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ABSTRACT 

We develop a new method for taking into account the interference contributions to proton-proton inelastic cross-section 
within the framework of the simplest multi-peripheral model based on the self-interacting scalar φ3 field theory, using 
Laplace’s method for calculation of each interference contribution. We do not know any works that adopted the inter- 
ference contributions for inelastic processes. This is due to the generally adopted assumption that the main contribution 
to the integrals expressing the cross section makes multi-Regge domains with its characteristic strong ordering of secon- 
dary particles by rapidity. However, in this work, we find what kind of space domains makes a major contribution to the 
integral and these space domains are not multi-Regge. We demonstrated that because these interference contributions 
are significant, so they cannot be limited by a small part of them. With the help of the approximate replacement the sum 
of a huge number of these contributions by the integral were calculated partial cross sections for such numbers of secon- 
dary particles for which direct calculation would be impossible. The offered model qualitative agrees with experimental 

dependence of total scattering cross-section on energy s with a characteristic minimum in the range s  ≈ 10 GeV. 
However, quantitative agreement was not achieved; we assume that due to the fact that we have examined the simplest 

diagrams of 3  theory. 

 
Keywords: Inelastic Scattering Cross-Section; Total Scattering Cross-Section; Laplace Method; Virtuality; 
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1. Introduction 

This paper is the sequel to [1,2], where to calculate proton- 
proton scattering partial cross-sections within the frame- 
work of multi-peripheral model the Laplace method was 
applied. 

The inelastic scattering amplitude with production of a 
specified multiplicity of secondary particles, in framework 
of the multi-peripheral model can be represented as a sum 
of diagrams demonstrated on Figure 1. 

To calculate the partial cross-section n  is necessary 
to evaluate an integral of the squared modulus of a sum 
of contributions shown in Figure 1. After simple trans-
formations [2], the expression for the partial cross-sec- 
tion can be represented as a sum of “cut” diagrams in 
Figure 2. We call summands entering into the sum Fig- 

ure 2 the interference contributions. Approximate calcu- 
lation of their sum is the purpose of this paper. 

At present time the inelastic scattering processes are con- 
sidered without the interference contributions [3,4]. This 
due to the generally adopted assumption that the main 
contribution to the integrals expressing an inelastic proces- 
ses makes multi-Regge domains [3-6] with its characte- 
ristic strong ordering of secondary particles by rapidity. 
This means that the rapidity of neighboring particles on the 
“comb” should be different from each other by a large value. 
Thus the amplitude of the right-hand and left-hand parts 
of the diagram on Figure 2 for different orders of connect- 
ing lines would be significantly different from zero to 
almost non-overlapping regions of phase space and integ- 
ral of their product would be a small quantity. 

However, as it was shown in [1] near the threshold of 
the  particles production at the maximum point of the n*Corresponding author. 
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Figure 1. Diagram representation of an inelastic scattering 
amplitude when the n secondary particles are formed. Here 
P1 and P2 are the four-momenta of primary particles be- 
fore scattering; P3 and P4 are the four-momenta of primary 
particles after scattering; 

1
,ip

2
, ,ip ,

ni
p  are the four- 

momenta of secondary particles. Symbol  denote a 

sum over all permutations of indices i1 = 1, i2 = 2,  in = 
n. Plotting of diagrams of the “comb” type. 
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Figure 2. Representation of the partial cross-section as a 
sum of “cut” diagrams. The order of joining of lines with 
four-momenta pk from the left-hand side of the cut is as 
following: the line with p1 is joined to the first vertex, the 
lines with p2 is joined to the second vertex, etc. The order of 
joining of lines from the right side of cut corresponds to one 
of the n! possible permutations of the set of numbers 1, 2, 

 n. Where , ˆ
j ( )P k , k = 1, 2,  n denote the number 

into which a number k goes due to permutation 

,

ˆ
jP . An 

integration is performed over the four-momenta pk for all 
“cut lines” taking into account the energy-momentum con- 
servation law and mass shell condition for each of pk. 

 
scattering amplitude Figure 1 difference between neigh- 
boring particle’s of rapidities is close to zero and at 
higher energies increases logarithmically with energy 

s  growth. This difference has factor 1/(n + 1), so for 
high numbers of secondary particles it increases slowly 
with energy. Moreover, even if each of interference terms is 
insignificant, all of them are positive and a huge amount 
n! of them not only makes it impossible to discard them, 
but also leads to the conclusion that the contribution of a 
“ladder” diagram Figure 2, which is usually only taken 
into account, is negligibly small compared with the sum of 

the remaining interference terms. This was shown in [2]. 
For the relatively small number of secondary particles 
( n 8 ) we are able to calculate all the interference con-
tributions in the direct way without any approximations. 

Further in this paper we will demonstrate method for 
approximate calculation of the sum of the interference 
contributions for large numbers of secondary particles, 
when direct numerical calculation is not feasible. 

2. Method Description 

Using the Laplace’s method we have found [1,2] the me- 
chanism of partial cross-section growth, which was not 
taken into account in the previously known variants of 
multi-peripheral model. This mechanism may be respon- 
sible for the experimentally observed increase of hadron- 
hadron total cross-section. However, in this approach 
based on the Laplace’s method, it was found out that the 
calculation of partial cross-sections in the multi-periph- 
eral model can be limited just to contributions from the 
“cut ladder diagram”. Because for any number of the 
secondary particles n there is the wide range of energies 

s , where such contribution is negligibly small com- 
pared. Because for any number of the secondary particles 
n there is the wide range of energies s , where such 
contribution is negligibly small compared to the sum of n! 
positive interference contributions. At the same time, as 
we will demonstrated further, the allowance for the in- 
terference contributions results in the appearance of mul- 
tipliers in expression for the partial cross-section, which 
are decrease with the energy s  rise (see below Equa- 
tion (7)). Thereupon the question arises: “Will the sum of 
partial cross-sections increase with energy rise if we take 
interference summands into account? 

As shown in [1], each term in sum shown in Figure 1 
with accuracy up to the fixed factor is a function with real 
and positive values, which has a constrained maximum if 
its arguments satisfy the mass-shell conditions and en- 
ergy-momentum conservation law. Therefore, in the c.m.s. 
of initial particles function corresponding to the left-hand 
part of cut diagram in Figure 2 can be rewritten in the 
neighborhood of maximum point in the form [1,2]. 

