation so that the prior weight decreases as distance 
increases. The error variance is computed using a spatial 
variogram model. Block kriging [16] provides an optimal 
estimator for subpopulation totals under such a model, 
but kriging can produce negative weights for sample 
plots, and the weights are different for each y variable. 
Thus it is not possible to give areal interpretations to 
sample plot weights in kriging. 
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Appendices  
 Appendix 1. Implicit Function Theorem 

Let , where D is an open subset of Rm + n, and 
g has continuous first-order partial derivatives in D. If 
there is a point 0 , where 0

: nD Rg

z  0 0 ,D x y  z
 0
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,  such that , and if at z0, 0x nR 0y mR  0g z
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where gi is the ith element of , then there 
is a neighborhood  of y0 in which the equation 

 can be solved uniquely for x as a continu-
ously differentiable function of y. 

g
 0N y

 , 0y

Appendix 2. Ratio and Regression Estimators 

In a stratified inventory information on some auxiliary 
variables is used both to plan the sampling design (e.g. 
allocation) and for estimation, or only for estimation 
(post-stratification). Stratification is not the only way to 
use auxiliary information, however, as it can be used at 
the design stage, e.g. in sampling proportional to size 
(see Appendix 3). It can also be used at the estimation 
stage in ratio or regression estimators, so that the stan-
dard error of the estimators can be reduced using infor-
mation on a variable x which is known for each sampling 
unit in the population. The estimation is based on the 
relationship between the variables x and y. In ratio esti-
mation, a model that goes through the origin is applied. 
If this model does not apply, regression estimator is more 
suitable. The ratio estimator for the mean is 

ˆ
rat

y
y X rX

x
  , 

where X  is the mean of a variable x in the population 
and x  in the sample. Ratio estimators are usually bi-
ased, and thus the root mean square error (RMSE) should 
be used instead of the standard error. The relative bias 
nevertheless decreases as a function of sample size, so 
that in large samples (at least more than 30 units) the 
accuracy of the mean estimator can be approximated as 
[1]: 
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1 1

n
i iˆvar 1rat

i

y rx

N n n





 

n
y

   
 

. 

The ratio estimator is more efficient the larger the 
correlation between x and y relative to the ratio of the 
coefficients of variation CV. It is worthwhile using the 
ratio estimator if 

1
,

2

CV x
corr x y

CV y
 . 

The (simple linear) regression estimator for the mean 
value is 

 ˆˆ
regy y X x  

ˆ

, 

where   is the OLS (Ordinary Least Squares) coeffi-
cient of x for the model, which predicts the population 
mean of y based on the sample means. In a sampling 
context, the constant of the model is not usually pre-
sented, but the formula for the constant, ˆˆ y x  , is 
embedded in the equation. The model is more efficient 
the larger the correlation between x and y. The variance 
of the regression estimator can be estimated as 

     
 

2

1

ˆ
ˆvar 1

2

n i i

reg
i

y y x xn
y

N n n





          
 . 

Appendix 3. Sampling with Probability  
Proportional to Size 

The basic properties of sampling with arbitrary prob-
abilities can also be utilized in sampling with probability 
proportional to size (PPS), such as sampling with a re-
lascope. It is then assumed that unit i is selected with the 
probability kxi, where k is a constant and x is a covariate 
(diameter of a tree in relascope sampling). PPS sampling 
is more efficient the larger the correlation between x and 
y. For perfect correlation the variance in the estimator 
would be zero [7]. PPS sampling might even be less effi-
cient than SRS (Simple Random Sampling), however, if 
the correlation were negative. This could be the case 
when multiple variables of interest are considered simul-
taneously, for example, when correlation with one vari-
able (say volume) might give efficient estimates but the 
estimates for other variables (say health and quality) 
might not be so good. 

In practice, PPS sampling can be performed by order-
ing the units, calculating the sum of their sizes (say 

ix ), and calculating  ix n . The probability of a 
unit i being selected is then i ix x



 and a cumulative 
probability can be calculated for the ordered units. A 
random number r is then picked and each unit with a 
cumulative probability equal to (or just above) r, r + 1,  
r + 2, , r + n – 1 is selected for the sample. Every unit 
of size greater than  ix n  is then selected with cer-
tainty. 

 

Copyright © 2012 SciRes.                                                                                AJOR 


