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ABSTRACT 

In this paper, two new sandwich algorithms for the convex curve approximation are introduced. The proofs of the linear 
convergence property of the first method and the quadratic convergence property of the second method are given. The 
methods are applied to approximate the efficient frontier of the stochastic minimum cost flow problem with the moment 
bicriterion. Two numerical examples including the comparison of the proposed algorithms with two other literature de-
rivative free methods are given. 
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1. Introduction 

The network cost flow problems which describe a lot of 
real-life problems have been studied recently in many 
Operation Research papers. One of the basic problems in 
this field are the bicriteria optimization problems. Al- 
though there exist exact computation methods for finding 
the analytic solution sets of bicriteria linear and quadratic 
cost flow problems (see e.g. [1,2]), Ruhe [3] and Zadeh 
[4] have shown that the determination of these sets may 
be very perplexing, because there exists the possibility of 
the exponential number of extreme nondominated object- 
tive vectors on the efficient frontier of the considered 
problems. The fact that efficient frontiers of bicriteria 
linear and quadratic cost flow problems are the convex 
curves in  allows to apply the sandwich methods for 
a convex curve approximation in this field of optimiza- 
tion (see e.g. [5-8]). However, in some of these algo- 
rithms the derivative information is required. A deriva- 
tive free method was introduced first by Yang and Goh 
in [8], who applied it to bicriteria quadratic minimum 
cost flow problems. The efficient frontiers of these prob- 
lems are approximated by two piecewise linear functions 
called further approximation bounds, which construction 
requires solving of a number of one dimensional mini- 
mum cost flow problems. Unfortunately, the method in- 
troduced by Yang and Goh works under the assumption 
that the change of the direction of the tangents of the  

2R

approximated function is less than or equal to 
π

2
. Also,  

Siem et al. in [7] proposed an algorithm based only on 

the function value evaluation, with the interval bisection 
partition rule and two new iterative strategies for the de- 
termination of the new input data point in each iteration. 
Authors gave the proof of linear convergence of their 
algorithm.  

In this paper we consider the generalized bicriteria 
minimum cost flow problem. We are interested in mini- 
mizing two cost functions, which satisfy some additional 
assumptions. Two sandwich methods for the approxima- 
tion of the efficient frontier of this problem are presented. 
In the first method, based on the algorithm proposed by 
Siem et al. [7], new points on the efficient frontier are 
computed according to the chord rule or the maximum 
error rule by solving proper convex network problems. In 
the second method, we modify the lower approximation 
function discussed in [8], what decreases the Hausdorff 
distance between upper and lower bounds. We give the 
proofs of the linear convergence property of the first 
method called the Simple Triangle Algorithm and the 
quadratic convergence property of the second method 
called the Trapezium Algorithm.  

The paper is organized as follows. In Section 2, we 
state a nonlinear bicriteria optimization problem that can 
be treated as a generalized minimum cost flow problem. 
In Section 3, two new sandwich methods of approxima- 
tion of the efficient frontier of the stated problem are 
presented and in Subsection 3.5 the corresponding algo- 
rithms are presented. In Section 4, we discuss the con- 
vergence of these algorithms. Section 5 includes the in- 
formation how to use the methodology from Section 2 in 
the case of the stochastic minimum cost flow problem 
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with the moment bicriterion. To illustrate discussed 
methods in comparison with the algorithms presented in 
[7] and [8] two numerical examples are given. Finally, 
Section 6 contains the conclusions and future research 
direction. Proofs of lemmas and Theorem 2 are given in 
Appendix.  

2. Problem Statement  

Let G be the directed network with n nodes and m arcs. 
Let  . We consider the generalized mini- 
mum cost flow problem (GMCFP) defined as follows  

 0,R  

 1 2( ),

,

,

T

l u

h x h x

b

c

  


n mD R  b R

min

s t Dx

c x

 
 

            (1) 

where  is the node-arc incidence matrix, n  
is the net outflow of the nodes, vectors l u, mc c R

m
 are 

the lower and upper capacity bounds for the flow x R
1 2, mh h R R 

 
and  are the cost functions such that  2h    

is a continuous and convex function and    Th x h c x

: R

1 ,  

where  and h R
mc R 

 : , l u

 is a continuous, concave 
and strictly increasing function. Let  

mX x R Dx   b c x c 

2R

2

T T
b  2 2 ,a b

2

T T  2 2a b

 

be the feasible set of problem (1). 
According to the concept of Pareto optimality we con- 

sider the relations ≤ and < in  defined as follows  

  1 2 1, ,a a b 1 1a b  and  

  1 2 1, ,a a b b 1 1a b  and .  

Using these definitions in the field of the bicriteria 
programming, a feasible solution x X  is called the 
efficient solution of problem (1) if there does not exist a 
feasible solution y X

   1 2,
T T

x h x   

 such that   

   1 2,h y h y h          (2) 

The set of all efficient solutions and the image of this 
set under the objective functions are called the efficient 
set and the efficient frontier, respectively.  

Note that the efficient set EX  of problem (1) is the 
same as the efficient set of following problem  

  min ,

s t ,

.l u

h h x

Dx b

c x c


  
 

  1 1
1 2

T
h h x  

  1
Th h x c x

        (3) 

Moreover, from the fact that  for all 1

x X  2 

2R

 and that the function  is a convex one 
it follows the next lemma.  