          0 0 01ˆ ˆ ˆ ˆ ˆ ˆ ˆexp
2

T

A X A X X X D X X
     
 

ˆ

 (1) 

where X  is the column composed of 3n + 2 indepen- 
dent variables, on which the scattering amplitude depends 
after consideration of mass-shell conditions and energy- 
momentum conservation law; the first n components of 
column are the rapidities of secondary particles; the next 
n components are the x components of transversal mo-
menta of secondary particles (it is supposed that the re- 
ference system is chosen so that z-axis is directed in the 
line of the three-dimensional momentum P1 of initial 
particle in Figure 1), the y-components of secondary par- 
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ticle transversal momenta and the two last variables are 
the antisymmetric combinations of particle transversal 
momenta P3 and P4, i.e., 

 

 

3 4

3 4

n x x

n y y

X P P

X P P

  

  

 

 

 0ˆ

3 1

3 2

1

2
1

2

  

We denote the column of the values of variables in a 

maximum point through X and a matrix with the ele- 
ments. 

   
 0ˆ ˆ

ˆ

X X

A X


1,2, ,3 2b n 

 ,

2

lnab
a b

D
X X


 

 
     (2) 

where 
1,2, ,3 2;   a n      (3) 

are the coefficients of the Taylor series expansion of am- 
plitude logarithm in the neighborhood of maximum point. 
As it was shown in [1], if we do our computations in the 
c.m.s. of initial particles, the maximum is reached when 
transversal momenta is zero and secondary particle rapi- 
dities are close to numbers that formed an arithmetic pro- 
gression. 

If we denote the difference of this progression through 
y n s  and the value of particle’s rapidity to which the 

line attached to the k-th vertex of diagram in Figure 1 
corresponds, through 

     0 0
1, ,    k ky n s y y k   1,2, , 1n    (4) 

we get [1]: 

   0 1
, ,   

2k

n
 1,2, ,y k y n s

    
 

k n   (5) 

The form of the function  ,y n s

 0ˆ

  has been dis- 
cussed in [1]. For further consideration, it is important 
that it is a slowly increasing function on s and decreasing 
function on the number n of the secondary particles and 
vanishes when s is equal to the threshold of n particle 
production. Thus, the column X  contains only the 
first nonzero n rapidity components, which are defined 
by Equation (5). 

The following expression corresponds to the right-hand 
part of cut diagram in Figure 2: 

    
  

0ˆ ˆ ˆ( )

1 ˆ ˆ ˆ                    exp
2

j

T

P A X A X

P X X D



  


  0 0ˆ ˆ ˆ ˆ
j jP X X  



 (6) 

The interference contribution corresponding to whole 
“cut” diagram, which correlates with the j-th summand in 
Figure 2, is proportional to an integral of the product of 
functions Equation (1) and Equation (6) over all variables. 
Denoting an interference summand corresponding to the 
permutation ˆ

jP  through  ˆ
n jP 

ussian in  the same time, other multipliers be-

   

 and calculating its 

sides the squared modulus of scattering amplitude in an 
integrand are approximately replaced by their values at 
the maximum point [2]), we get 

 

Ga tegral (at

   
 

      0 0

ˆ
ˆ

1 ˆ ˆ ˆ ˆdet
2

1 ˆ ˆ ˆ               exp
2

n j
T
j j

T
j

j j

A X s
P

D P DP

X D X


  

  
 

         

    (7) 

where we use the following notations: 

2
0

    0 00 1ˆ ˆ ˆ ˆX X P X          j j            (8a) 

   1 1ˆ ˆ ˆ ˆ ˆj T
j jD D P D P

                    (8b) 
1

 
2

2

1 1

2
24

2 2
s P P

s
E E

s M M

 
       
   

  (8c) 

  0

1

ch
n

P k
k

E s y


                     (8d) 

M  is the mass of initial particle, which is made di- 
mensionless by the mass of secondary particle (it is sup- 
posed that the energy s  is also made dimensionless by 
the mass of the second  particle). 

Note, that here and in the follow
ary

ing sections we will 
us

of amplitude at the maximum point 

e the “prime” sign in ours notation to indicate that we 
use a dimensionless quantity that characterized the depen- 
dence of the cross-sections on energy, but not their abso- 
lute values. 

The value   ˆA X  
in

0

creases with the s  growth due to mecha
virtuality reduction  However, the distance  0ˆ

nism of 
[1]. jX  

between maximum points of “cut” diagram also inc  
with the 

reases
s  growth. Therefore, the exponential factor 

entering in quation (7) can decrease with energy growth. 
This makes considered above question. How competition 
of these two multipliers will result on the dependence of 
the sum of partial cross-sections on 

 E

s ? 
Thus, each interference contributi can beon  computed 

numerically. However due to the huge number of con- 
tributions and large number of secondary particles n the 
direct numerical calculation of the sum of interference 
terms in Figure 2 is impossible. We can avoid this diffi- 
culty in the following way. The maximum in the right part 
of cut diagram in Figure 2 is attained at   01ˆ ˆ ˆ

jX P X . 

In other words, a maximum of function, w - hich is associ

 

ated with the right-hand part of cut diagram, can be ob- 
tained from a maximum of function, which maps with 
the left-hand part of cut diagram, by the rearrangement of 
arguments. Then the value of each interference contribu- 
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tion is determined by the distance between points of ma- 
ximum in the right-hand and left-hand part of cut dia- 
gram as well as by the relative position of these maxi- 
mum points, since in different directions contributions to 
scattering amplitude fall off with distance from point of 
maximum, in general, with different rate, and also by the 
relative position of proper directions of the matrices D̂  
and ˆ ˆ ˆT

j jP DP . In other words, multiplying Gaussian fun - 
tions ponding to the right-hand and to the left-hand 
part of interference diagrams in Figure 2 each time we 
will obtain as a result Gaussian function, which has the 
proper value at the maximum point (which we call the 
“height” of the maximum) and the proper multidimen- 
sional volume cutout by resulting Gaussian function from 
an integration domain (which we call the “width” of the 
maximum). 

