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ABSTRACT

We develop a new method for taking into account the interference contributions to proton-proton inelastic cross-section
within the framework of the simplest multi-peripheral model based on the self-interacting scalar ¢; field theory, using
Laplace’s method for calculation of each interference contribution. We do not know any works that adopted the inter-
ference contributions for inelastic processes. This is due to the generally adopted assumption that the main contribution
to the integrals expressing the cross section makes multi-Regge domains with its characteristic strong ordering of secon-
dary particles by rapidity. However, in this work, we find what kind of space domains makes a major contribution to the
integral and these space domains are not multi-Regge. We demonstrated that because these interference contributions
are significant, so they cannot be limited by a small part of them. With the help of the approximate replacement the sum
of a huge number of these contributions by the integral were calculated partial cross sections for such numbers of secon-
dary particles for which direct calculation would be impossible. The offered model qualitative agrees with experimental

dependence of total scattering cross-section on energy s with a characteristic minimum in the range Js =10 GeV.
However, quantitative agreement was not achieved; we assume that due to the fact that we have examined the simplest

diagrams of ¢’ theory.

Keywords: Inelastic Scattering Cross-Section; Total Scattering Cross-Section; Laplace Method; Virtuality;
Multi-Peripheral Model; Regge Theory

1. Introduction ure 2 the interference contributions. Approximate calcu-
lation of their sum is the purpose of this paper.

At present time the inelastic scattering processes are con-
sidered without the interference contributions [3,4]. This
due to the generally adopted assumption that the main
contribution to the integrals expressing an inelastic proces-
ses makes multi-Regge domains [3-6] with its characte-
ristic strong ordering of secondary particles by rapidity.
This means that the rapidity of neighboring particles on the
“comb” should be different from each other by a large value.
Thus the amplitude of the right-hand and left-hand parts
of the diagram on Figure 2 for different orders of connect-
ing lines would be significantly different from zero to
almost non-overlapping regions of phase space and integ-
ral of their product would be a small quantity.

However, as it was shown in [1] near the threshold of
"Corresponding author. the n particles production at the maximum point of the

This paper is the sequel to [1,2], where to calculate proton-
proton scattering partial cross-sections within the frame-
work of multi-peripheral model the Laplace method was
applied.

The inelastic scattering amplitude with production of a
specified multiplicity of secondary particles, in framework
of the multi-peripheral model can be represented as a sum
of diagrams demonstrated on Figure 1.

To calculate the partial cross-section o, is necessary
to evaluate an integral of the squared modulus of a sum
of contributions shown in Figure 1. After simple trans-
formations [2], the expression for the partial cross-sec-
tion can be represented as a sum of “cut” diagrams in
Figure 2. We call summands entering into the sum Fig-
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Figure 1. Diagram representation of an inelastic scattering
amplitude when the n secondary particles are formed. Here
P; and P, are the four-momenta of primary particles be-
fore scattering; P; and P, are the four-momenta of primary
particles after scattering; p,, p, .-, p,, are the four-

momenta of secondary particles. Symbol z denote a

P(ipiz,+in)

sum over all permutations of indices i; = 1, i, =2, -+, iy =

n. Plotting of diagrams of the “comb” type.

Figure 2. Representation of the partial cross-section as a
sum of “cut” diagrams. The order of joining of lines with
four-momenta py from the left-hand side of the cut is as
following: the line with p, is joined to the first vertex, the
lines with p, is joined to the second vertex, etc. The order of
joining of lines from the right side of cut corresponds to one
of the n! possible permutations of the set of numbers 1, 2,
-=«, N. Where ﬁj(k), k =1, 2, ---,n denote the number

into which a number Kk goes due to permutation }5j . An

integration is performed over the four-momenta p, for all
“cut lines” taking into account the energy-momentum con-
servation law and mass shell condition for each of py.

scattering amplitude Figure 1 difference between neigh-
boring particle’s of rapidities is close to zero and at
higher energies increases logarithmically with energy
\/% growth. This difference has factor 1/(n + 1), so for
high numbers of secondary particles it increases slowly
with energy. Moreover, even if each of interference terms is
insignificant, all of them are positive and a huge amount
n! of them not only makes it impossible to discard them,
but also leads to the conclusion that the contribution of a
“ladder” diagram Figure 2, which is usually only taken
into account, is negligibly small compared with the sum of
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the remaining interference terms. This was shown in [2].
For the relatively small number of secondary particles
(n <8) we are able to calculate all the interference con-
tributions in the direct way without any approximations.

Further in this paper we will demonstrate method for
approximate calculation of the sum of the interference
contributions for large numbers of secondary particles,
when direct numerical calculation is not feasible.

2. Method Description

Using the Laplace’s method we have found [1,2] the me-
chanism of partial cross-section growth, which was not
taken into account in the previously known variants of
multi-peripheral model. This mechanism may be respon-
sible for the experimentally observed increase of hadron-
hadron total cross-section. However, in this approach
based on the Laplace’s method, it was found out that the
calculation of partial cross-sections in the multi-periph-
eral model can be limited just to contributions from the
“cut ladder diagram”. Because for any number of the
secondary particles » there is the wide range of energies

s, where such contribution is negligibly small com-
pared. Because for any number of the secondary particles
n there is the wide range of energies«/g , where such
contribution is negligibly small compared to the sum of »!
positive interference contributions. At the same time, as
we will demonstrated further, the allowance for the in-
terference contributions results in the appearance of mul-
tipliers in expression for the partial cross-section, which
are decrease with the energy Js rise (see below Equa-
tion (7)). Thereupon the question arises: “Will the sum of
partial cross-sections increase with energy rise if we take
interference summands into account?