1h h 

Lemma 1  
Efficient frontier of problem (3) is a convex curve in 
.  

Proof: See Appendix.  

3. The New Sandwich Methods 

In this section, we introduce two new sandwich methods 
for the approximation of the efficient frontier of problem 
(3).  

3.1. Initial Set of Points 

 1
1 1h h   1

2 2 and h hf fLet   and suppose that  

    1 2,k k
kP f x f x

1, 2, ,k r

            (4) 

for all  
1

 are r given points on the efficient 
frontier of problem (1) such that rx  and x  are the 
lexicographical minimum for the first and the second 
criterion, respectively. Although we need only three 
given points on the efficient frontier to start the first 
method called the Simple Triangle Method (STM) and 
two points to start the second method called the Trape- 
zium Method (TM), the described methodologies work 
for any number r of initial points, which may be obtained 
by solving scalarization problems corresponding to pro- 
blem (3), i.e.  

     1 2min 1

s t ,

k kf x f x

x X

  

  
          (5) 

where 
1

1k

k

r
 

 for all .  1, 2, ,k r 

2




Another possibility is to find lexicographical minima 
of problem (3) and then to solve r  convex pro- 
graming problems with additional equality constraints  

 1 1 ,
1

T T T r Tk
c x c x c x c x

r
            (6) 


1 2k rwhere    

   

. This method gives r points on the 
efficient frontier with the following property   

    1 1
1 1 1 1

1

1
k k rf x f x f x f x

r
         (7) 


1, 2, , 1k r 

 , ,P P P 

 

.  for all 

3.2. Upper Bound 

Suppose that the initial set 1 r  of points on 
the efficient frontier is given and that the points are or- 
dered according to the first criterion  1

1 1
k kf x f x 

1, , 1k r
 

for all 
 ku 

   1
1 1,k kf x f x 

.  
The upper approximation function  of the fron-  

 tier on the subinterval  

kP 1kP

 called the  

upper bound is defined as the straight line through the 
points  and  , that is  

   
         

1
2 2

2 11
1 1

k k

k k k

k k

f x f x
u a f x a f x

f x f x






  


  (8) 
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for     1
1 1, .k kx f x  

 

P P P

a f

3.3. Lower Bounds 

In the algorithms proposed at the end of this section we 
will use two different definitions of the lower approxi- 
mation functions called the lower bounds. 

Definition 1  
According to [7] the straight lines defined by the 

points 1k  and k  and the points 1k  and 2kP   
approximate the frontier from below so the lower bound 

 on the interval 1 1  may be con- 
structed in the following form  
kl  k f 



 
 

1

1 1
1

,

,

k k
k

k k
k

f x a

a f x 

 
 
   

2, 2k r  a
 1k

   ,f x 1kx 

 
 

 

1 for

for

k
u a a

l a
u a a

  


    (9) 

where  and  is the point of intersect- 
tion of two linear functions  and u

,  k

 1ku    .  
Moreover, we define the lower approximation bound 

 on the most left and the most right interval as fol- 
lows  
 kl 

   1 2
1 1,x f x   1 2 forl a u a a f    

 
 

1 1
1 1

2 1 1

,

, ,

r r
r

r r
r

f x a

a f x

 




 
 
 
 

a
 1ru    rf x



    (10) 

and  

 
 

 
for

for

r
u a a

l a
f x a

  


  (11) 

where 1r  is the point of intersection of function 
 and the constant function .  2

If we compute new points on the efficient frontier due 
to the chord rule (see next section), then definition (9) 
may be modified, see Rote [9], in the following way  

 

    
      




 

    
     

2 1

1
1
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k
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2, 2k r  a

kP

 

1 1
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1 1
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1

2
2 21

2 2
1 1

1
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for ,
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k k

k
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k
k
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f x f x
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f x f x
f x

f x f x

a a f x

 

 








 

 

     







   

  

(12) 

where  and k  is the point of intersec- 
tion of corresponding two linear functions. Note that the 
lower bound is constructed by the tangents to  and 

  

, 

1

Moreover, the lower approximation bound 
kP  

 kl   on 
the most left and the most right interval are redefined as 

follows 

   
         

   

3 1
2 21 2 2

2 13 1
1 1

1 2
1 1for ,

f x f x
l a f x a f x

f x f x

a f x f x


  



   

 

 

  (13) 

and  

   
      

 
 

 

1 1
2 2

2 11 1
1 1

1

2

1 1

for ,

for ,

r r

r k

r r

kr
k

r

r
r

f x f x
f x a f x

f x f x

a f x al a

f x

a a f x

 

 



 
  
 

     




    

(14) 

Definition 2 
The simple modification of the definition presented in 

[8] leads to the following form of lower approximation 
bound  kl   on the interval      1

1 1,k kf x f x  
 

 

 
 

     
      

 
 

 

1

1

1
2 2

2 11
1 1

1

1
1

for ,

for ,

for , ,

k

k
k

k k

k k
k k k

k k
k

k
k

u a

a f x b

f x f x
f y a f y

l a f x f x

a b c

u a

a c f x















   
 
    





    

2, , 2k r

 (15) 

where   c

k

, constants kb  and k  are the 
points of intersection of corresponding linear functions 
and y  is the solution of the following convex network 
problem (the chord rule problem)   

