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ABSTRACT 

This study tested a novel method designed to provide 
useful information for medical diagnosis and treat- 
ment. We measured electroencephalography (EEG) 
during a test of eye opening and closing, a common 
test in routine EEG examination. This test is mainly 
used for measuring the degree of alpha blocking and 
sensitivity during eyes opening and closing. However, 
because these factors depend on the subject’s aware- 
ness, drowsiness can interfere with accurate diagnosis. 
We sought to determine the optimal EEG frequency 
band and optimal brain region for distinguishing 
healthy individuals from patients suffering from sev- 
eral neurophysiological diseases (including dementia, 
cerebrovascular disorder, schizophrenia, alcoholism, 
and epilepsy) while fully awake, and while in an early 
drowsy state. We tested four groups of subjects (awake 
healthy subjects, drowsy healthy subjects, awake pa- 
tients and drowsy patients). The complexity of EEG 
band frequencies over five lobes in the human brain 
was analyzed using wavelet-based approximate en- 
tropy (ApEn). Two-way analysis of variance tested 
the effects of the two factors of interest (subjects’ 
health state, and subjects’ wakefulness state) on five 
different lobes of the brain during eyes opening and 
closing. The complexity of the theta and delta bands 
over frontal and central regions, respectively, was sig- 
nificantly greater in the healthy state during eyes 
opening. In contrast, patients exhibited increased com- 
plexity of gamma band activity over the temporal 
region only, during eyes-close. The early drowsy state 
and wakefulness state increased the complexity of theta 
band activity over the temporal region only during 
eyes-close and eyes-open states respectively, and this 
change was significantly greater in control subjects 
compared with patients. We propose that this method 
may be useful in routine EEG examination, to aid 
medical doctors and clinicians in distinguishing healthy 

individuals from patients, regardless of whether the 
subject is fully awake or in the early stages of drowsi- 
ness.  
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1. INTRODUCTION 

Eyes opening/closing are a commonly applied test in 
routine EEG examination, which provides valuable in- 
formation in diagnosis. This test is typically used for 
determining the degree of alpha blocking and sensitivity 
by eyes opening and closing. However, these factors are 
affected by the subject’s wakefulness/drowsiness, which 
can make diagnosis problematic. Therefore, a system for 
quantitative evaluation of these states is needed for more 
precise diagnosis. There has been much recent interest in 
developing a reliable system for quantitatively distin- 
guishing the early drowsiness and full wakefulness states 
in a precise manner, which would be useful for a wide 
range of applications. Such systems can be based on neu- 
rophysiological techniques, such as electroencephalogra- 
phy (EEG), which is suitable for capturing the macro- 
scopic spatial temporal dynamics of the electrical active- 
ties of the brain. EEG data are measured with electrodes 
attached to participants’ scalps, stored on a computer, 
then analyzed using various signal processing techniques. 
EEG can contain important information about human 
physiological health, and the functional state of the brain. 
As such, EEG is an effective tool for understanding the 
underlying complex dynamic behaviors of the brain, which 
evolves over time. Non linear dynamics analysis tech- 
niques reflect the complexity of the overall EEG over 
time, and are superior to traditional linear methods such 
as Fourier transform, and power spectral analysis [1]. 
Some studies have used approximate entropy (ApEn) and 
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a range of other non linear parameters, such as correla- 
tion dimension, fractal dimension, and largest Lyapunov 
entropy to estimate non linear properties of EEG signals 
during sleep stages. One study reported that EEG during 
sleep stages exhibited less complexity than EEG signals 
in the awake state, because the cortex becomes less ac- 
tive as the person transitions from one sleep stage to the 
next, until stage IV [2]. However, rapid eye movement 
(REM) was associated with a relatively high level of com- 
plexity, due to increased activation of the brain during 
this stage of sleep [2]. 