As shown in [1], each term in sum shown in Figure 1
with accuracy up to the fixed factor is a function with real
and positive values, which has a constrained maximum if
its arguments satisfy the mass-shell conditions and en-
ergy-momentum conservation law. Therefore, in the c.m.s.
of initial particles function corresponding to the left-hand
part of cut diagram in Figure 2 can be rewritten in the
neighborhood of maximum point in the form [1,2].

A(E) = (X Oerp -3 (-2 B(¥-5)| )

where X is the column composed of 3n + 2 indepen-
dent variables, on which the scattering amplitude depends
after consideration of mass-shell conditions and energy-
momentum conservation law; the first » components of
column are the rapidities of secondary particles; the next
n components are the x components of transversal mo-
menta of secondary particles (it is supposed that the re-
ference system is chosen so that z-axis is directed in the
line of the three-dimensional momentum P; of initial
particle in Figure 1), the y-components of secondary par-
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ticle transversal momenta and the two last variables are
the antisymmetric combinations of particle transversal
momenta P; and Py, i.e.,

1

X3n+1 :E(}%L’C _R‘ix)
1

X3n+2 :E(P3Ly _Pcuy)

We denote the column of the values of variables in a

maximum point through X and a matrix with the ele-

ments.
o .
P ="5x x, (ln(A(X)))

a=12,--3n+2; b=12,---3n+2 3)

2

1=x©
where

are the coefficients of the Taylor series expansion of am-

plitude logarithm in the neighborhood of maximum point.

As it was shown in [1], if we do our computations in the
c.m.s. of initial particles, the maximum is reached when
transversal momenta is zero and secondary particle rapi-
dities are close to numbers that formed an arithmetic pro-
gression.

If we denote the difference of this progression through
Ay(n,s) and the value of particle’s rapidity to which the
line attached to the k-th vertex of diagram in Figure 1
corresponds, through

Ap(nfs) =3 =2, k=120m-1 (4)
we get [1]:

A =("k (). k=120 )

The form of the function Ay(n,\/; ) has been dis-
cussed in [1]. For further consideration, it is important
that it is a slowly increasing function on s and decreasing
function on the number n of the secondary particles and
vanishes when s is equal to the threshold of n particle
production. Thus, the column X contains only the
first nonzero n rapidity components, which are defined
by Equation (5).

The following expression corresponds to the right-hand
part of cut diagram in Figure 2:

P (4(%))= A()‘(@)
xexp[_%(ﬁjf(_ 20 b(b k- m)) ®

The interference contribution corresponding to whole
“cut” diagram, which correlates with the j-th summand in
Figure 2, is proportional to an integral of the product of
functions Equation (1) and Equation (6) over all variables.
Denoting an interference summand corresponding to the
permutation f’/ through o (13/) and calculating its
Gaussian integral (at the same time, other multipliers be-
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sides the squared modulus of scattering amplitude in an
integrand are approximately replaced by their values at
the maximum point [2]), we get

a Aj)\/(A(X(O))) o(Vs)

det (;(D + i)jTDA}A)j )) (7

A T Af. A
con| (s B85

where we use the following notations:

AR = X0 - B (X)) (8a)
A A A A A\~
pY) = (D—l +1?/TD71F;) (8b)

E,=s -3 ch(x") (8d)

M is the mass of initial particle, which is made di-
mensionless by the mass of secondary particle (it is sup-
posed that the energy s s also made dimensionless by
the mass of the secondary particle).

Note, that here and in the following sections we will
use the “prime” sign in ours notation to indicate that we
use a dimensionless quantity that characterized the depen-
dence of the cross-sections on energy, but not their abso-
lute values.

The value of amplitude at the maximum point A()? ©)
increases with the /s growth due to mechanism of
virtuality reduction [1]. However, the distance AX ﬁ.o)
between maximum points of “cut” diagram also increases
with the /s growth. Therefore, the exponential factor
entering in Equation (7) can decrease with energy growth.
This makes considered above question. How competition
of these two multipliers will result on the dependence of
the sum of partial cross-sections on Js 2

Thus, each interference contribution can be computed
numerically. However due to the huge number of con-
tributions and large number of secondary particles n the
direct numerical calculation of the sum of interference
terms in Figure 2 is impossible. We can avoid this diffi-
culty in the following way. The maximum in the right part

A

of cut diagram in Figure 2 is attained at y _ p-! ( )A((O)) .
J

In other words, a maximum of function, which is associ-
ated with the right-hand part of cut diagram, can be ob-
tained from a maximum of function, which maps with
the left-hand part of cut diagram, by the rearrangement of
arguments. Then the value of each interference contribu-
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tion is determined by the distance between points of ma-
ximum in the right-hand and left-hand part of cut dia-
gram as well as by the relative position of these maxi-
mum points, since in different directions contributions to
scattering amplitude fall off with distance from point of
maximum, in general, with different rate, and also by the
relative position of proper directions of the matrices D
and IA)ITDAISJ In other words, multiplying Gaussian func-
tions corresponding to the right-hand and to the left-hand
part of interference diagrams in Figure 2 each time we
will obtain as a result Gaussian function, which has the
proper value at the maximum point (which we call the
“height” of the maximum) and the proper multidimen-
sional volume cutout by resulting Gaussian function from
an integration domain (which we call the “width” of the
maximum).