   
      

1
2 2

2 11
1 1

min

s t

k k

k k

f x f x
f x f x

f x f x

x X





 
 
  

   

 

 

    (16) 

Similar to the previous case, we define the lower ap- 
proximation bound on the most left and the most right 
interval as follows 

   
      

 
 

 

2 1
2 21 1

2 12 1
1 1

1 1
1 1

2

2
1 1

for ,

for ,

f x f x
f y a f y

f x f x

l a a f x c

u a

a c f x



 
  
 
     

    

  (17) 

and  
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for
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l a
f x a
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,

,

r r
r

r r
r

f x b

b f x

 




 
 
   

2 1, , rP P 



   (18) 

Moreover, these definitions may be modified like in 
(12) using the tangents in points  in the fol- 
lowing form  

 

    
      

 

     
      




 

    
     

1

1

1
1

k k

k

k

a f x

a f y

a f x 

 








 

1 1
2 2

2 1 1
1 1

1

1
2 2

2 1
1 1

2
2 21

2 2
1 1

1
1

for ,

for ,

for ,

k k

k k

k
k

k k

k
k k k

k k

k k

k

k k

k
k

f x f x
f x

f x f x

a f x b

f x f x
f y

l a f x f x

a b c

f x f x
f x

f x f x

a c f x

 

 













 

 

    
   





  
    

  

(19) 
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(21) 

If the approximation bounds  and  ku   kl   or 

  are constructed for each , then we 
define the upper approximation function 
 kl  , 1r 


1,k 

u   of the 
efficient frontier of problem (3) in the following way  

       1
1 1,k kx f x  

 forku a u a a f       (22) 

and the lower approximation function due to equality  

    

or  

  1
1 1,k kx f x  

 

       1
1 1for ,k k kl a l a a f x f x 

 
    

1, , 1k r

forkl a l a a f       (23) 

   (24) 

for all  .  
We note that after a small modification of the defini- 

tion of the lower approximation function in the most 
right interval, any convex function may be approximated 
by the lower and upper bounds defined in this subsection.  

3.4. Error Analysis 

Suppose that the approximation bounds have been built 
and let  1 1max , , r     k, where   denotes the ap- 

proximation error on the interval . We     1
1 1,k kf x f x  

 
consider three different error measures called the Maxi- 
mum error measure (Maximum vertical error measure) 
( M

k
H ), the Hausdorff distance measure ( k ) and the 

Uncertainty area measure ( U
k ) (see [7])  

   
   

1
1 1,

max ,
k k

M
k k k

a f x f x

u a l a
   

        (25) 

 max sup inf , inf sup ,H
k

w U w Uv L v L
v w v w

  
  

      

   (26) 

where 

 1
1 1, : , ,k k

kU a u a a f x f x     

      

 

 1
1 1, : ,k k

kL a l a a f x f x     

 

 

and 

     
1

1

1
d .

k

k

f xU
k k kf x

u a l a a


         (27) 

M H U  (one of  ,  , If a measure  ) does not satisfy 
a desired accuracy, we choose  for which  1, ,k r 

k   and we determine the new point  

    1 2,P f x f x    on the efficient frontier of prob- 

lem (3) such that      1
1 1 1,k kf x f x f x    

 

2

1

min ( )

s t ,

,k

. New  

points on the efficient frontier may be computed accord- 
ing to the chord rule or the maximum error rule, that is 
by solving the optimization problem (16) or the follow- 
ing problem (the maximum error rule problem)  

f x

x X

f x a

  



a

               (28) 

where k  is the point of intersection of linear functions 
 1ku   1ku   and    Note that if we construct the 

lower bound due to definition (15), then the chord rule 
problem (16) has been already solved.  

After the determination of the new point, we rebuild 
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 ,P P Pthe set P of given points on efficient frontier due to fol- 
lowing equality 

1

for

for

for ,

P i k

i k

P i k






 



i

i

i

P P







            (29) 

then we construct new upper and lower bounds and re- 
peat the procedure until we obtain an error   smaller 
than the prescribed accuracy.  

The next lemma describes the relation between the ap- 
proximation bounds of the efficient frontiers of problems 
(1) and (3). 

Lemma 2  
Let  and  be the lower and upper approxi- 

mation bounds of the efficient frontier of problem (3) 
built due to the definitions (8) and (9) or (8) and (15), 
then 

   u l

   1l h  l h   and     1u h u h    are the 
lower and upper approximation bounds of the efficient 
frontier of problem (1).  

Moreover, the following inequality is satisfied  

           1 1l f x  1 1u h x l h x A u f x    (30) 

for all the efficient solutions Ex X  and  1
2A h x    

Proof: See Appendix.  
From Lemma 2 follows that in order to obtain the 

Maximum error between upper and lower approximation 
bounds  l  and  


  

u  of problem (1) smaller than or 
equal to the accuracy parameter , we need to build the 
approximation bounds l  and u  of problem (3) 
for which the Maximum error is smaller than or equal to  



A



0


.  

3.5. Algorithms 

We present two algorithms described in this section.  

3.5.1. The Simple Triangle Algorithm (STA) 
Input: Introduce an accuracy parameter   and an 
initial set of points on the efficient frontier 1 2 3, ,P P P P . 