We assum

c
 corres

e that summands in Figure 2 are arranged in 
ascending order of the distance between the maximum 
points in the right-hand part and left-hand part of cut dia- 
gram (we denote this distance through r) so that “cut” 
diagram with the initial attachment of lines to the right- 
hand part of diagram corresponds to j = 1. In other words, 
the line of secondary particle with the four-momentum pi 
is attached to the i-th top in the right-hand part of cut 
diagram in Figure 2. As follows from Equation (7), the 
interference contributions exponentially decrease with 
the r2 growth. However, in spite of this the interference 
contributions do not become negligible due to their huge 
number, which, as discussed below, are increases very 
rapidly with r2 growth. The value of r2 is proportional to 

the square of magnitude  ,y n s , which, as was noted 

above, is zero on the threshold article production 
and slowly increases with distance from this threshold. 

of n p

Therefore, for each number n there is the fairly wide range 
of energies close to the threshold, in which the sharpness 
of decrease of the interference contributions with the r2 
increase is small in the sense that it is less important fac-
tor than the increase in their number. At such energies, 
which we call “low”, the partial cross-section n   is de- 
termined by the sum of huge number of small interfere- 
ence contributions. When the magnitude  

 ,y n s  is increased with the further growth of energy 

s , the 
creases, wh
incr

gram

decrease rate of interference contributions in- 
ile the growth rate of their number with the r2 

ease does not change with energy. At such energies, 
which we call “high”, the main contribution to the partial 
cross-section is made by the relatively small number of 
interference terms corresponding to the small r2, which 
can be calculated by Equation (7). If we compose the 
n-dimensional vector (we denote it through  0y  from 
the particle rapidities Equation (5), which constrainedly 
maximizes the function associated with the dia  with 
the initial arrangement of momenta in Figure 2, vectors  

maximizing the functions with another momentum ar- 
rangement will differ from the initial vector only by the 
permutation of components, i.e., these vectors have the 
same length. Consider two such n-dimensional vectors, 
one of which corresponds to the initial arrangement, and 
another to some permutation, then in the n-dimensional 
space it is possible to “pull on” a two-dimensional plane 
on them (as a set of their various linear combinations), 
where two-dimensional geometry takes place. Therefore, 
the distance r will be determined by cosine of an angle 
between the considered equal on length n-dimensional 
rapidity vectors in the two dimensional plane, “pulled”  

on them. An angle corresponding to the ˆ
jP  permutation  

we designate through j , 0 πj  . 
Thus, each of the terms in the sum F ure 2 can be ig

uniquely matched to its angle j . A he same time the 
va

t t
riable  cosz   is more handy for consideration than 

an angle j  Using Equation (5 can be shown that the 
variable iscrete set of values: 

   

), 
z can take d

12
1

1 1lz l
n n n

 
 

   1 1
0,1, ,

6

n n n
l

 
 

         (9) 

Note that although the relation Equation (5) for the 
rapidities of secondary particles is satisfied with high ac- 
cu

 

 
va

racy at the maximum point, it is still approximate. This 
means that those contributions, to which matched one and 
the same value of variable z in Equation (5), in fact, 
matched a slightly different from each other values of z. 

Consequently, to such contributions correspond a simi- 
lar but unequal to each other distances between maxi-
mum points in a “cut” diagram. In addition, this distance, 
as was discussed above, is not a unique factor affecting to 
the value of interference contribution. Therefore, if each 
interference contribution is associated with the value of 
variable z by the approximation Equation (5), it appears, that 
the different values of interference contributions corres- 
pond to the one and the same value of lz  (see Figure 3). 

Thus, while each contribution is associated to some 
value of variable z in the approximation Equation (5), the

lue of contribution is not the unique function of z. 
However, the sum expressing the partial cross-section 

n   can be written in the following way 

    1 1

6

ˆ
j l

n n n

z z

P 



 





0

n j

n l
l l

N
N





   

  
 

     (10) 

where lN  the number of summands to which the value 
j lz z  is corresponds in the approximation Equation (5). 

erag
Equatio
Therefore, we introduce notation 

The av e value of all interference contributions in 
n (10) is already the unique function of lz . 
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n = 8, s = 100 GeV 
 

    

n = 9, s = 100 GeV 

 
       (a)                                                             (b) 

Figure 3. The interference contributions dependence on lz  at s  = 100 GeV: (a) n = 8; (b) n = 9. H
3 2 3 2n n 

ere and in subsequen

 

 as well as th

logarithms of these contributions are plac w Equation (25) and Figure 4). 

t 

figures the interference contributions divided by the common mu lier    D X  
 

0 0

1 1
exp a ab ba b

X
 

 are indicated on the y-axis. 

Obviously, that to the one value of lz  correspond a lot of different contri at the average values of the 

 

 

ltip

butions,

 on a straight line (see beloed approximately

on lz . Note that the expression       00ˆ ˆ ˆ
T

j
j jX X D  en- 

tering into the exponent in Equation (7) depends only 
ˆ

n jP 
 

SciRes.    

j lz z

n l
l

z
N


 


          (11) 

where  
on those matrix  ˆ jD  components, which are at the in- 
tersection of the first n rows and fi s, since  
colu n  0ˆ

rst n column  all
m jX  components starti zero, 

because they are the particle momentum transverse com- 

n lz   is some function, who
energies can be determined from the following conside- 

ion (9) are small and when number of corre- 
sp

 

se form at “low” 
ng with 1n   are 

xim

ws a

rations. 
For any multiplicity n when the values of parameter l 

in Equat

ponents at the ma um point. If we denote the matrix 
composed of elements located at the intersection of the 
first n ro nd first n columns of the matrix  ˆ jD  onding interference contributions is relatively small, 

we can directly calculate these elements and their sum. De- 
note the maximum value l, for which all interference con- 
tributions are calculated through l0. In particular, in this 
paper we managed to calculate the interference contribu- 
tions up to l0 = 6. Partial cross-section can be written as 

     
   

through  ˆ j
yD  and a matrix, which is obtained from the 

matrix D̂  in analogy, through ˆ
yD , we have 

    1
1 1ˆ ˆ ˆ ˆ ˆj T

y y j y j

  D D P D P           ) 

The m trices 1ˆ

(13

a y
D  and 1ˆ ˆ ˆT

j

0

0

1 1

6
ˆ

n n n

h l

 

  ; 1
0,1,
j l

n n n n j l n l
z z l l

l l

P N z    
  



         


(12) 

where  h
n

y

fferent ei- 
genvectors. We denote the normalized to
corresponding to the minimal eigenvalue 
ˆ

j
P D P  have one and the 

same eigenvalues, but they correspond to di
 unit eigenvector 
of matrix 

1 1ˆ ˆ ˆT
y j y j
 D P D P  thr ugh minû he eigenvalue itself 

—through min

o  and t

 . This implies 

1 1
min min min min min

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆT T T
y j y j   u D u u P D P u    (

   is the sum of contributions sufficien
“high” energies, and  l

t at 

n   is the sum of contribu

 num

tions 14) 

 min
sufficie “low” energies. Thus, the difficulties in the 
calculations of the huge ber of interference contribu- 
tions mainly relates to the range of “low” energies and can 
be reduced to the approximate calculation of 

nt at 

 n lz   
and lN . 