We assume that summands in Figure 2 are arranged in
ascending order of the distance between the maximum
points in the right-hand part and left-hand part of cut dia-
gram (we denote this distance through ») so that “cut”
diagram with the initial attachment of lines to the right-
hand part of diagram corresponds to j = 1. In other words,
the line of secondary particle with the four-momentum p;
is attached to the i-th top in the right-hand part of cut
diagram in Figure 2. As follows from Equation (7), the
interference contributions exponentially decrease with
the 7% growth. However, in spite of this the interference
contributions do not become negligible due to their huge
number, which, as discussed below, are increases very
rapidly with 7% growth. The value of 7 is proportional to

the square of magnitude Ay(n,\/g ) , which, as was noted

above, is zero on the threshold of n particle production
and slowly increases with distance from this threshold.
Therefore, for each number # there is the fairly wide range
of energies close to the threshold, in which the sharpness
of decrease of the interference contributions with the 7>
increase is small in the sense that it is less important fac-
tor than the increase in their number. At such energies,
which we call “low”, the partial cross-section o is de-
termined by the sum of huge number of small interfere-
ence contributions. When the magnitude

Ay(n,\/g ) is increased with the further growth of energy

\/;, the decrease rate of interference contributions in-
creases, while the growth rate of their number with the
increase does not change with energy. At such energies,
which we call “high”, the main contribution to the partial
cross-section is made by the relatively small number of
interference terms corresponding to the small 7, which
can be calculated by Equation (7). If we compose the
n-dimensional vector (we denote it through Yy 9 from
the particle rapidities Equation (5), which constrainedly
maximizes the function associated with the diagram with
the initial arrangement of momenta in Figure 2, vectors
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maximizing the functions with another momentum ar-
rangement will differ from the initial vector only by the
permutation of components, i.e., these vectors have the
same length. Consider two such n-dimensional vectors,
one of which corresponds to the initial arrangement, and
another to some permutation, then in the n-dimensional
space it is possible to “pull on” a two-dimensional plane
on them (as a set of their various linear combinations),
where two-dimensional geometry takes place. Therefore,
the distance » will be determined by cosine of an angle
between the considered equal on length n-dimensional
rapidity vectors in the two dimensional plane, “pulled”
on them. An angle corresponding to the P, permutation
we designate through 6,, 0<6, <.

Thus, each of the terms in the sum Figure 2 can be
uniquely matched to its angle ;. At the same time the
variable z =cos(#) is more handy for consideration than
an angled, Using Equation (5), can be shown that the
variable z can take discrete set of values:

12 /
(n—l)n(n+l) )

z,=1-

Note that although the relation Equation (5) for the
rapidities of secondary particles is satisfied with high ac-
curacy at the maximum point, it is still approximate. This
means that those contributions, to which matched one and
the same value of variable z in Equation (5), in fact,
matched a slightly different from each other values of z.

Consequently, to such contributions correspond a simi-
lar but unequal to each other distances between maxi-
mum points in a “cut” diagram. In addition, this distance,
as was discussed above, is not a unique factor affecting to
the value of interference contribution. Therefore, if each
interference contribution is associated with the value of
variable z by the approximation Equation (5), it appears, that
the different values of interference contributions corres-
pond to the one and the same value of z, (see Figure 3).

Thus, while each contribution is associated to some
value of variable z in the approximation Equation (5), the
value of contribution is not the unique function of z.
However, the sum expressing the partial cross-section
o, can be written in the following way

SoaN|[ZE | 0)

par AN,

where AN, the number of summands to which the value
z, =z, is corresponds in the approximation Equation (5).
The average value of all interference contributions in
Equation (10) is already the unique function of z.
Therefore, we introduce notation
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n=8, /S =100 GeV
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Figure 3. The interference contributions dependence on z, at Js =100 GeV: (a) n=28; (b) N =9. Here and in subsequent

3n+23n+2

figures the interference contributions divided by the common multiplier exp( D z x Dab Xé")j are indicated on the y-axis.

Obviously, that to the one value of z, correspond a lot of different contributions, as well as that the average values of the

logarithms of these contributions are placed approximately on a straight line (see below Equation (25) and Figure 4).

Y a(5)
e ( 11
AN (o1(2)) (1)
where <o-)§ (z )> is some function, whose form at “low”
energies can be determined from the following conside-
rations.

For any multiplicity n» when the values of parameter /
in Equation (9) are small and when number of corre-
sponding interference contributions is relatively small,
we can directly calculate these elements and their sum. De-
note the maximum value /, for which all interference con-
tributions are calculated through /y. In particular, in this
paper we managed to calculate the interference contribu-
tions up to /y = 6. Partial cross-section can be written as

(n—1)n(n+1)
6

(12)
where 0'() is the sum of contributions sufficient at
“high” energies, and o ') is the sum of contributions
sufficient at “low” energies. Thus, the difficulties in the
calculations of the huge number of interference contribu-
tions mainly relates to the range of “low” energies and can
be reduced to the approximate calculation of <o;; (z )>
and AN, .