Step 1. Calculate lower and upper bounds  l  ,  u   
and error  . Check if    , then go to Step 2, 
otherwise stop.  

Step 2. Choose interval    1
1 1,k kf x  

 

P

f x  for which  

the maximum error is achieved. Solve the quadratic 
problem (16) or (28) to obtain the new point  . Update 
set P, lower and upper bounds ,  l   u   and error  . 
Go to Step 3.  

Step 3. Check if   

0

, then go to Step 2, otherwise 
stop.  

3.5.2. The Trapezium Algorithm (TA) 
Input: Introduce an accuracy parameter   and an 

initial set of points on the efficient frontier 1 2

Step 1. Solve problem (16) and calculate lower and 
upper bounds 

. 

   u ,   and error  . Check if l   

   1,k kf x f x 

, 
then go to Step 2, otherwise stop. 

Step 2. Choose interval 1 1
 
   for which 

the maximum error is achieved. The new point  
    ,k kP f y f y 

 l  
1 2 . Update set P, solve problem (13), 

calculate lower and upper bounds , u   and error 
 . Go to Step 3. 

Step 3. Check if    , then go to Step 2, otherwise 
stop.  

The geometric illustration of STA and TA is given in 
Figure 1 and Figure 2, respectively. In Figure 1(a), 
there is an illustration of an efficient frontier and the 
corresponding lower and upper bounds determined by 
three initial points  
 

 
(a) 

 

 
(b) 

Figure 1. Lower and upper bounds built due to STA with 
the chord rule. 
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              3 3
1 2, .f x f x

   1 2,f x f x 

1 1 2 2
1 2 1 2, , , ,f x f x f x f x  

Here one can observe that in the interval  

1 1   the Hausdorff measure 1
H  is the 

greatest. It means that we have to introduce a new point 

1 2  into the efficient frontier and 
determine new corresponding lower and upper bounds, 
what is illustrated in Figure 1(b). Similar considerations 
are illustrated in Figures 2(a) and 2(b).  

    ,x f x  P f

In Figure 3 and Figure 4 we see the illustration of 
STA and TA which lower bounds built due to definitions 
(9), (12) and (15), (19), respectively.  

In Section 4 we study the convergence of described 
algorithms.  

4. Convergence of the Algorithms 

In this section we present the convergence results of 
presented algorithms based on proofs given in Rote [9] 
 

 
(a) 

 

 
(b) 

Figure 2. Lower and upper bounds built due to TA. 

 
(a) 

 

 
(b) 

Figure 3. Lower bounds in STA built due to definitions (9) 
and (12) presented in (a) and (b), respectively. 
 
and Yang and Goh [8]. First, we formulate two following 
remarks, which show the relation between the considered 
error measures.  

Remark 1  
Suppose that the lower and upper approximation  

   1
1 1,k kf x f x  



   
   

 have been  bounds on the interval 
build according to the definitions (8) and (9) or (15), then 
we have 

2
1

2 2

1
1 1

1
k k

M H
k k k k

f x f x

f x f x
 





 
   
  

     (31) 

Moreover, 

   
   

1
2 2

1
1 1

1
k k

M H
k k k k

f x f x

f x f x
 





 
   
  

      (32) 

See Figure 5.  
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(a) 

 

 
(b) 

Figure 4. Lower bounds in TA built due to definitions (15) 
and (19) presented in (a) and (b), respectively. 
 

Remark 2  
Suppose that the lower and upper approximation  

bounds on the interval    1
1 1,k kf x  

 

  

f x  have been  

build according to the definitions (8) and (9) or (15), then 
we have  

      2 2
1

2 .k kf x 



1
1 1 2

U H k k
k k f x f x f x      

(33) 

Now, we suppose that the efficient frontier of problem 
(3) is given as a convex function :g a b R   and the 
one-sided derivatives  g a  and  g b  have been 
evaluated.  

The following theorem based on Remark 3 and Theo- 
rem 1 in [8], Theorem 2 in [9] and Remark 1 and Remark 
2 shows the quadratic convergence property of TA.  

 

Figure 5. Illustration of error measures defined by (25)-(27). 
 

Theorem 1  
L b a     and gLet  b g a     and suppose 

that the point   ,c g c

   

 was chosen to satisfy the fol- 
lowing inequality  

.
b a

c a
g a g b


 






           (34) 

The number H of optimization problems (16) which 
have to be solved in order to obtain the Hausdorff dis-
tance between upper and lower bounds in TA smaller 
than or equal to  satisfies the following inequality  

max 2 1,3 .
L

H
 
 
 
 
  

    
  

         (35) 

  The third point ,c g c

,L b a

 on the efficient frontier has 
to be chosen if we want to avoid the problems with the 
leftmost interval in which the Hausdorff distance between 
the approximation bounds is equal to the maximum error 
measure between them. The explanation how to determine 
a point with property (34) is given in the proof of Theorem 
2.  

