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ABSTRACT 

In this paper, we consider an allocation problem in multivariate surveys with non-linear costs of enumeration as a prob-
lem of non-linear stochastic programming with multiple objective functions. The solution is obtained through Chance 
Constrained programming. A different formulation of the problem is also presented in which the non-linear cost func-
tion is minimised under the precision constraints on estimates of various characters. The solution is then obtained by 
using Modified E-model. A numerical example is solved for both the formulations. 
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1. Introduction 

In multivariate stratified sampling where more than one 
characteristic are to be estimated, an allocation which is 
optimum for one characteristic may not be optimum for 
other characteristics. In such situations a compromise 
criterion is needed to work out a usable allocation which 
is optimum for all characteristics in some sense. Such an 
allocation may be called a “Compromise Allocation”.  

Several authors have studied various criteria for ob-
taining a usable compromise allocation. Among them are 
Neyman [1], Dalenius [2], Gosh [3], Yates [4], Aoyama 
[5], Folks and Antle [6], Kokan and Khan [7], Chatterji 
[8], Ahsan and Khan [9], Jahan et al. [10], Khan et al. 
[11] and many others.  

The problem of optimum allocation in stratified sam-
pling is generally stated in two ways. Either one mini-
mizes the cost of survey for a desired precision or the 
variance of the sample estimate is minimized for a given 
budget of the survey. Kokan and Khan [7] formulated the 
minimization of the cost of the survey for desired preci-
sions on various characters as the following convex pro-
gramming problem; 
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where L is the number of strata,  is the number of 

characters to be estimated in the survey and  , jk
N

,C

p

 
and  are all positive constants. i

If the budget of the survey is fixed in advance, say, 
 then the multivariate allocation problem is stated to 

minimize the variances for various characters for a de-
sired precision as the following  convex program-
ming problems; 
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Further, in a survey the costs for enumerating a char-
acter in various strata are not known exactly, rather these 
are being estimated from sample costs. As such the for-
mulated allocation problem should be considered as sto-
chastic programming problem. When the constants i  
and ij,   are fixed, the prob-
lem (1.1) was solved by Kokan and Khan by using an 
analytical procedure. Prekopa [12] developed a method 
from stochastic point of view. The case when sampling 
variances are random in the constraints (i.e. ij random 
in (1.1)) has been dealt with Diaz-Garcia and Garay 
Tapia [13]. Javed et al. [14] considered the case of ran-
dom costs in (1.1) and used modified E-model for solv-
ing this problem. Bakhshi et al. [15] find the optimal 
Sample Numbers in Multivariate Stratified Sampling 
with a Probabilistic cost constraint in (1.2). 
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with random coefficients. The equivalent deterministic 
model for the problem in (1.1) is obtained by applying 
the chance constrained programming technique. The re-
sult of optimal allocation using Chance Constrained pro-
gramming when the weighted sum of variances of the 
estimates of various characters is minimized is compared 
through a numerical example with the proportional allo-
cation. The model in (1.2) with non-linear cost function 
in constraints is handled by using the modified-E model 
of Diaz-Garcia and Garay Tapia [13]. The results are 
applied to a simulated example. 

2. Problem Formulation 

We consider a multivariate population consisting of N 
units which is divided into L disjoint strata of sizes  
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 is the variance for the   

character in the  stratum. Let C  be the upper limit 
on the total cost of the survey. The problem of optimal 
sample allocation involves determining the sample sizes 

1 2, , Ln n n  that minimize the variances of various 
characters under the given sampling budget C. Within 
any stratum the linear cost function is appropriate when 
the major item of cost is that of taking the measurements 
on each unit. If travel costs between units in a given 
stratum are substantial, empirical and mathematical 
studies indicate that the costs are better represented by  
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curred in enumerating a sample unit in the  stratum, 
see Beardwood et al. [16], who observe that the distance 
between  randomly scattered points is proportional to 
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where  is the overhead cost.  

The restrictions on the sample sizes from various strata 
are 

               (2.3)  

Ignoring the constant term in (2.1), the allocation 
problem with non-linear cost function can be written as 
the following p convex programming problems 
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In many practical situations the travel costs i  in the 
various strata are not fixed and may be considered as 
random. Let us assume that i ,  are inde-
pendently normally distributed random variables. 

So, we write the above problem in the following 
chance constrained programming form (see, charnes & 
cooper [17])  
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where , 

t 1, , ,i L 

 1, ,

 is a specified probability. 

3. Solution Using Chance Constrained  
Programming 

Let us assume that the costs i ,  in the con-
straint function (2.5 2)) are independently and normally 
distributed random variables. Let Lt t t    and 
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The variance is obtained as 
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where  represents the cumulative density function 
of the standard normal variable evaluated at z. If K  
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or equivalently, 
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Substituting from (3.1) and (3.2) in (3.5), we get  
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where it  and 2
i  are the estimated m

ances from the sample. 
Thus, an equivalent deterministic constraint to the sto-
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The equivalent deterministic non-linear programming 
problem to the stochastic programming probl
given by 
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A compromise solution to these p  problems can be 
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The non-linear programming problem in (3.11) is con-
vex as the objective function in {3.11 1)} is convex, see 
Kokan and Khan [7] and the left hand side in {3.11 2)} is 
also convex. So it is possible to solve the con
gramming problem (CPP) (3.11) by using any st
convex programming algorithm. The optimal sample 
numbers thus obtained may turn out to be fractional. 
However, it is known that the variance functions are flat 
at

vex pro-
andard 

 the optimum solution. So for large sample size it is 
enough to round the fractional values to the nearest inte-
gers. However, for small n an integer solution can be 
obtained by using branch and bound method. 