Other studies used have discrete wavelet transform 
(DWT) and ApEn to analyze EEG signals to detect epi- 
leptic activity, reporting that epileptic activity was asso- 
ciated with less complexity than healthy brain activity, 
using a single channel of EEG signals [3,4]. Another 
study used ApEn as a tool to analyze regularity in EEG 
signals for Alzheimer’s disease patients, revealing de- 
creased complexity in Alzheimer’s patients, due to neural 
dysfunction [5,6]. ApEn was also used to test the com- 
plexity of EEG signals in schizophrenic subjects, reveal- 
ing that the EEG signals of patients with schizophrenia 
contained less complexity compared with those of con- 
trol subjects [7]. In addition, the complexity of EEG sig- 
nals in subjects suffering from mania has been tested 
using ApEn and the Takens estimator [8]. The results in- 
dicated that there was no distinct discrimination between 
manic and healthy subjects based on those non linear 
measures [8].  

In a previous study, a combination of short time Fou-
rier transform (STFT) with relative statistical values (Z- 
values) was used to evaluate drowsiness quantitatively in 
two human populations (healthy subjects and patients 
suffering from dementia, cerebrovascular disorder, schizo- 
phrenia, alcoholism, and epilepsy), during different wake- 
fulness states (fully awake and drowsy) [9]. This analysis 
was found to successfully distinguish the healthy awake 
group and the healthy drowsy group from the other groups 
[9]. Burioka et al. [10] used the signal from a single elec- 
trode placed at C3 to compute ApEn for evaluating the 
awake state and sleep stages during the eyes-closed state 
only, in eight healthy subjects. These subjects were dis-
tinguished by measuring the percentage change in the 
mean ApEn across six different stages (awake state and 
sleep stages). Their results revealed that sleep stage I was 
associated with less complexity than the awake and REM 
states, but more complexity than sleep stage II, III, and 
IV.  

Fan et al. [11] analyzed the complexity of EEG signals 
of children in seven states: awake with eyes opened, awake 
with eyes closed, and during sleep stages (I, II, III, IV 
and REM). They reported that the global EEG complex-
ity in the awake state with eyes opened was greater than 
that in the awake with eyes closed condition. In addition, 

EEG complexity was found to be greater in the wakeful-
ness state than in the sleep state. 

The early drowsy state (stage I) typically contains 
several forms of eyes closing and eyes opening, ranging 
from complete eyes closing to incomplete closing, as well 
as eyes opening for different durations (short or long). 
Such transitions from eyes closing to eyes opening could 
increase the complexity of the EEG signal and its sub- 
bands. Moreover, these transitions during early state of 
drowsiness or wakefulness are accompanied by particu- 
lar EEG patterns, which increase the amount of com- 
plexity. In addition, a healthy cortex is typically more 
active than the cortex of neurological patients, due to the 
higher number of healthy neurons available for process-
ing information. Hence, the complexity of the EEG sig-
nal is also increased in healthy subjects. As such, the 
presence of either early state of drowsiness or wakeful 
state in normal subjects could be problematic for deter- 
mining the effects of (early drowsiness/wakefulness) on 
the complexity of EEG signals during repetitive eyes- 
close and eyes-open. 