Corollary 1  
   gLet    b g a   



. The number M of 
optimization problems (16) which have to be solved in 
order to obtain the Maximum error between upper and 
lower bounds in TA smaller than or equal to  satisfies 
the following inequality  

 max 2 1 1,3 ,
L

M 
 
 
 
 
  

     
  

     (36) 

   g
where .

b g a

a b









  

The number U of optimization problems (16) which 
have to be solved in order to obtain the Uncertainty area 
error between upper and lower bounds in TA smaller 
than or equal to  satisfies the following inequality  
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 ,a c  and STA for interval ,c b

1L L
, respectively, and 

 and  are the lengths of these intervals.  max 2U  1,3 ,
L  

 
 
 
  

   
  

  

          (37) 
2

The next theorem based on Lemma 5, Theorem 2 from 
[9] and Lemma 3 establishes the linear convergence 
property of STA.  where    2 2

.a b 

 

g a g b     

Theorem 2  Yang and Goh [8] noticed that the right directional de- 
rivative 

opyright © 2012 SciRes.    

g a  may be close to , that is why using 
the fact that the Hausdorff distance is invariant under 
rotation it is better to consider the efficient frontier ro- 

tated by 
π

4
 with the modified directional derivatives  

ag    and  bg   and with L b a   as the projec- 
tive distance of the segment between points   ,a g a

  ,b g b



 
and  onto the line .    m x x 

Also for STA we may find the upper bound for the 
number of optimization problems (16) or (28) which 
have to be solved. First, let us formulate the following 
lemma.  

Lemma 3  
Suppose that the convex function :g a b R   is 

approximated from below by two linear functions  lac   
and  cbl   such that acl a     g a     g b

 acl c
cb

 c a b
l b  and 

 for some  cbl c     Let  acm   and 
 be the lines which intersect the points  cb m   ,a g a , 

 and , , respectively (see 
Figure 6). If we denote by 

  c  ,c g c,c g     ,b g b
tan, tan  , tan  , tan  

the slopes of lines  ac , l   cbl  ,  acm  , cb , respec-
tively, then the following inequality is satisfied  

 

2 2 ,L L L  

m

1 1               (38) 

where 1 tan tan ,  2   ,tan tan  
tan

  
tan     , ,  and 1L c a  2L b c  .L b a 



  
Proof: See Appendix. 
Note that 1 and 2  are the differences of the slopes 

of lower approximation functions computed according to  

Let   ,   ,a g a ,c g c  ,b g b and   are three ini- 
tial points which are necessary to start STA and suppose 
that   ,c g c

   

 was chosen to satisfy the following ine- 
quality  

.
b a

c a
g a g b


 




L b a

           (39) 

   and let gLet  a  



, then the number 
H of convex optimization problems ((16) or (28)), which 
have to be solved in order to make the Hausdorff dis- 
tance between upper and lower bound in STA with the 
chord rule or the maximum error rule smaller than or 
equal to  satisfies the following inequality  

max 4,0
L

H


.
       

          (40) 

Proof: See Appendix.  
Corollary 2  
Let   ,   ,a g a ,c g c  ,b g b and   are three ini- 

tial points that are necessary to start STA and suppose 
that   ,c g c

L b a
 was chosen to satisfy the inequality (39). 

Let    and let g a



  . The number M of 
optimization problems (16) which have to be solved in 
order to obtain the Maximum error between upper and 
lower bounds in TA smaller than or equal to  satisfies 
the following inequality  

 max 1 4,0 ,
L

M          
       (41) 

 

 

Figure 6. Illustration of functions and angels considered in Lemma 3.  
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where 
   

.
g b g a

a b




 The number U of optimization  

s (16) which hav

 

problem e to be solved in order to obtain 
the Uncertainty area error between upper and lower 
bounds in TA smaller than or equal to   satisfies the 
following inequality  

max
L

U 4,0 ,
   

    
         (42) 

   

 

where    2 2
a b  .  

ark 3  
 theorem is true for every convex func- 

g a g b  

Rem
Note that this

tion  :g a b R   such that the one-sided derivative 
 g a  valuated. If we do not have the deriva- 

t formation using TA with maximum error rule 
gives us the linear convergence property of this proce- 
dure.  

The following theorem by Rote [9] establishes the 
qu

has been e
nive i

adratic convergence property of STA with the modi- 
fied lower bound as in (12).  

Theorem 3  
Let   ,a g a ,  ,c g c  and   ,b g b  are three ini- 

ich a  start STtial points wh re necessary to A and suppose 
that   ,c g c  was chosen to satisfy the following ine- 
quality  

   
.

b a
c a

g a g b




          (43) 

Let  

  

L b a   and let g a   , then the number 
nve problems (1H of co imization 6), which have to 

be solved in order to make the Hausdorff distance be-
tween upper and lower bound in STA and TA with the 
modified lower bounds and the chord rule smaller than or 
equal to   satisfies the following inequality  

x opt

max 2,0 .H  
 
  

  
  

          (44) 

5. Examples 

e define the stochastic minimum cost 

at the

L 
   

In this section w
flow problem with the moment bicriterion and present 
two numerical examples, which illustrate algorithm pre- 
sented in Section 3. Similar to the classic bicriteria net- 
work cost flow problem, we consider the directed net- 
work G with n nodes and m arcs with the node-arc inci- 
dence matrix n mD R  , the net outflow vector nb R  
and the capaci s , .m

l uc c R  Suppose th  
cost per unit of flow thro rc  1, ,i m   is 
described by the random variable iC R

ty bound
ugh the a

   as- 
sume that each variable iC  has positive expected value 


  and

i iE C c  and let C b a random vector such that 
 T

 

 min , ,
T

TE x E f x

e 
stochast1 C .mC C  The , , ic minimum cost flow 

problem with the moment bicriterion (SMCFP) is defined 
as follows 

s t ,

,l u

Dx b

c x c

       C C

  
 

      (45) 

where : m mf R R R     is the continuous fu
that 

nction such 
 , : mf a R R    is convex for every ma R .  