4. Modified E-Model 

Let us consider the situation in which the survey is to be 
conducted in such a way that the budget of the survey for 
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5. Numerical Illustration 
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rvey conducted in 
Varanasi district of Uttar Pradesh (U.P), India to study 
the distribution of manurial resources among different 
crops and cultural practices (see Sukhatme et al. [21]). 
Relevant data with respect to the two characteristics 
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are given in Table 1. The total number of villages in the 
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In order to demonstrate the procedure the following 
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of measurement in various strata are independently nor-
mally distributed with the following means and variances 
 1E t  = 3,  2E t  = 4,  3E t  = 5,  4E t  = 7 and 
 1V t  = 0.6,  2V t  = 0.5,  3V t  = 0.7,  4V t  = 0.8. 
The total amount available for the survey C is assumed 

as 300 units including an expected overhead cost t  = 
25

0

Let th e con .5 2) ired t
fied w roba en 

 units. 

5.1. Minimization of the Variances Subject to the 
Non-Linear Cost Function  

e chanc straint 2 be requ o be satis-
ith 99% p bility. Th K  is such   that 

  0.99K  . The value of standard normal variable 
K  corresponding to 99% confidence limits is 2.33. 
Thus, the (non-linear programming) problem (3.11) is 
obtained as 

 

1 2 3

4

1 2 3 4

2960.5328

bject to

3 4 5 7

n

n n n n

1 2 3 4

1 2 3 4

Mi

Su

2.33 0.6 0.5 0.7 0.8 275

2 1419, 2 619, 2 1253, 2 899

n n

n n n n

n n n n

11333.5688 158.6615 166.1824
n.V

n n
   



 




   

    


        
(5.1) 

 

Copyright © 2012 SciRes.                                                                                AJOR 



M. F. KHAN  ET  AL. 104 

NLP problem (5.1) is solved by using LINGO com-
puter program a package for constrained optimization by 
LINDO systems Inc, see LINGO users Guide [22].  

The solutio ained is 624.23, 2n  = 37.27, 

3n  .04 an 4n  = 17 with objective function 
val  

n obt
d 

1n  = 
2.80 = 33

ue f n  .57. The in solution is 1n  = 623
n 37, = 34 and 4n  with value of the ob-
j  

= 44

 

tege
= 17

r 
2 

, 

2

ective fun
 = 3n  

ction f n  = 44
n erical illustratio ted above the total  

4

1

866.i
i

n n


   As suggested by Ney- 

man [1], if proportional allocation with n

.58. 
n prIn the um esen

sample size is 

 is used, 866  
and values iW  as given in Table 1, we get the sample 
sizes in nW ; i = 1, 2, 3 and 4 as: 

293,n   128,n   259n1 2 3   and 186.n   4

Note that the left hand side of the cost constraint in 
(5.1) from roportional allocation is obtained  286.62. 
s  that it is adly violated  

Further, under roportional allocation the weighted 
su

 p as
o b . 

the p
m of variances is worked out as: 

 
2

0.75 69.29 56.44j jsta V y    
1

0.25 17.94
j

  

ed

5.2. Minimization of the Cost Subject to Bounds 

ances. Then, using the modi-
fie

1 2k k 
wing NLP prob  (4.3): 

The solutio tained is 1  = 68 2n  = 32, n  = 
23 and 4n  h ue of t e objective func-

886.in 

ues  we get the sample sizes as: 

which is much more greater than the minimum value 
44.58 obtain  through compromise allocation. 

on Variances 

In the above example let us minimize the cost restricted 
to given upper limits on vari

d E-model technique with given upper limits on the 
variances as *

1 10V  , *
2 40V   and taking 

lem from
0.5 , 

we solve the follo
n ob

= 150 wit
n

 the val
1, 
h

3

tion as C = 117.15. 

The total sample size turns out to be 
4

n  
1i

For proportional allocation, with 886n   and the val-

iW  as given in T

 

able 1

1 300,n   2 131,n   3 265n   and 4 190.n    

Under the proportional allocation the min cost is ob-
tained as C = 149.88. Also the constraints in (5.2) are not 
satisfied by the allocation. 

6. Conclusion 

We have considered the allocation problem in multivari-
ate stratified s inear stochas-
tic ion. We have

 progr
ed E-m

ab

2

iS

urveys as a problem of non-l
 programming with non linear cost funct  

proposed the Chance Constrained amming tech-
nique and the technique of modifi odel for their

T le 1. Data for four strata and two characteristics. 

  

2

1iS  2  
Stratum i iN  iW  

1 0.25a   2 0.75a 

1 1419 0.3387 4817.72 130121.15

2 619

3 1253 

 0.1477 6251.26 7613.52 

0.2990 3066.16 1456.40 

4 899 0.2146 56207.25 66977.72

 
solutions. These techniques are then used on a numerical 
example in Section 5. The respective solutions obtained 
are on 
in the constraints than the corresponding solutions with 
pr al allocation. 
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