In the present study, we examined the influence of two 
factors: subject’s wakefulness state factor (fully awake/ 
early stage of drowsiness), as well as subject’s health 
status factor (normal/patient) on the complexity (irregu-
larity) of EEG frequency bands during an eyes opening 
and closing test in a routine EEG examination. This task 
consists of a relatively short period of repetitive opening 
and closing of the eyes, while EEG signals are recorded 
from the scalp over five regions of the brain. All of these 
effects can then be used to distinguish subjects based on 
their healthy/patient status, and their wakeful/drowsy 
state. It is particularly important to distinguish partici-
pants in the drowsy state because the EEG correlates of 
transitions to the early drowsy state (stage I) as well as 
transitions to other stages of sleep states, are currently 
unclear [12]. Moreover we sought to test the ability of 
ApEn to detect the early drowsy/wakefulness states in 
repetitive eyes opening/closing. Validating this method is 
important, because the complexity of the EEG signal in 
the early drowsy state (stage I) would be expected to be 
close to that in the wakefulness state, making the task of 
distinguishing the wakeful and early drowsiness states 
more difficult than detecting continuous eye closure, as 
reported by [2]. In addition, the current study sought to 
elucidate specific patterns of EEG signals, by revealing 
the effects of their role in relatively short periods of eyes 
opening/closing on EEG complexity, in particular re- 
gions in the human brain. The results of this study may 
also provide medical doctors and clinicians with useful 
information for diagnosis, demonstrating that the early 
drowsy state can be identified by the increasing com- 
plexity of limited EEG bands, particularly the theta band, 
during eyes closing. In addition, wakefulness state can 
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also be identified by the increasing complexity of theta 
band, during eyes opening. All of the current experi- 
ments were conducted in four groups of subjects: normal 
awake (NA), normal drowsy (ND), patient awake (PA) 
and patient drowsy (PD) groups, as shown in Table 1. 
DWT was used to decompose the EEG band (0 - 60 Hz) 
related to eyes opening periods and eyes closing periods 
into the gamma (30 - 60 Hz), beta (13 - 30 Hz), alpha (8 - 
13 Hz), theta (4 - 8 Hz) and delta (0 - 4 Hz) EEG sub- 
bands. ApEn was then estimated for each band at all 
electrodes corresponding to each of the frontal (F), cen-
tral (C), (temporal (T), parietal (P), and occipital (O) re- 
gions. 

2. METHOD 

2.1. EEG Dataset 

A Nihon Koden polygraph (EEG-1100) was used to ac- 
quire multi-channel EEG signals with a 0.3-second time 
constant, a cut off frequency of 60 Hz in a low-pass band 
filter, and a 97.5 nV quantization system. EEG signals 
were measured from 19 electrodes on the scalp, placed 
according to the international 10/20 system. We analyzed 
signals from five lobes (regions): the “Occipital Region 
(O)” corresponding to O1 and O2, the “Parietal Region 
(P)” corresponding to P3, Pz, and P4, the “Temporal 
Region (T)” corresponding to T5 and T6, the “Central 
Region (C)” corresponding to C3, Cz and C4, and the 
“Frontal Region (F)” corresponding to F7, F3, Fz, F4, 
and F8, with monopolar derivation from bilateral refer-
ence electrodes, (i.e., an average of A1 and A2 electrodes 
at the earlobes). We used data from the eyes opening and 
closing test in a routine EEG examination. Each EEG 
recording period lasted for 70 seconds, beginning with 
the eyes closed for 10 seconds followed by a period with 
eyes open for 10 seconds. This sequence was repeated 
for 70 seconds, as shown in Figure 2. Thus, each 10- 
second period contained a section corresponding to either 
the eyes-closed or eyes-open state. Each section was 
considered as a block, and each block was described as 
follows: “CLOSE0”, “OPEN1”, “CLOSE1”, etc., to 
“CLOSE3”. A computer program was used to detect the 
execution of eyes opening and closing from the elec- 
tro-oculogram signal. In addition, visual confirmation of 
eyes opening and closing was performed by a clinical 
laboratory technician. If these two checks indicated that 
eyes opening and closing had not been performed by 
subjects, the corresponding EEG data were excluded 
from further analysis. Moreover, body motion, which can 
cause motion artifacts, was also detected with electro- 
myography, and processed accordingly. The EEG signals 
were digitized at a sampling frequency of 200 Hz. All 
data were collected at Utsunomiya hospital after obtain-
ing informed consent. EEG data were recorded from 50  

Table 1. Number of subjects and age of subjects. 

State Healthy  Patient  

Awake 25/23.8 ± 3.09 25/66.6 ± 12.0 

Drowsy 25/23.4 ± 2.30 25/56.1 ± 17.3 

(Number of subjects/age of subjects). 

 
healthy subjects and 50 patients. People in the patient 
group suffered from various conditions including demen-
tia, cerebrovascular disorder, schizophrenia, alcoholism, 
and epilepsy. A full description of the patient informa- 
tion is shown in Table 1. All subjects were classified 
into awake and drowsy conditions, based on the interna- 
tional classification scheme proposed by [13]. According 
to this scheme, EEG datasets from drowsy-state subjects 
were considered as sleep stage I of NREM (non rapid 
eye movement). 