3. The Approximate Calculation of <0'r'] (z, )>

As follows from Equation (7), the exponential factor exerts
the most significant effect on the dependence of <G,; (z )>
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on z;. Note that the expression A)?;O) ' pY )A)?;O) en-
tering into the exponent in Equation (7) depends only
on those matrix D" components, which are at the in-
tersection of the first » rows and first » columns, since all
column A)Aff.o) components starting with n+1 are zero,
because they are the particle momentum transverse com-
ponents at the maximum point. If we denote the matrix
composed of elements located at the intersection of the
first n rows and first n columns of the matrix D/
through Df’ ) and a matrix, which is obtained from the

matrix D in analogy, through Dy, we have

A() A Ara el

D\ =(B,'+P/D,'P,) (13)

The matrices D and F3 D P have one and the

same eigenvalues, but they correspond to different ei-

genvectors. We denote the normalized to unit eigenvector
corresponding to the minimal eigenvalue of matrix

D,'+P'D,'P, through (,, and the cigenvalue itself

—through A, . . This implies
AT A-lp AT BTA-IB N
ﬂ’min = umin Dy umin + umin Pj Dy J ~'min (14)

is equal
r D;lﬁ for the

—1A
unit vectors U, the magnitude 07 Dy a..

Since the minimum eigenvalue of matrix D;l
to the minimum values of quadratic form #
is not less-

than the minimum eigenvalue of matrix D}_] . By analogy
the magnitude G pr D 'P.0_ is not less than the mi-

min = j J ~min
nimum eigenvalue of matrix Pj D; ! P, , which coincides
and is reci-

with the minimal eigenvalue of matrix D; !
procal of the maximum eigenvalue of matrix D, de-
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noted through o™ . Thus, A, 2%

min max
y

. From this it fol-

lows that, the maximum eigenvalue of matrix

-1 srA-g V! max
(D_v +P, D] Pj) does not exceed d ;" /Z.By analogy
we obtain that the minimum eigenvalue of matrix

A AmoA 1A\l . .
(D}f1 +P'D} P/.) is no smaller than d}™ / 2, where d)™
is the minimum eigenvalue of matrix Iﬁy . Thus, an inte-
rval enclosing the eigenvalues of matrix Iﬁﬁj ) is, at least,
twice smaller than an interval enclosing the eigenvalues
of matrix D, . We can demonstrate that at approxima-

tion of an equal denominators [1] the value of d™ can

be estimated in the following way
dy = 2 (15)

Ay(n,\/;)
2

45h? +1

i.e., an interval enclosing the eigenvalues of matrix Bv)
at any energies and number of particles is less than unity,
whereas at the considerable values of Ay gn,\/; ) , Le. at
a distance from the threshold, this interval is much less
than unity.

Therefore, if we reduce matrix DY) to diagonal form,
it will be close to a matrix multiple of unit matrix. If we
represent this matrix in the form

3 Lo (BU)E +ADY
DY —;Sp(Dy’ )E +ADY (16)

where E _1s unit matrix, the eigenvalues of the traceless
matrix AD;" ) will be small. Then

J J

%( AR )T DOAKO % sp(0)

where Adi’,z are the eigenvalues of matrix ADY), V,,

)
is the transformation matrix to the basis composed from
the eigenvectors of matrix Af)ij ), (the summation over
repeated indices is supposed). The second term in this
sum is small in comparison with the first one due to the

smallness of eigenvalues Adﬁ’,z as well as due to their

different signs (since the trace of matrix A[A)f;/ ) s Zero,
the different terms over k partially compensate each other).
Therefore, we can adopt the following approximation:

%( AR )T BUIAKY ~ %Sp( '55‘"))‘)’(0)‘2 (1-cos(6,)) (18)

J
To approximately calculate the trace of matrix Alj)(,j )

we select the spherically symmetric part of matrix Iﬁy
representing it in the form

Copyright © 2012 SciRes.

D, =%Sp(|5y)é+A|5y (19)

The results of numeral calculation of the eigenvalues
of matrix I5y (which are denoted through d'"), k=1,

2,---,n) are shown in Table 1. It is obvious that most
eigenvalues are close between themselves with the ex-
ception of a few eigenvalues, which are substantially
smaller. Therefore, these smallest eigenvalues have the
highest absolute value of deviations from mean eigenvalue

%Sp( Iﬁy) . Since all the eigenvalues of matrix ES), are po-

sitive, which means that their deviation from average value
is less than this average in absolute value (see Table 1).
Note that the matrix [A)ij ) can be represented in the fol-
lowing form:

A A - AD
DY =2isp(Dy) B+
n 1

Lsp(D,)
4 A ) (20)
. AD,+P'AD P, . P'AD /P,
, L ot
26,(D 16,(D
nSp(Dy) nSp(Dy)
by analogy we can conclude that the minimum eigenva-
lue of matrix
A AP A A
AD, +P AD P, (21)
(which is maximum in absolute value, see Table 1) is
greater than the doubled minimum eigenvalue of matrix
Alﬁy. This means that all the eigenvalues of matrix
AD,+PTAD,P,
2 A
25 |
! : : AD
applies equally to the eigenvalues of matrices

are less than unity in absolute value. It

)