3. T p

Since the imum eigenvalue of matrix 1ˆ
y
D  is equal 

to the minim  values of quadrum atic form 1ˆˆ ˆT
yu uD  for the 

unit vectors û , the magnitude 1
min min

ˆˆ ˆT
y
u D u  is 

th

not less- 

an the minimum eigenvalue of matrix 1ˆ
y
D . By

a 1ˆ ˆ

 analogy 
the magnitude 1

min min
ˆ ˆ ˆˆ ˆT T

j y j
u P D P u  is not less than the mi-  n lzhe A proximate Calculation of   

actor exerts
the most significant effect on the dependence of  

nimum eigenv lue of matrix ˆ T
j y jD P , wh

1ˆ

P ich coincides 
As follows from Equation (7), the exponential f  

n lz   
with the minimal eigenvalue of matrix y

D  and is reci- 
procal of the maximum eigenvalue of m ˆ

yD  de-  atrix 
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noted through max
yd . Thus, max

2
dmin

y
  . From this it fol-  

lows that, the maximum eigen atrix value of m

  1
1 1ˆ ˆ ˆ ˆT

 
y j y jD P D P  does not exceed ma  x 2yd . By alogy an

the m  eigenvalue 
1

D P D P

we obtain that inimum of matrix 

 1 1ˆ ˆ ˆ ˆT 
y j y j  is no smaller than min min2y , whd ere yd  

inimum eigenvalue of mais the m trix ˆ
yD . Thus, an inte- 

rval enclosing the e ˆigenvalues of matrix j
yD  is, at least, 

twice smaller than an interval enclosing the eigenvalues 
of matrix ˆ

yD . W that a ma-
u

e can demonstrate t approxi  
maxtion of an equal denominators [1] the val e of yd  can 

be estimated in the following way 

 
max 2

,
yd

y n s


 
          (15) 

24 1
2

sh   
 
 

i.e., an interval enclosing the eigenvalues matrix  ˆof jD  
at any energies and number of particl
whereas at the consider of 

es is less than unity, 
able values  ,y n s , i.e. at 

a distance from the threshol nterval is much less 
than unity. 

d, this i

Therefore, if we reduce matrix  ˆ jD  to diagonal fo , 
it will be close to a matrix multiple of unit matrix. If we 

rm

represent this matrix in the form 

      1ˆ ˆ ˆ ˆj j jSp  y y yn
D D E D         (16) 

where Ê  is unit matrix, the eigen es of the traceless 
matrix  ˆ

valu
j

yD  will be small. Then 

              
        2
0 0 01
,

1

1 ˆ
2

n

y k kn n j n
k

d y P y



   V

20 0 0 0 01 1ˆ ˆ ˆ 1
2 j j yX D X Sp D

n
   y

  (17) 

where  
,

cos j
T

j
y kd  are the eigenval  ˆ ,ues of matrix j

yD knV  

is the transformation matrix to the basis composed from 

the eigenve atrix  ˆ ,ctors of m j
yD  (the summation over 

repeated ind upposed). The second term 
small due to the

ices is s in this 
sum is in comparison with the first one  

 smallness of eigenvalues ,
j

y kd  as well as due to their 

ce  ˆdifferent signs (since the tra matrix  of j
yD  is zero, 

the different terms over k partially compensate each other). 
Therefore, we can adopt the following approximation: 

              2
0 0 01 1ˆ ˆ ˆ 1 cos

T
j j

j j jX X Sp
n

   D D y (18) ˆ
y2

To approximately calculate the trace of matrix  ˆ j
yD  

we select the spherically symmetric part of matrix ˆ
yD  

representing it in the form 

1ˆ ˆ ˆ ˆD y ySp
ny   D E D            

values

(19) 

The results of numeral calculation of the eigen  

of matrix ˆ
yD  (which are denoted through   ,y

kd  k 1,  

2, ,n ) are shown in Table 1. It is obvious that most 
eigenvalues are close between themse
ception of a few eigenvalues, which
sm

lves with the ex- 
 are substantially 

aller. Therefore, these smallest eigenvalues have the 
highest absolute value of deviations from mean eigenvalue 

 1 ˆSp ˆ
yD . Si  nce all the eigenvalues of matrix yD  ar  

n
e po-

sitive, which means that their deviation from average value 
is less than this average in absolute value (see Table 1). 
Note that the matrix  ˆ j

yD  can be represented in the fol-

lowing form: 

   

   

( ) 1ˆ

ˆ
ˆ

2 1ˆ ˆ

j

T T
1

ˆ ˆ ˆ ˆ ˆ ˆ
ˆ

ˆ
ˆ ˆ y

1 ˆ2y y

y

y j y j j y j

y y

P
E

Sp Sp
n n

        
   

D D

by analogy we can conclude that the minimum eigenva- 
lue of matrix 

ˆ ˆ ˆ ˆT

Sp
n Sp

n

   
 

D D E
D

(20) 

P P P


      
D D D

E

  D

y j y jP P  D D                     

(which is maximum in absolute value, see Table 1) is 
greater than the doubled minimum eigenvalue of matrix 

(21) 

ˆ
yD . This means that all the eigenvalues of matrix 

ˆ ˆ ˆ ˆT

2 ˆ
y j yP P D D j

Sp D
 are less th

y
n

  
 

applies equally to the eigenvalues of matrices 

an unity in absolute value. It 

 
ˆ

1 ˆ
y

ySp
n

D

D
 

and 
 
ˆ

ˆ ˆyT
j 1 ˆ j

Sp
n

matrix  ˆ

yD
P P

D
. Therefore, we can represent the 

ˆ
j

yD  as the expansion in powers of 
 1 ˆ

y

Sp
n

D

Dy

. 