2.2. Discrete Wavelet Transform (DWT) 

DWT has recently been applied in wide range of scien- 
tific applications, providing a flexible method of time- 
frequency representation of signals using flexible win- 
dow sizes. In the current paper, third-order Daubechies 
(db3) was used to decompose EEG signals into sub- 
bands. During DWT, the signal is passed through a half- 
band digital low-pass filter (LP), and a half-band digital 
high-pass filter (HP). The outputs of LP and HP repre-
sent the lowest half-band and highest half-band, respec-
tively, of the original input signal. The lowest half-band 
corresponds to all frequencies less than half of the high-
est frequency in the input signal. These are referred to as 
“approximate components”, denoted by “A” as described 
below. The highest half-band corresponds to all frequen-
cies more than half the highest frequency in the input 
signal, referred to as “details components” and denoted 
by “D” as described below. According to the Nyquist 
rule, half of the sampled signals were eliminated from 
the approximate and details components, because they 
had half of the highest frequency of the input signal. Be-
cause the recorded EEG data were in the range 0 - 60 Hz, 
the output of the DWT is referred to as “approximation 
A1” (0 - 30 Hz), and “detail D1” (30 - 60 Hz) are the 
coefficients of the first level. The same procedure was 
repeated for three decomposition levels to produce D2, 
D3, D4 and A4, corresponding to the Gamma band (30 - 
60 Hz), Beta band (15 - 30 Hz), Alpha band (8 - 15 Hz), 
Theta band (4 - 8 Hz), and Delta band (0 - 4 Hz), respec-
tively. Minor differences in the boundaries between the 
components compared with those between the EEG sub- 
bands are of little consequence because of the physio-
logically approximate nature of the sub-bands [14], as 
hown in Figure 1. s 
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Figure 1. Fourth level wavelet decomposition of EEG signal. 
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2.3. Approximate Entropy (ApEn)         , 1 , , 1

where 1, 2, , 1

i x i x i x i m

i N m

  

  





X 
      (1) 

ApEn is used to estimate the regularity of the time series 
of short, noisy data sets. Mathematically, this estimation 
is calculated by measuring the unpredictability of the 
fluctuation in a time-series related to the signal. ApEn 
evaluates both dominant and sub-dominant patterns in 
the data, and discriminates series for which clear feature 
recognition is difficult. This is applicable to systems with 
at least 50 data points [15], and less than approximately 
1000 data points [16,17]. ApEn assigns a positive num- 
ber to a time-series, such that large values correspond to 
more complexity, less predictability, different patterns of 
fluctuation, and irregularity. ApEn can be computed for 
this time series by specifying two user-defined parame-
ters m (embedding dimension) and r (tolerance window).  

In Eq.1, each one of the vectors is composed of m 
consecutive and discrete data points of time series S.  

2) The distance between two corresponding data points 
from each vector is then calculated, by denoting the dis-
tance between  iX  and  jX  by    j,d i  X X

1, 2, ,

, 
defined as a maximum absolute difference between their 
respective scalar components, where i   1N m  ;    

1, 2, ,j 1N m   , and N is the number of data points 
contained in time series. 

        
1,2,

, max 1
k m

d i j x i k x j k


       
X X 1  (2) 

3) For each vector  iX , a measure that describes the 
similarity between the vector  iX  and all other vectors 
 jX , 1, 2, , 1i N m   ; , 1, 2, , 1j N m ApEn is estimated using the following algorithm: 

j i  can be constructed as: 1) For a time-series S containing N data points, “com-
plexity” can be measured by ApEn in multiple dimen-
sional space, in which a series of vectors are constructed 
and expressed as: 

        
        
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1 1 , 2 , ,

2 2 , 3 , , 1

1 1 , 2 , ,

X x x x m

X x x x m
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1

1
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m
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N m
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
 