Since Tx E C x   and  ,x E f C x     are linear  

x functions, re
ind that the effic m (45 a 

co rve in 2R

and conve spectively, then using Lemma 1 
we f ient frontier of proble ) is 

nvex cu   

e S

T
T

 
The following two examples include the comparison 

of the results obtained by STA, TA with Yang and Goh’s 
method [8] and th iem et al.’s algorithm [7].  

Example 1  
We consider the simple stochastic minimum cost flow 

problem  

 min ,E x f x    C            (46) 

s.t. 

1 2

4 5 1 2

1 3 4 2 3 5 4 5

2 6, 2 6, 0 4,

2 6, 2 6,

, , 8,

x x x

x x x

x x x x x x x x

 3

8,x

    
     
     

where 

 

       1 3,E C 2 6,E C 3 1,E C   4 4,E C    
 5 2E C  and  

 


521 4

6 52 2

x

3

xx x
xf x e e e e e           (47

The ve

 ) 

ctors  6, 2, 4,2,6  and  3 2,6,0,2,6x   
are the lexicographical minima due to the f
second criterion of problem (46) and   

1x
irst and the 

    1 1  1 1 2, 54,82.12P f x f x   

and  

      3 3
3 1 2, 62,12.47P f x f x 

o these vectors points on the efficient 
frontier. To avoid the problem with the leftm st interval 
we have taken 

 

are corresponding t
o

 2 54.15,74.63P   to be the third point 

s algorithm (YG) 

of the efficient frontier necessary to start STA and TA.  
The results’ comparison of subsequent calls of TA and 

Yang and Goh’ and the values of the 
Uncertainty area measure U  after each step of TA 
with the lower bounds defined in (19) (TA1) are pre- 
sented in Table 1. The results of STA, when new points 
are computed according to th  maximum error rule in 
common with the Maximum error measure (STAM) and 
when new points are computed according to the chord 
rule in common with the Hausdorff measure with the 
lower bounds defined by the Equation (9) (STAH) and 

e
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Table 1. The results of subsequent calls of TA and Yang and 
Goh’s method (YG) for the problem described in example 1. 

 TA YG 

Step H  M  U  
U  

(TA1) 
H  M  U  

1 2.995 23.905 93.828 93.828 23.905 23.905 180.927

2 1.376 9.638 25. 23.644 5.308 9. 31.003

0.50 9.638 23.591 1.497 9.63 16.269

659 638

3 5 18.781 8

4 0.490 2.069 3.211 2.975 1.876 2.069 3.731

5 0.251 2.069 3.134 2.641 1.876 2.069 3.428

6 0.152 2.069 2.805 2.641 1.876 2.069 2.398

7 0.133 2.069 2.746 2.114 0.397 2.069 1.295

8 0.096 2.069 2.746 2.114 0.397 2.069 1.295

9 0.070 2.069 0.402 0.371 0.397 2.069 1.295

10 0.064 2.069 0.402 0.371 0.397 2.069 1.295

 
Table 2.  re se
ch  r T T  e rr e 
(STAM S l w t b n 

le (SB) for the problem described in example 1. 

 The
ule (S

sults of sub
AH, S

quent c
and th

alls of STA w
 maxim

ith the 
or rulord AH1) um e

) and iem e al.’s method ith in erval isectio
ru

STAH STAH1 
Step 

H  M  U  H  M  U  

(12) (ST  are summ e  
Ya  an ’s od m ed e 
inter als set eakpo nd - 
bl in also the re  h sc n 

of the 
flo e network and the second moment of total 
co

,l uc x c1 6.553 52.303 205.288 6.553 52.303 205.288

2 4.163 40.901 2.902 28.462

1.74 21.671 26.547 1.17 4.55 4.25

24.116 10.540

3 4 0 6 9

4 1.225 21.671 26.547 0.401 4.556 4.259

5 0.760 8.633 5.064 0.367 4.556 4.259

6 0.648 8.633 4.084 0.167 4.556 3.610

7 0.485 8.633 4.084 0.126 4.556 2.727

8 0.305 8.107 3.567 0.122 2.543 0.908

9 0.269 8.107 3.567 0.115 2.543 0.908

10 0.236 2.836 0.676 0.107 2.543 0.908

STAM SB 
Step 

H  M  U  H  M  U  

1 6.553 52.303 205.288 3.321 49.630 99.260

2 5.283 82.440 2.389 3 31.580

3.335 12.086 32.670 2.389 21.090 12.878

   

    

    

24.961 1.580

3 

4 1.952 11.916 8.199 2.389 8.710 12.878

5 1.952 4.728 8.199 2.389 6.439 12.878

6 0.912 4.460 2.925 0.934 4.230 4.230

7 0.912 3.122  2.925 0.934 3.057 2.126 

8 0.912 3.019 2.925 0.934 2.814 2.126 

9 0.912 2.274 1.838 0.934 2.730 2.126 

10 0.912  1.715  1.838 0.934  2.126 2.126 

AH1) arized in Table 2. In th  case of
ng d Goh  meth  the errors are easur  in th

v
e 2 

by th
cludes 

e br ints of
sults of

 the up
the met

per bou
od de

. Ta
ribed i

[7], which uses the interval bisection method of the 
computing new points with the Maximum error measure. 
After each step of algorithm we present the maximum 
values of three error measures: the Maximum error, the 
Hausdorff distance and the Uncertainty area. As we can 
notice TA and TA1 performs better than other algorithms 
giving in each step the smallest values of the Hausdorff 
distance measure and the Uncertainty area measure. 
Moreover, from Table 2 we can conclude that STA with 
the chord rule and the Hausdorff distance gives smaller 
values of the Hausdorff measure in each step than to two 
other algorithms, which give comparable results.  