Since matrix 
 
ˆ

y

1 ˆ
y

D

DSp
n

 is traceless by definition, then 

a nonzero contribution to  D̂Sp  in addition to the term y

term of “zero” order  1 ˆ ˆ
ySp

2n
D E  can give -  terms star

ting with the second-order. As it follows from Table 1, 
the maximum in absolute value eigenvalue of matrix 

ˆ

 1 ˆ
y

ySp
n

D

D
 increases with ergy growth. Therefore,  the en

“low” energiwe can expect that at es higher-order terms 
will make negligibly small contributions. In such an ap- 
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Table 1. Results of numerical calcula ns of the eigenvalues of matrix ˆ
yD . 

 n 20

10 GeVs   300 GeVs   10  TeVs 

 y

kd  

   

 

1 ˆ

1 ˆ

y
k

y

d Sp
n

Sp D
n

 
 
  
 

 yD 
 
  
    y

kd  

  

 

1 ˆ

1 ˆ

y
k

y

d Sp
n

Sp D
n

 
 
  
 

 

 yD 
 
  
 


 y

kd  

 

 

1 ˆ

1 ˆ

y y
k

y

d Sp D
n

Sp D
n

 
 
  
 

 
 
  
 


 

1.317 –0.417 0.181 –0.864 0.064 –0.928 

3.078 0.352 0.551 –0.586 0.227 –0.746 

2.401 0.055 

–0.005 1.26 

1.441 

1.485 

0.188 

3.006 0.321 0.878 –0.34 0.421 –0.527 

1.883 –0.173 1.099 –0.174 0.604 –0.321 

2.53 0.111 1.238 0.342 0.745 –0.163 

2.527 0.11 1.785 0.342 0.849 –0.047 

1.785 –0.07 1.26 0.415 

2.399 0.054 1.324 0.415 

2.061 –0.094 1.38 0.037 0.92 0.033 

2.312 0.016 1.416 0.064 0.967 0.087 

2.311 0.015 0.083 1.001 0.124 

2.124 –0.067 1.573 0.183 1.022 0.147 

2.248 –0.012 1.573 0.183 1.037 0.164 

2.247 –0.013 1.458 0.096 1.046 0.175 

2.152 –0.055 1.47 0.105 1.053 0.183 

2.161 –0.05 1.478 0.111 1.06 0.19 

2.203 –0.032 0.116 1.065 0.196 

2.203 –0.032 1.483 0.115 1.057 

2.174 –0.045 1.504 0.131 1.075 0.207 

2.174 –0.045 1.504 0.131 1.075 0.207 

 

10n  

10 GeVs   300 GeVs  10 TeVs    

 y

kd  

   

 

1 ˆ

1 ˆ

y
k

y

d Sp
n

Sp D
n

 
 
  
 


 

yD 
 
  
   y

kd  

  

 

1 ˆ

1 ˆ

y
k

y

d Sp
n

Sp D
n

 
 
  
 

 

 yD 
 
  
 


 y

kd  

 

 

1 ˆ

1 ˆ

y y
k

y

d Sp D
n

Sp D
n

 
 
  
 

 
 
  
 


 

0.955 –0.457 0.147 –0.809 0.037 –0.901 

2.124 0.207 0.435 –0.433 0.13 –0.65 

–0.087 

1.891 0.075 1.052 0.372 0.489 0.313 

2.121 0.205 0.665 –0.133 0.242 –0.351 

1.529 –0.131 0.794 0.036 0.34 

1.707 –0.03 0.855 0.115 0.412 0.107 

1.77 0.006 0.882 0.15 0.46 0.236 

1.805 0.026 0.893 0.164 0.503 0.352 
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pro e have: ximation w

    1ˆ ˆ
2

j
y ySp SpD D                 (22) 

Let Equation (7) is taken in place of Equation (11) in 
n (22), then we have 

     

approximation Equatio

       
   

 

  

2
0ˆ

2

1 1

1 ˆ ˆ ˆ ˆdet
2

j l

n l

Tz zl
j j

z A X

n

N D P DP





 



 
 


 



,   (23) 

Let us introduce the following notation 

20 ˆ
exp 1

y

l

Sp
z

 
   

y D

s

 
 

1 1

ˆ ˆ ˆ ˆT
j jD P DP  

 

.      (24) 

e assume that   

1
det

2
j l

l
z zl

w z
N 


 

If w  multiplier lw z de-
p t on lz , we obtain 

 

 is weakly 
enden

  

   0 0

20 ˆ
exp

2

y

n l n l l l

Sp
z z z z

n
    

 
 

y D
 (25) 

where 
0lz  is the minimum value of lz  for which can

numerically calculated all interference contributions. There

he m

 
 

 be 

- 

fore, t agnitude 0n lz  can be directly calcu

ted numerically. The results of numerical calculation of 

 

 la- 

 ln n lz   over all interference contributions in com- 

parison with the results obtained by Equation (24) are de- 
monstrated on Figure 4, it follows that such an approxi-
mation is acceptable at “low” energies. 

Results shown in Figure 4 confirm also our assump-
tion that  lw z  weakly depends on lz . To analyze this 
dependence we turn to Figure 5. It is obvious, that the
m

 
agnitude  lw z  takes small values at “low” energies. 

 

n = 8, s = 10 GeV 

n 
(z

l)>
 

zl     

n = 9, s = 10 GeV 

n 
(z

l)>
 

zl  
(a)                                                              (b) 

n = 8, s = 100 GeV 

n 
(z

l)>
 

zl     

s = 100 GeV n = 9, 

n 
(z

l)>
 

zl  
(c)                                                             (d) 

Figure 4. Two results of  ln σn lz evolution by it a direct numerical calculation with consideration of all interference con-

tributions (circles) and by it approximation Equation (24) (straight line) at n = 8, s = 10 GeV (a); n = 9, s = 10 GeV (b); 

n = 8, s = 100 GeV (c); n = 9, s = 100 GeV (d). 
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 n = 8, s = 10 GeV 

  

n = 8, s = 10 GeV

  

 n = 8, s = 100 GeV

  

 n = 8, s = 100 GeV

 
(a)                           (b)                             (c)                           (d) 

 n = 9, s = 10 GeV 

  

 n = 9, s = 10 GeV

  

 n = 9, s = 100 GeV

 

 n = 9, s = 100 GeV

 
(e)                           (f)                             (g)                           (h) 

Figure 5. es of  The valu ( )lw z obtained by direct calculation values Equation (24) for all interference contributions for n = 8 

n = 10 GeV (a), (e) accordingly; for the same num , but at ber nand = 9 at s s = 100 GeV (c), (g) and the ratio 

( ) ( )0l w z for n n = 9 at w z = 8 and s V (b), (f); = 10 Ge s , (h). 