.. AD, . %Sp(f)y)

and P, 1—yﬂP/ Therefore, we can represent the

15p(D,)

< DV ion i .

matrix Dy’ as the expansion in powers of To oy
n ;Sp(Dy)

is traceless by definition, then

AD

y

Since matrix T -
Lsp (5,)
a nonzero contribution to Sp(D},) in addition to the term

term of “zero” order %Sp(lﬁy ) E can give terms star-
n

ting with the second-order. As it follows from Table 1,
the maximum in absolute value eigenvalue of matrix
AD,
Lsp(B,)
we can expect that at “low” energies higher-order terms
will make negligibly small contributions. In such an ap-

increases with the energy growth. Therefore,
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n=20
Vs =10 GeV s =300 Gev Js =10 Tev
d}"—lSp[D(‘)J diy);lgp[[)m] di»);lgp{[)m |
d(y) n d(J‘) n d(“) n U
k 1 A ) k 1 A k 1 Al
*SP(D" J *SP(D")J ,SP[D(J)]
n n n
1.317 -0.417 0.181 —0.864 0.064 —0.928
3.078 0.352 0.551 -0.586 0.227 —0.746
3.006 0.321 0.878 -0.34 0.421 -0.527
1.883 -0.173 1.099 -0.174 0.604 -0.321
2.53 0.111 1.238 0.342 0.745 -0.163
2.527 0.11 1.785 0.342 0.849 -0.047
2.401 0.055 1.785 -0.07 1.26 0.415
2.399 0.054 1.324 -0.005 1.26 0.415
2.061 -0.094 1.38 0.037 0.92 0.033
2.312 0.016 1.416 0.064 0.967 0.087
2.311 0.015 1.441 0.083 1.001 0.124
2.124 -0.067 1.573 0.183 1.022 0.147
2.248 -0.012 1.573 0.183 1.037 0.164
2.247 -0.013 1.458 0.096 1.046 0.175
2.152 -0.055 1.47 0.105 1.053 0.183
2.161 —0.05 1.478 0.111 1.06 0.19
2.203 -0.032 1.485 0.116 1.065 0.196
2.203 -0.032 1.483 0.115 1.057 0.188
2.174 -0.045 1.504 0.131 1.075 0.207
2.174 —0.045 1.504 0.131 1.075 0.207
n=10
Js =10 Gev Vs =300 Gev Vs =10 Tev
dﬁ‘)—lSp[D(‘)] d:nflgp[[)( \')] dinflgp{[)ww
d}f}) n d(v“) n d()) n /
~ k A k A
lsp( DmJ lsp( DmJ lsp( Dm}
n n \ n \
0.955 -0.457 0.147 -0.809 0.037 -0.901
2.124 0.207 0.435 -0.433 0.13 —0.65
2.121 0.205 0.665 -0.133 0.242 -0.351
1.529 —0.131 0.794 0.036 0.34 —0.087
1.707 -0.03 0.855 0.115 0.412 0.107
1.77 0.006 0.882 0.15 0.46 0.236
1.805 0.026 0.893 0.164 0.503 0.352
1.891 0.075 1.052 0.372 0.489 0.313

Copyright © 2012 SciRes.

JMP



136 I. SHARF ET AL.

proximation we have:
Sp(ﬁij)) z%Sp(f)y) (22)

Let Equation (7) is taken in place of Equation (11) in
approximation Equation (22), then we have

(o0 (1)) = (4( 2 )) o(+5)
‘y(") ? Sp(f)y)
- 2n

(1-z)| . @3

X exp

9 1 1
AN, - =, \/det(%(ﬁ+13ff)13j))

Let us introduce the following notation

— 1 -
R o)

25 T T [T T [T T T[T T T [T T T T[T T T[T T T T T[T T T T[T TTT7T

24

n=8, S =10 GeV

20

In<c, (z)>

-
o
LANLL L LL L  L L B

RN R NN RN N o VW

o Do b b b b B b b e B
10 -08 -06 -04 -02 0.0 0.2 04 0.6 0.8

-
=]

Z
(a)

60 T TTT T[T T T[T T[T T T[T T T T [T T [ TI T TroTT

n=38, /S =100 GeV
50
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If we assume that multiplier <w(zl )> is weakly de-
pendent on z,, we obtain

‘y(‘” : Sp(f)y)

<0',: (z, )) = <0','l (z,(J )>exp —

(Z] -z, ) (25)

where z, s the minimum value of z, for which can be
numerically calculated all interference contributions. There-

fore, the magnitude <o;'1 (z,o )> can be directly calcula-

ted numerically. The results of numerical calculation of

1n(<0,'1 (z ))) over all interference contributions in com-

parison with the results obtained by Equation (24) are de-
monstrated on Figure 4, it follows that such an approxi-
mation is acceptable at “low” energies.

Results shown in Figure 4 confirm also our assump-
tion that <w(z, )> weakly depends on z,. To analyze this
dependence we turn to Figure 5. It is obvious, that the
magnitude <w(z, )> takes small values at “low” energies.