Example 2 
We consider the stochastic minimum cost flow prob- 

lem in the network with 12 nodes and 17 arcs. We would 
like to minimize the mean value of the total cost 

w through th
st, that is we solve the following problem  

 2
min ,

s t ,

T
T TE x E x

Dx b

        
  

C C

       (48) 

 

where 12 17D R   , 10,0, ,0, 10Tb   ,  0, ,0Tc     

and 
l

 6,6, ,6,6T
uc    and   17

7 :
T

1 1, ,C RC C  
is the random cost vector such that iC  and 

   

jC  are 
y independent for all ,i j A  such that i j . mutuall

 We have alues of chosen the v   1 17, ,E C E C  from
nterval 

 
the i  0, 2  an alues of the second mod the v -  
ments 2 2

1 17, ,E C E C        from the interval  1,3  The  

points on the efficient frontier co e lexi-
cographical m a of problem (48) and the second cri-

.

rresponding to th
inim

re  terion a 1 62.244,60P  72.87  and  
 5.293,5145.63 . In th

 to STA and Siem e ethod. Table 3 
includes the comparis

 

2

Yang and Goh’s method are considered, since from Ex- 
ample 1. follows that these two algorithms work faster in 
comparison t al.’s m

on of TA with the method pre- 
sented in [8]. After each step of the considered methods 
we present the values of Hausdorff distance, Maximum 
error and Uncertainty area measure and a new evaluated 
point. As we can notice TA performs better in compare- 
son to Yang and Goh’s algorithm giving in each step the 
smallest value of the Hausdorff distance between upper 
and lower approximation bounds.  

6. Conclusions 

Two sandwich algorithms (the Simple Triangle Algorithm 

6P  is example only TA and the 
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alls of TA and Yang and G

TA YG 

  
Table 3. The results of subsequent c oh’s method (YG) for the problem described in example 2. 

Step   1 2  ,f x f x  
H  M  U  H  M  U  

1  1.507 45 9 1052.1 1.507 45 1397.42 8.25 8.259 

2 (63.410, 5259.94) 0.59 117.1 36.287 117.1  129.2

(64.194, 176.09) 

 8 96 75.559 96 46 

3 5 0.282 117.196 70.439 14.101 117.196 126.457 

4 (64.733, 5153.34) 0.168 117.196 68.847 14.101 117.196 126.457 

5 (62.824, 5551.23) 0.141 29.355 8.614 28.735 29.355 17.012 

6 (65.013, 5147.54) 0.134 29.355 8.541 28.735 29.355 17.012 

7 (63.584, 5227.26) 0.071 29.355 8.541 28.735 29.355 17.012 

8 (65.1528, 5146.1) 0.058 29.355 8.534 28.735 29.355 17.012 

9 (63.112, 5379.36) 0.053 29.355 8.523 7.254 29.355 15.961 

10 (64.438, 5163.53) 0.042 29.355 8.523 7.254 29.355 15.961 

 
and rap m) for proxim f 
the cient  gener bicriter - 

um cost flow problem have been described. Both 

the T ezium Algorith  the ap ation o
effi  frontier of the alized ia mini

m
methods have been applied in the field of the stochastic 
minimum cost flow problem with the moment bicrite- 
rion.  

The Simple Triangle Algorithm uses the lower bound 
proposed by Siem et al. in [7] with the maximum error 
rule or the chord rule, what causes faster decrease of the 
Maximum error measure and the Hausdorff distance 
measure and, as a result, reduces the number of steps of 
algorithm in comparison to the Siem et al.’s method. We 
have established the linear convergence property of this 
algorithm with both partition rules. If the lower bound in 
the Simple Triangle Algorithm is defined as in [9], ac- 
cording to the definition (12) and new points of the ef- 
ficient frontier are computed due to the chord rule then 
we have the quadratic convergence property of the algo- 
rithm.  

From the numerical examples follows that the Trape- 
zium Algorithm performs better in comparison to all of 
the mentioned derivative free algorithms (Siem et al.’s 
method, Yang and Goh’s method) and gives in each step 
the smallest values of the Hausdorff distance measure 
between lower and upper bound. It also works faster than 
Rote’s triangle algorithm. Moreover, Trapezium Algo- 
rithm may be used for approximation of any convex 
function without the assumption that the change of the 
direction of the tangents of this function is less than or  

equal to 
π

2
, see [8]. The quadratic convergence property  

of the Trapezium Algorithm has been established.  
For further research we are interested in the construc- 

tio  method g the stic min
flo blem with the moment iterion. 

nal of 

n of a for solvin  stocha imum cost 
w pro multicr
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Appendix 

We present the proofs of Lemma 1, Lemma 2, Lemma 3 
and Theorem 2.  