 
This means that 

= 100 GeV (d)

 det
2 j jP PD D            (26) 

takes large values at the same energies. Indeed, as it fol- 
lows from the expression for the matrix ˆ

 1 ˆ ˆ ˆ ˆT

D , Equation 
(26) tends to infinity on the hold of n particle pro- 
duction, and this means that at threshold the volume of 
phase space with n particles production in the inelastic 
process is equal to zero. 

Because of symmetry with respect to direction inver-
sion in a plane of transversal m nta the mixed second 
derivatives with respect t
mentum comp

6) is e

ond derivative
composed from with respect to the 

entum x-components and the third one is 
 respect to the transversal 

momentum y-components. All the three
finity at the threshold energy. As it f

wide energy range, they rem  quite large. Therefore, th  
ce the func- 

tion 

 thres

ome
o rapidities and transversal mo- 

onents are zeros. As a consequence, the de- 
terminant Equation (2 qual to the product of the 
three determinants, first of which is composed from sec- 

s with respect to rapidities, the second is 
 the second derivatives 

transversal mom
composed from derivatives with

 factors tend to in- 
ollows from a nu- 

merical calculation, a matrix determinant composed from 
the second derivatives with respect to rapidities reduced 
quite rapidly with energy growth. Matrix determinants 
composed from the second derivatives with respect to 
transversal momentum components also reduced, but in a 

ain e
value of Equation (26) is great at all j . Sin

x1  varies slightly at the great values of argu- 
ment, the function  lw z  weakly depends on lz . 

To estimate roughly the function  lw z  we can re- 
place it by the Taylor expansion taking into account just 
linear contributions. The expansion coefficients are found 
by the calculating of  lw z  for lz  close to 1 and (−1). 
In these cases the values of 

  
1

1 ˆ ˆ ˆ ˆdet T
j jD P DP

           (27) 

at 

2


were obtained directly for all proper interference contri-
butions, and after th we obtain the values of  lw z  
by averaging using E ation (24). 

The values in F
qu

igure 5 have been obtained by the di-
rect calculation of 

  
1 1

1 ˆ ˆ ˆ ˆdet
2

j l Tz zl
j j

N D P DP 

with consideration of all interference contributions at 

different 

     (28) 

s . 
So, we have the following expression instead of Equa- 

tion (25) 
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      
     

0

0

0 1

20

1

ˆ
exp

2

n l n l l

y

l l

z z w w z

Sp D
z z

n

    

 
   
 
 

y  (29) 

where the coefficients 0w  and 1w  are found by above 
mentioned method. 

4. Approximate Calculation of the lN  

Values 

Let us turn to the new variables 

 
 

     

0
0 kY 

1
,

12

k
n n n

y n s
1

y

 
   (30) 

d b



where  0
ky  are determine y Equation (5),  0 ,kY  1,k

      

  

2, ,n  are considered as th ponents of vector  0Y , 
which, as it follows from Equation 

e com
(30) is of unit length. 

Th he angle us, t j  between the vec

    0
1 2, , , ny y y or  1ˆ

jP y obtained 

j . More-

ov

1;  1,2, ,k

tor 

 0   0 0y 0  and vect

by the permutation of corresponding components is the 
same as the angle between the vector 

        0 0 0 0
1 2, , , nY Y Y Y and vector  1 (0)P̂ Y  

er, as it follows from Equation (5) 

     0 0 0      0 0 0
1 2 1, , ,   n n k ny y y y y y       k n  

It follows t   01ˆ
jP Y  are orthogonal to 

 (31) 

hat all vectors 
vector 

1 ,1 , ,1n n n n  
 

e             (32) 

 componentsn



 
Therefore, co ors   01ˆ

jP Y  as the ele- 
ments of n-dim lidean space, which we de 

hrough nE , then the en ors 

 


nsidering vect
ensional Euc

note t ds of all vect   0Y  1ˆ
jP

are lie on the unit sphere em to the  1nbedded in  -di- 
mensio bspace of nE . We deno is sphere through 

by

1,2j

nal su te th
t o2nS   and shape formed  the se f points in which the 

ends of vectors 1ˆ
jP   0  (Y  , , !n ) come, denote 

through !nF . In particular, when 4n   th
and figure 4!

e sphere 2S  
F  graphically look like in Figu

We examin
re 6. 

e some etrical proper of figure !n geom ties F  
utation ansformation 

e n ensional space, 
wh vectors  0Y  are primordially ined, the exa- 

i  1 -dimensional subspace well as a sphere 

n figure !n

at arbitrary n. If we apply the perm
component to all vectors in th

tr
-dim

 def
 as 

ere the 
ned n

2  and 
m
S   go into themse As it follows 

from the group properties of permutation 
point of figure !n

lves. 

group, the each 
F  can be obtained from

by some transformation 1ˆ
 any other point 

j
P . This means that the confi- 

guration of the points of figure !nF  relative to each of 
oint arly een in

Figure
these p s must be identical, that can be cle  s  

 7(a). 
 

 

Fi re F4!, wh
ts. Basis in the four-dimensional space is chosen so 

that the one of vectors coincides with the vector 

gure 6. A sphere S2 and figu ich is demonstrated 
by poin

F

= 
 
 

4

1 1 1 1

2 2 2 2
e ，，， and the three basis vec

sional subspace, into which depicted sphere is embedded, 
ar

tors of three-dimen- 

e perpendicular to e4. 
 