25 T T T T T T T T T T T T T T T T T T T T [T T T T[T T[T oY

n=9, /s =10 GeV
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Figure 4. Two results of ln<6;1 (z, )> evolution by it a direct numerical calculation with consideration of all interference con-

tributions (circles) and by it approximation Equation (24) (straight line) at n =8, Js =10 GeV (a); n=9, Js =10 GeV (b);

n=8, s =100 GeV (c); N =9, /s =100 GeV (d).
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Figure 5. The values of <W(zI )> obtained by direct calculation values Equation (24) for all interference contributions for n =8

and N = 9 at/s = 10 GeV (a), (e) accordingly; for the same number n, but at Js = 100 GeV (¢), (g) and the ratio
(w(z)))/(w(z,)) forn=8and n=9 at /s =10 GeV (b), (f); /s =100 GeV (d), (h).

This means that

det(1(B+ 7705 (26)
takes large values at the same energies. Indeed, as it fol-
lows from the expression for the matrix D, Equation
(26) tends to infinity on the threshold of n particle pro-
duction, and this means that at threshold the volume of
phase space with n particles production in the inelastic
process is equal to zero.

Because of symmetry with respect to direction inver-
sion in a plane of transversal momenta the mixed second
derivatives with respect to rapidities and transversal mo-
mentum components are zeros. As a consequence, the de-
terminant Equation (26) is equal to the product of the
three determinants, first of which is composed from sec-
ond derivatives with respect to rapidities, the second is
composed from the second derivatives with respect to the
transversal momentum x-components and the third one is
composed from derivatives with respect to the transversal
momentum y-components. All the three factors tend to in-
finity at the threshold energy. As it follows from a nu-
merical calculation, a matrix determinant composed from
the second derivatives with respect to rapidities reduced
quite rapidly with energy growth. Matrix determinants
composed from the second derivatives with respect to
transversal momentum components also reduced, but in a

Copyright © 2012 SciRes.

wide energy range, they remain quite large. Therefore, the
value of Equation (26) is great at all ;. Since the func-
tion 1/ Jx varies slightly at the great values of argu-
ment, the function (w(z, )> weakly depends on z,.

To estimate roughly the function <w(z, )> we can re-
place it by the Taylor expansion taking into account just
linear contributions. The expansion coefficients are found
by the calculating of <w(zl )> for z, close to 1 and (—1).
In these cases the values of

1
Jaet(L(D+ 2708

were obtained directly for all proper interference contri-
butions, and after that we obtain the values of (w(z,))
by averaging using Equation (24).

The values in Figure 5 have been obtained by the di-
rect calculation of

@7n

1
AN,

1
1({AL DPTAD
\/det(E(DHDj DP/.))
with consideration of all interference contributions at

different /s .
So, we have the following expression instead of Equa-
tion (25)

2

zj=z

(28
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<0,', (z )> = <O',; (Zz(, )>(w0 +w, (l—zl))

(O)ZSp(ﬁy)

‘ y (29)
2n

X eXp z,=z,

where the coefficients w, and w, are found by above
mentioned method.

4. Approximate Calculation of the AN,
Values

Let us turn to the new variables

Yk(o) _ y/(cO)

n+ 1) n (n - 1)

A n,\/; \/(
Y ( ) 12

are determined by Equation (5), Yk(o), k=1,

2,---,n are considered as the components of vector y(© ,

which, as it follows from Equation (30) is of unit length.

Thus, the angle 6, between the vector

(30)

where y,(co)

y =( 0 50 . y,(,o)) and vector ﬁ;l(y(o))obtained
by the permutation of corresponding components is the
same as the angle between the vector
YO = (K(O),Yz(o),“-,Y,,(o)) and vector P’ (Y (0)). More-
over, as it follows from Equation (5)

yl(O) = ,(10)’)’9)) :_yy(,(i)p"'ay]((()) :_yf,(i)]ﬁ.];

k=12,---,n

G

It follows that all vectors 13;1 (Y (O)) are orthogonal to
vector

e, =| 1/Nn1/\n, - 1/\n (32)
n components
Therefore, considering vectors }31.’1 Y () as the ele-

ments of n-dimensional Euclidean space, which we de
note through £ , then the ends of all vectors 13].71 (Y (0))

n

are lie on the unit sphere embedded into the (n—1)-di-
mensional subspace of E, . We denote this sphere through
S, and shape formed by the set of points in which the

n

ends of vectors 13]_*‘ (Y (0)) (j=1,2,---,n!) come, denote

through F, . In particular, when n=4 the sphere S,
and figure F,, graphically look like in Figure 6.

We examine some geometrical properties of figure F,
at arbitrary n. If we apply the permutation transformation
component to all vectors in the n-dimensional space,
where the vectors Y'© are primordially defined, the exa-
mined (n —1) -dimensional subspace as well as a sphere
S, and figure F,, go into themselves. As it follows

n

Copyright © 2012 SciRes.
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from the group properties of permutation group, the each
point of figure F, can be obtained from any other point
by some transformation ﬁj" . This means that the confi-
guration of the points of figure F, relative to each of
these points must be identical, that can be clearly seen in
Figure 7(a).