Proof of Lemma 1  
Let ,    1

1 1f h h      1
2 2f h h  

1 1, 2

 and let  

    k kx f x  k2kP f  for   be two given points  

on the efficient frontier of problem (3) and let  0 1  
   1 2

1f x f x
1

2 b f    1
kf x b

.  
If  then for all b such that  1

 2
2 x f x  the point  lies also on  

the efficient frontier of problem (3).  
Suppose now that    2

1 1
T Tf x c x

  1 21 ,Tc x

 1T TX c y c x 

 2 ,T Tc z c x 

 1 B C   
  1 .

1 1c x f x  2. Note 
that for  

T TC x X c x c x        (49) 

1B y           (50) 

and  

2B z X          (51) 

we have , what yields  1 2

 
1 2

2 2
,

min
x C y B z B

B

min f x f
  

 y z  

2f



    (52) 

Due to the convexity of the function  we have  

   
   2 21 ,

z

 
1 2

1 2

2 2min min 1

min min

x C y B z B

y B z B

f x f y

f y f z

 

 




   

 

 

 
 (53) 

what proves the convexity of the efficient frontier of 
problem (3).                                 ■  

Proof of Lemma 2  
Let Ex X

  1 ,u f x 

   1
1u h h x

h

, then we have  

    1 2l f x f x        (54) 

what is equivalent to the following inequality  

      1 1
1 2l h h x h h x    (55) 

and from the fact that  is increasing we have  

       
    

 

  
2

1 1 .

h x

u h x

 

 

1
1 1

1

l h x h l h h x

h u h h x




  (56) 

Moreover,  

     
    

       

     
  

   
    

       

       

1
1 1

1
2 2

1 1

1 1
1 1

1 1

1
2 1

1
2 1 1

max

max

.

r

r

y l f x u f x

y f x f x

u h x l h x

h u h h x h l h h

h u f x h l f x

h y u f x

h y u f x

h f x u f x l f x

h x u f x l f x

 

    

    



 

 



 

 

   

 

    

    

  

 

1 1

1 1

1

x

l f x

l f x

  

 

  

■

  (57) 

Proof of Lemma 3  
 1c a bLet      0,1 , where  and let  

    .l c l c pac cb   Without loss of generality we may 
assume that    a g b  , then we have  g g a g c .  

From the equalities 

   

       

tan , tan ,

tan , tan

p g a g b p

c a b c
g c g a g b g c

c a b c

 

 

 
 

 
 

 
 

    (58) 

follows 

 
 

 
  

, ,
1

g b p p g a
L b a

b a b a 
 

    
  

         (59) 

   
 

 
      1 1, 1
1

g b g c p g a
L b a

b a b a


 
 

     
  

 

(60) 

 
 

   
    2 2and
1

g b p g a g c
L b a

b a b a


 
 

    
  

.  (61) 

Now, it is easy to show that inequality (38) is equivalent 
to  

    22 2 1 0.g c p            (62) 

 g c p
■

 we complete the proof. 
 

Using the fact that 

Proof of Theorem 2  
Suppose that we have found point ,c f c

M

  with 
property (39). It is possible to find such a point as a solu- 
tion of a convex programing problem with one additional 
constraint similar to problem (6). From condition (39) 
follows that  H  


1  and .   1

Now, if we consider the interval c b
c b L

, then we have 
  and  

   
.  

f c b

b c


 



Similar to [9] we prove the theorem by induction on 

number 
L

N N
   

 
.  

The induction basis, 0
L

N
   

 

1N 

, is equivalent to  

Lemma 1 from [5], which also holds for lower approxi- 
mation function built according to definition (9).  

Suppose that . If after one step of STA   



, 
then we have had only one additional evaluation and the 
thesis is true.  

d c bIn the other case, let  
L d c

 be the new computed 
point and let 1  .L b d  and 2  Let 1  and 

2  denote the slope differences of the linear functions 
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ht © iRe

building the lower bounds in the interval ,c d


 and From (65) and (66) we have  
,d b , respectively. We can assume without lost of gen- 

erality that the error   exceeds  in the right subin- 
terval. Lemma 5 and Lemma 1 from [9] used for the 
lower approximation bounds built due to definition (9) 
give the following inequalities  



1 1L 



1                 (63) 

and 

2 2L 



4.                (64) 

Lemma 3 and inequality (63) gives  

2 2L 
 .

L
 

              (65) 

Similarly, Lemma 3 and inequality (64) gives  

1 1 .
L L 


 

             (66) 

1 1 2 2and .
L LL L

N N N N
                        

 (67) 

Now the induction hypothesis can be applied for 

1 1L
N

 
 
 

 and 2 2L
N

 
 
 

 If 1 1 0
L

N
   

 
, then the 

theorem’s thesis follows directly.  
Otherwise, from Lemma 3 we have 

1 1 2 2 1 2 1 1 2 2

1 1 2 2 1 2 1 1 2 2

1 1 2 2

4

1 1 2 2

4

max 1

max 1 7

6

L L L L L L L L

L L L L L L L L

L L
N N

L L

L L L
N

           

           

           
    

                 
                    

 

 

 

 

  
(68) 

what ends the proof.                           ■  

 