     
  (a)                              (b) 

 
(c) 

Figure 7. The partition of sph e S2 by shortest arcs joining 
the points of figure F4! into the two “hexagonal” and one 
“tetragonal” regions (a); (b) areas, which is located on the 
borders of 4 or 6 points belonging to figure F4! can be di-
vided between those points into figures of equal area; (c) 
whole sphere S2 is divided into figures of equal area, each of 
which contains the one point of figure F4! one of these 
shapes are painted in white. 

er
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As it follows from Equation (31), besides the end of each 
1ˆ

jP Y  a figure !nvector   0 F contains also the end of 

vector   0Y1ˆ
jP e., a figure !n, i. F  has a center of sym- 

metry, which coincides with the ce sphere 2nSnter of  . 
In this case, if we ing point of !nus F  form

 
 path from the  

nt  01ˆ
jP Y  poi   to the point  01ˆ

jP Y , then it will 

be simultaneously formed a centro-symmetrical path, that 

  to 1ˆ
jP Y f figure !nleads from    01ˆ

jP Y   0  o F . 

ntrated all 
poi figure 

Joining these paths we will obtain the closed path, which 
“girdles” the sphere 2nS  . If we assume that there is such 
a “girdling” path, inside of which are conce

!nnts of F , we would find that the figure !nF  
ry” and “internal” points, that would con- 

tradict the fact that spacing of all points relative to each 
point of the !n

has nda a “bou

F  should be the same her words, the 
gure !n

. In ot
points of fi F  must “c wl away” all over the sphere 

nnot be concentrated on s e area of the 

If we co  a vector 
 0

Y , then closest to it are the 
vectors co ding to 1, 1,2, ,l

ra

2

sphere. 
nS  and ca om

nsider
rrespon  permutations l̂P    

1n   define e followi

, if   

,  if   

,  if   1

Y k l

Y k l

Y k l





 

      (33) 

The type of “cut” diagrams corresponding to such per- 
mutations is shown on Figure 8. At the same time, all the 

compone
    0 01 Y Y , except the l-th 

and l + 1, are zero, whereas these two components take 

on the least values    

d by th ng relation 

   
 

 

 

0

0

0
11

0

0

ˆ

k

l

k

P







Y
 

l 
,  if   1k

lY k l 


nts of vector ˆ
jP

 in modulus 12
1 1n n n 

 and 

   
12

1 1n n n

 
   

, respectively. 
 

Thus, we can conclude that the each point of figure 

!nF  has  1n   nearest neighboring points, which lying 
at distance of from it: 

   
24

1 1nr n n n


             (34) 

Connecting the each point of figure !nF  with its  1n   
nearest ’ points by ortest arc thereby we di- 
vide the 2  into closed regions as is shown in 
Figure , let us choos he some point A0 of 

neighbors  sh
 sphere nS 

7(a). Indeed e  t
figure !nF  and will move from it to the nearest poi 1 
along a shortest arc, then we move from the point A1 to 
the nearest point A  etc. At the same time, motion in a 

nt A

2

ard direct d. Thus, therbackw ion is prohibite e are  1n   
paths  each point, and 2  paths are going out from n 

!nallowed at each step. But since figure F  has the finite 
number of p  step surely come back oints at some  we will 
to the point A . 

ual 

hb

0

Moreover, since shortest arcs joining two nearest points 
are subtended by eq chords nr  in length (see Equa- 
tion (34)), this arcs are of the same length. Let us con- 
sider any two neig oring points iA  and 1iA   of fig  

!n

ure

F . Under any transformation 1ˆ
jP  the shortest arc, which 

joins the poi ts in A  and 1iA  , and an arc joining the 

points  1ˆ
j iP A d  an  1

1
ˆ

j iP A
 are of the same length. 

 means that the boundaries of closed regions formed 
by short
This

est arcs, which join neighboring points, replaced 

into one another under any transformation 1ˆ
jP . It fol- 

l  that, if we examine closed areas wh  
f figure 

ows ich include any
point o !nF , then the adjacent areas to all points 
of this figure will have the same “area”. 

There is one more requirement, to which the areas ob- 
tained by partition of the sphere 2nS   must 
must not overlap, i.e., these regions do not have 
internal points. Indeed, otherwise, at least any two of the 
examined arcs would intersect in some internal point of 
th

re !n

satisfy: they 
common 

ese arcs. As it follows from Equation (34), when n is 
large the value of nr  is small. This means that when we 

Fjoin the each point of figu  with 
 of sphere 2nS 

s 
1 1 1i i

its nearest neigh- 
bors by the shortest arcs , these arcs prac- 
tically coincide with chords, which tights them. 

If we assume, that any two chord A A   and 

2 2 1i iA A   intersect in an internal point, ble then it is possi
“to pull” on them a l plane. Then we get 
a flat rectangle 

1 2 1 21 1i i i i

two-dimensiona
A A A A  at least one an- 

gl
gon  oppo

e corner. Denoting the lengths of 

these sides through a and b, we have 2 2 2a b r  . In 

 

, which has 

e no smaller than 90˚. This means that square of dia- 
al lying site it is not less than sum of squares of the 

parties that make up th

n

 

Figure 8. Diagrams, w   hich correspond (n – 1) vectors ˆ 01

cl
jP Y  

oses to vector  0Y . 
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this case, either a or b would not exceed 2 2nr , i.e., 
the figure !nF  contains points, which are at distance less 
then nr  but that cannot happen due to minim lity of this 

late all interference contributions and corresponding val- 
er num

is 
e

ues of z at n = 8 and n = 9 (since for the larg ber of 
particles th cannot be realized). The distributions of 
interfer nce contribution from the variable cos( )z   and 

th

a
is

hat
he pa

ontains e p o

d tance. 
 Thus, we can conclude t  at an arbitrary n a sphere 

S  can be div  into t of equal area, each of e graphs of function  

Copyright © 2012 SciRes.                                                                                 

2n ided rts 
which c only on f figure oint !nF , as it shown 
in Figures 7(b), (c). 

Let us introduce a multidimensional spherical coordi- 

nate system so that the end of vector 
 0

Y  is the “north 
pole” of sphere 2nS  . Then the number of points of fig- 
ure !nF  to which the values of variable cos( )z   in 
the interval  , dz z z  correspond, is equal 

   d ,d dN z z z z              (35) 

where 

 
 
   

4
2 2

1
! 2 1

2
2

n
n

n
z z

n





 
 

     (36) 

  is the Euler gamma function. 
To verify the validity of Equation (35) we can calcu- 

d , dN z z z

ibu

w
les 

n ion of all
ntribution

Taking Equation (35) and Equat
we obtain the following the approxim

 1l lN z z 

d
z

z
   from Equa- 

tion (35) are shown in Figure 9. Obtained results of nu- 
merical calculation of interference contr tions and by 
Equation (35) are in a good agreement. 