Figure 6. A sphere S, and figure F,, which is demonstrated
by points. Basis in the four-dimensional space is chosen so
that the one of vectors coincides with the vector

2222

sional subspace, into which depicted sphere is embedded,
are perpendicular to e,.

er(,,,,,’,j and the three basis vectors of three-dimen-

Figure 7. The partition of sphere S, by shortest arcs joining
the points of figure F, into the two “hexagonal” and one
“tetragonal” regions (a); (b) areas, which is located on the
borders of 4 or 6 points belonging to figure F4 can be di-
vided between those points into figures of equal area; (c)
whole sphere S, is divided into figures of equal area, each of
which contains the one point of figure F; one of these
shapes are painted in white.
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As it follows from Equation (31), besides the end of each
vector P! (Y (0)) a figure F, contains also the end of

vector (_13]_*1 (y ) )) ,i.e,afigure F, has a center of sym-

metry, which coincides with the center of sphere S, _,.
In this case, if we using point of F,, form path from the

point P’ (Y (0))t0 the point (—f’j’l(Y (0))), then it will
be simultaneously formed a centro-symmetrical path, that
leads from (—131.’1 (Y (0))) to P (Y(U)) of figure F,,.

Joining these paths we will obtain the closed path, which
“girdles” the sphere S,_, . If we assume that there is such
a “girdling” path, inside of which are concentrated all
points of figure F,,, we would find that the figure F,,
has a “boundary” and “internal” points, that would con-
tradict the fact that spacing of all points relative to each
point of the F, should be the same. In other words, the
points of figure F, must “crawl away” all over the sphere
S, and cannot be concentrated on some area of the
sphere. "

If we consider a vector Y , then closest to it are the
vectors corresponding to permutations 131‘], =12,

n—1 defined by the following relation

YO if k<1
© g
A [ (0) Y./ ,if k=1
0] =1 o)
YO k=141

YO if k>1+1

The type of “cut” diagrams corresponding to such per-
mutations is shown on Figure 8. At the same time, all the

- (
components of vector Pj’1 (Y 0))—Y(O), except the I-th

and / + 1, are zero, whereas these two components take
12

(n+1)n(n-1)

on the least values in modulus and

(— m} , respectively.

Thus, we can conclude that the each point of figure
F, has (n —1) nearest neighboring points, which lying
at distance of from it:

L 24
"\t (1) 4

n!

nearest neighbors’ points by shortest arc thereby we di-
vide the sphere S, , into closed regions as is shown in
Figure 7(a). Indeed, let us choose the some point 4, of
figure F, and will move from it to the nearest point 4,
along a shortest arc, then we move from the point 4, to
the nearest point 4, etc. At the same time, motion in a

Connecting the each point of figure F,, with its (n - 1)

Copyright © 2012 SciRes.

backward direction is prohibited. Thus, there are (n—1)
paths going out from each point, and (n—2) paths are
allowed at each step. But since figure F, has the finite
number of points at some step we will surely come back
to the point 4.

Moreover, since shortest arcs joining two nearest points
are subtended by equal chords r, in length (see Equa-
tion (34)), this arcs are of the same length. Let us con-
sider any two neighboring points 4, and A4, of figure

F,. Under any transformation 13].’l the shortest arc, which

joins the points 4 and A,,, and an arc joining the

points ﬁj](A,) and ISj’I(AM)are of the same length.

This means that the boundaries of closed regions formed
by shortest arcs, which join neighboring points, replaced

into one another under any transformation 13]_—1_ It fol-

lows that, if we examine closed areas which include any
point of figure F,, then the adjacent areas to all points
of this figure will have the same “area”.

There is one more requirement, to which the areas ob-
tained by partition of the sphere S, , must satisfy: they
must not overlap, i.e., these regions do not have common
internal points. Indeed, otherwise, at least any two of the
examined arcs would intersect in some internal point of
these arcs. As it follows from Equation (34), when # is
large the value of r, is small. This means that when we
join the each point of figure F, with its nearest neigh-
bors by the shortest arcs of sphere §,_,, these arcs prac-
tically coincide with chords, which tights them.

If we assume, that any two chords 4, 4, ,, and

A, A ., intersect in an internal point, then it is possible
i “ 7y

“to pull” on them a two-dimensional plane. Then we get
a flat rectangle 4, 4, 4, ,,4, ,,, which has at least one an-

iy “T 1T+
gle no smaller than 90°. This means that square of dia-
gonal lying opposite it is not less than sum of squares of the
parties that make up the corner. Denoting the lengths of

these sides through a and b, we have @’ +b° <7’ . In

P,\ / P,

I
I
I
I
P, . Py
1 | 1
P, K P,
2 I p | p,, | 2
H o > 5 L
I >< I
p P
I+1 41 | ! I+1
P2 I P>
/+2I | 1+2
I
I
n p" 1 'Dﬂ I n
I
/\ |
P; P, 1P P,

Figure 8. Diagrams, which correspond (n — 1) vectors If’J" (Y“'))
closes to vector Y.
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this case, either a or b would not exceed rf, / V2 , Le.,
the figure F, contains points, which are at distance less
then 7, but that cannot happen due to minimality of this
distance.

Thus, we can conclude that at an arbitrary »n a sphere
S, can be divided into the parts of equal area, each of
which contains only one point of figure F,, as it shown
in Figures 7(b), (c).