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


         (3) 

X N m x N m x N m x N



 

      








 
where: 

   1, ,

0, otherwise
j

d X i X j r     


         (4) 

The symbol r in Eq.3, represents a predetermined tol- 
erance value, defined as: 

In general, the aforementioned vectors could be defined 
as: 
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 r a STD S                (5) 

where: a is a constant  and  repre- 
sents the standard deviation of the time series, by defin- 
ing: 

(0 1)a  (.)STD

   1

1

1
ln

1
N mm

ii
r

N m
  




   mC r       (6) 

4) The dimension is increased from m to m + 1, Steps 
1 - 3 are repeated, and  is computed. The result 
obtained through the above steps provides an estimate of 
ApEn, denoted by: 

 1m
iC r

     1ApEn , lim m m

N
m r r r  


          (7) 

In practice, the number of data points N is finite, and 
the result obtained through the above steps is only an 
estimate of ApEn when the data length is N. This is de-
noted by: 

     1ApEn , , m mm r N r r          (8) 

Briefly, ApEn measures the logarithmic likelihood that 
runs of a pattern that is close (within) for m contiguous 
observations remain close (within the same tolerance 
width r) on subsequent incremental comparisons. Usu- 
ally, comparisons between time series can only be made 
with the same values of m and r [17]. Although m and r 
are critical in determining the outcome of ApEn, no reli-
able method exists for optimizing their values. However, 
smaller values of r (short tolerance) achieve poor prob- 
ability estimates, while larger values of r lose too much 
detailed system information. To avoid a significant effect 
of noise in an ApEn calculation, a value of r must be 
chosen that is larger than the values of most of the noise 
[17]. As defining in Eq.5, the result of r depends on the 
selection of a value for specific time-series S that con- 
tains a fixed number of data points.  

Sometimes the exact amount of noise present in a data 
set cannot be determined in advance. As such, we used 
the technique suggested by [17]. ApEn was estimated 
using the widely established parameter values of m = 1 
or m = 2, and a values of the r parameter were fixed be- 
tween 0.1 to 0.25 times the standard deviation (STD) of 
the original data sequences {S (N)}.  

All combinations of m and a were used. A significant 
effect was obtained using m = 2 and a = 0.15. Here, the 
significance of an effect was dependent on evidence of 
the early drowsy state (stage I), which was characterized 
by a gradual decrease in alpha rhythm during eye closure, 
and was associated with a decrease of the alpha rhythm 
to 2 - 7 Hz [12,18]. Thus, we considered it prior knowl- 
edge that a significant difference should be found be- 
tween normal awake subjects (NA), and normal drowsy 
subjects (ND) in alpha band activity during eye closure.  

Thus, in this study, ApEn was computed with the estab- 
lished parameters m = 2 and r = 0.15 STD(S). These pa- 
rameters have been reported to provide good statistical 
reproducibility for sequences longer than 50 [17,19]. 
Calculation of ApEn was performed with software devel- 
oped using MATLAB. We measured the EEG signal and 
its sub-bands, extracted from the wavelet decomposition, 
as inputs for ApEn to measure EEG signal complexity. 
Before wavelet decomposition was performed for each 
eyes-open and eyes-closed period, ApEn was calculated 
for each 1-second period (200 data points) across each 
10-second period, as shown in Figure 2, and the calcu- 
lated values were averaged over the length of each 10- 
second section corresponding to either the eyes-closed 
period or the eyes-open period. Although it is not neces- 
sary to average ApEn values calculated from each 1-sec- 
ond period, it can be useful to reduce the effects of noise 
and artifacts on ApEn for each section [3]. This proce- 
dure was performed in each section for each electrode 
signal, per group of subjects. All ApEn values corre- 
sponding to eyes-closed periods could be averaged. The 
same procedure was conducted with the eyes-open peri- 
ods, for the limited EEG band. Each period of eyes open- 
ing and eyes closing was decomposed with DWT into 
different sub-frequency bands corresponding to the EEG 
sub-bands. ApEn was estimated for each sub-band be- 
longing to each eyes-opened period and eyes-closed pe- 
riod, respectively. The average ApEn values correspond- 
ing to each eyes-closed and each eyes-opened period 
were calculated, for each electrode. A second average 
was calculated for the ApEn values for eyes-opened and 
eyes-closed periods over multiple electrodes that corre- 
sponded to each region out of five regions in the brain, as 
shown in the next section. 