Moreover, as it follows from Figure 9(b) and from 
Figure 9(c) this fitness is improved ith increasing 
number of partic n, i.e., Equation (35) is suitable for 
large , when the direct numerical calculat  in-
terference co s is impossible. 

ion (9) into account 
ate equality 

                 (37) 

where 

   
12

1
z 

1n n n 
             (38) 

 

    
                          (b) (a)                              

 
(c) 

erence contribution by the variable Figure 9. Comparison distribution of the interf   cosz   (histogram) and function 

  d ( , d )
d

 N z z z
z

z
  (solid line) at (a) n = 8, z  = 0.1; (b) n = 9, z = 0.1; (c) n = 9, z = 0.05. Here 

e of z  in the proper interval of z

N  is the number of 

interference contributions corresponding to valu   width. 
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Verification results of Equation (37) at n = 8 and n = 9 
are presented in Figure 10. 

Another verification of considered above equations is 

presented in Figure 11, where the values of  ˆ
j l

n j
z z

P


  

and approximating magnitudes    1n l lz z z    (here 

 n lz   is calculated by Equation (29)) are compared. 
From results demonstrated on Figure 4 and Figures 

10-12, we can conclude that the at least for those num- 
bers of particles for which it can be directly tested Equa- 
tion (12) with Equation (29), Equations (35)-(37) yields 
an acceptable approximation. As is
4, than closer energy to the 
duction, the better approximation Equation (29). Therefore, 
if we choose the range of low energies, for example, up to 
100 GeV, because in this range total cross-section growth 
is observed, it is expected that the considered approxima- 
tions will be acceptable for the large numbers of particles 
than those for which they were tested. In addition, as it 
follows from Figures 10(b-d), the accuracy of approxi- 
mation Equation (37), as expected, increases with the 
growth of n. Thus, within the framework of examined ap- 
proximations is possible to calculate the interference 
contributions at sufficiently large n, and we can consider 
the dependence of total inelastic cross-section on energy 

 obvious from Figure
threshold of n particle pro- 

 

 in the simplest case of multi-peripheral model tak- 

5. The Model of Dependence of Hadron 
Inelastic Scattering Total 

Cross-Section on Energy s  

Let us consider the magnitude 

s
ing into account all significant interference contributions. 

   max

1

n
n

n
n

s s  



         (39) 

which within the framework of the discussed above mo- 
del is an analogue of total inelastic scattering cross-sec- 
tion. Here maxn  is the maximum number of se dary 

omentum conservat n law 
ling constant, which we 

considered as a fitting parameter (see Equation (32) [2]). 
Since the calculation of n

con
ioparticles allowed by energy-m

and L  is the dimensionless coup

   up to maxn n  takes a long 
time, so in practice we restrict the upper bound of sum- 
mation by those values of n, beyond which the neglected 
contributions known to be smaller than the experimental 
error of cross-section measurements. 

The constant L  can be fitted so that the dependence 

 s   looks like the behavior of total hadron-hadron 

scattering cross-section with a minimum about s =10 
GeV. The result of su  a fitting is shown in Figure 13 
(in that calculations we take proton mass as mass of pri- 
mary particles and pion mass as mass of secondary parti- 

 

ch

cles). 

     
    (a)                                                   (b) 

     
                         (d) 

and side of approximate eq lity Equ ) at n = 8 (a, b) 
onsideration of for all interference contributions; crosses are 

(c)                             

Figure 10. Comparison of the values of right-hand side and lef
and n = 9 (c, d). Circles are the values of lN  calculated with

the values of function 

 

t-h ua ation (37
 c

1lz z  from Equation (35). 
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n = 8, s = 10 GeV 

Zl            

 
n = 8, s = 100 GeV 

Zl  
(a)                                                            (b) 

 
n = 9, s = 10 GeV 

l            

 
n = 9, s = 100 GeV 

Z Zl  
(c)                                                          (d) 

Figure 11. Comparison of the v  ˆ( )P
j l

nalues of jz z
   obtained with consideration of all interference contributions (circles) and 

the approximate values of    1lz z z  (blue crosses) for (  n = 8 at 
n l a) For s = 10 GeV; or n = 8 at (b) F s = 100 GeV; 

r n (c) Fo = 9 at s = 10 GeV; (d) For n = 9 at s = 100 GeV. 
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13
 

 
(c)                                             (d)                           (e) 

Figure 12. The partial cross-section depend  on energy ence s  calculated over all interference contributions (solid line) and by 

Equation (12) with the application of appro ions Equations (29), (35), (37)ximat  (red circles): (a) 
8 s ; (b) 

9 s ; (c) 
10 s ; 

(d) 
11 s ; (e) 

11 s . This approximation  acceptable ange of p in which they are can be verifi .  is  at least in the r edarameters 
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(a)                                                            (b) 

    
(c)                                                            (d) 

Figure 13. Theoretical dependences of the  I s  (a) and   s  (c) obtained for the energy range s = 1/100 Gev

 ob
) a

astic n

 
Quantitative comparison with experimental data re- 

quires the consideration of more realistic model than the 
self-interacting scalar 3

 at 

L = 5.51. First minimum for the total cross-section can be tained only when we take into account contributions from the 
high multiplicities. Experimental data for the inelastic (b nd for the total (d) pp scattering cross-section Reference [7,8] 
presented for qualitative comparison with the prediction from our model. Note: data-points for the inel cross-sectio , 
obtained from t nition inel total elastic    . he defi

  field model. 

From obtained result, one might conclude that the con- 
sidered in [1] mechanism of virtuality reduction at the 
constrained maximum point of multi-peripheral scatter- 
ing amplitude may be responsible for proton-proton total 
cross-section growth when all the considerable interfe- 
rence contributions are taken into account. 

Just the revelation of mec
we consider as the main result of earlier papers [1,2] and 
present work, since this mechanism is intrinsic not only 
to the diagrams of the “comb” type, but also to different 
modifications of considered model. 

Application the Laplace method allows to calculate an- 
other types of diagrams corresponding to various scena- 
rios of hadron-hadron inelastic scattering and compare it 
with experimental data. 
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