Let us introduce a multidimensional spherical coordi-

nate system so that the end of vector Y v is the “north
pole” of sphere S, ,. Then the number of points of fig-
ure F, to which the values of variable z=cos(d) in
the interval [z,z+dz] correspond, is equal

dN(z,dz) = p(z)dz (35
where
T n-=1 et
p(z) :%M(l_zz )T (36)

n—2
r(3?)
I' is the Euler gamma function.

To verify the validity of Equation (35) we can calcu-

LR L L L L L R

AN
-
Az
_ dN(zz+dz)
dz

5x10*

AN/Az

4x10*

3x10*
2x10*

1x10°

v v b by by 1

0
-1.0 -08 -06 -04
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late all interference contributions and corresponding val-
ues of z at n = 8 and n =9 (since for the larger number of
particles this cannot be realized). The distributions of
interference contribution from the variable z =cos(6) and
dN (z, z+ dz)
dz
tion (35) are shown in Figure 9. Obtained results of nu-
merical calculation of interference contributions and by
Equation (35) are in a good agreement.

Moreover, as it follows from Figure 9(b) and from
Figure 9(c) this fitness is improved with increasing
number of particles n, i.e., Equation (35) is suitable for
large n, when the direct numerical calculation of all in-
terference contributions is impossible.

Taking Equation (35) and Equation (9) into account
we obtain the following the approximate equality

the graphs of function p(z) = from Equa-

AN, = p(21—1)AZ 37
where
12
Ao 12 (38)
(n=1)n(n+1)
[ e R R R R AR RS REAN AN RRRES
N 7= G
~ Az ]
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Figure 9. Comparison distribution of the interference contribution by the variable z :cos(0) (histogram) and function

p(2) 0

~AN(@2,2+d2) ol tine) at (a) n=8, Az =0.1;(b)n=9, Az=0.1; (c)n=9, Az=0.05. Here AN is the number of

interference contributions corresponding to value of z in the proper interval of Az width.
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Verification results of Equation (37) atn =8 and n =9
are presented in Figure 10.
Another verification of considered above equations is

presented in Figure 11, where the values of Z o (ISJ)
2=z
and approximating magnitudes ( (Zz )> ,o(zH )Az (here
<Un (z, )> is calculated by Equation (29)) are compared.
From results demonstrated on Figure 4 and Figures
10-12, we can conclude that the at least for those num-
bers of particles for which it can be directly tested Equa-
tion (12) with Equation (29), Equations (35)-(37) yields
an acceptable approximation. As is obvious from Figure
4, than closer energy to the threshold of n particle pro-
duction, the better approximation Equation (29). Therefore,
if we choose the range of low energies, for example, up to
100 GeV, because in this range total cross-section growth
is observed, it is expected that the considered approxima-
tions will be acceptable for the large numbers of particles
than those for which they were tested. In addition, as it
follows from Figures 10(b-d), the accuracy of approxi-
mation Equation (37), as expected, increases with the
growth of n. Thus, within the framework of examined ap-
proximations is possible to calculate the interference
contributions at sufficiently large n, and we can consider
the dependence of total inelastic cross-section on energy
Js in the simplest case of multi-peripheral model tak-
ing into account all significant interference contributions.

ok b b b b e b 1 el
-1.0 -08 -06 -04 -02 00 02 04 06 08 1.0

Ol o), 01l | o Jm

Liiy

1 L . h
-1.0 -0.8 06 -0.4 02 00 02 04 0.6 08 10
4

(©)

5. The Model of Dependence of Hadron
Inelastic Scattering Total

Cross-Section on Energy Js

Let us consider the magnitude
()= S xe(F) o)

which within the framework of the discussed above mo-
del is an analogue of total inelastic scattering cross-sec-
tion. Here n,_, is the maximum number of secondary
particles allowed by energy-momentum conservation law
and L is the dimensionless coupling constant, which we
considered as a fitting parameter (see Equation (32) [2]).
Since the calculation of o, upto n=n_, takesalong
time, so in practice we restrict the upper bound of sum-
mation by those values of n, beyond which the neglected
contributions known to be smaller than the experimental
error of cross-section measurements.

The constant L can be fitted so that the dependence

o'’* (\/E ) looks like the behavior of total hadron-hadron

scattering cross-section with a minimum about Js =10
GeV. The result of such a fitting is shown in Figure 13
(in that calculations we take proton mass as mass of pri-
mary particles and pion mass as mass of secondary parti-
cles).
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Figure 10. Comparison of the values of right-hand side and left-hand side of approximate equality Equation (37) at n =8 (a, b)

and n =9 (c, d). Circles are the values of AN,
the values of function p(z,_)Az from Equation (35).
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Figure 13. Theoretical dependences of the 5" (\/g ) (a) and 5= (\/g ) (c) obtained for the energy range Vs =1/100 Gev at

L = 5.51. First minimum for the total cross-section can be obtained only when we take into account contributions from the
high multiplicities. Experimental data for the inelastic (b) and for the total (d) pp scattering cross-section Reference [7,8]
presented for qualitative comparison with the prediction from our model. Note: data-points for the inelastic cross-section,
obtained from the definition o, o,

inel — Ftotal ~ aelaslic M
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