2.4. Calculation of ApEn Averages 

The average ApEn values were calculated three times in 
sequence. The average ApEn value for all EEG band fre- 
quencies across eyes-closed periods, as well as across 
eyes-open periods for each electrode was calculated.  

    

    
eyes-close periods

4

1

1 Band ,Group

ApEn Band ,Group

1

Avg i m

i m

N



         (9) 

    

    
eyes-open periods

3

1

1 Band ,Group

ApEn Band ,Group

2

Avg i m

i

N

 m

        (10) 

1, ,6 1, , 4i m     . 

where: N1 = 4, N2 = 3. Bands = [Limited EEG band,    
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Figure 2. Block diagram of overall method.    
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Gamma, Beta, Alpha, Theta, Delta]. Group = [Normal 
Awake, Normal Drowsy, Patient Awake, Patient Drowsy]. 
The second average was calculated for all Avg1 during 
eyes-opened and eyes-closed periods across multiple elec- 
trodes (Elc.) that corresponded to each one of the five 
brain regions, for each group.  

    

    
eyes-close periods

11 1
eyes-close periods

2 Region ,Group

. 1 Band ,Group

3

c

kk

Avg p m

Elc Avg i m

N




    (11) 

    

    
eyes-open periods

11 1
eyes-open periods

2 Region ,Group

. 1 Band ,Group

3

c

kk

Avg p m

Elc Avg i m

N




    (12) 

1, ,6 1, , 4 1, ,5i m p       



 

where: N3 = c.  
c = total number of all the electrodes that correspond 

for each region over brain. Region = [Frontal, Central, 
Temporal, Parietal, Occipital]. Group = [Normal Awake, 
Normal Drowsy, Patient Awake, Patient Drowsy]. The 
third average was calculated for all Avg2 (Region(p), 
Group(m)), during eyes-opened and eyes-closed periods 
across all subjects in each group, using Eq.10. 

  

   
eyes-close periods

25

22 1
eyes-close periods

3 Group

Subject 2 Region ,Group

4

kk

Avg m

Avg p m

N




 (13) 

  

    
eyes-open periods

25

22 1
eyes-open periods

3 Group

Subject 2 Region ,Group

4

kk

Avg m

Avg p m

N




 (14) 

1, , 4 1, ,5m p      

where: N4 = 25. Group = [Normal Awake, Normal 
Drowsy, Patient Awake, Patient Drowsy]. 

All of the results for Avg3 (Group(m)) during eyes- 
opened and eyes-closed periods for each region were 
calculated for all EEG band frequencies. These findings 
are shown in Figures 3 and 4, for the eyes-closed and 
eyes-opened periods, respectively. 

2.5. Analysis of Variance (ANOVA Test) 

p-values were calculated using a two-way ANOVA, to 
determine the effects of factor A, factor B, and the inter-
action between them (A × B). The design of the two- 
way ANOVA included the following terms: 

 Factor A = the first independent variable. (Subject’s 
health status; i.e., normal/patient)  

 Factor B = the second independent variable. (Sub- 
ject’s wakefulness state; i.e., fully awake/early stage 
of drowsiness)  

 A × B = the interaction between factor A and factor B.  
 Factor A marginal means iA  = the mean of all the 

scores in all the cells that have received the thi  con-
dition (level) of factor A, disregarding the levels of B. 

 Factor B marginal means jB  = the mean of all the 
scores in all the cells that received the thj  condition 
(level) of factor B, disregarding the levels of A. 

In this paper, we used two levels for each factor; (nor- 
mal/patient) for factor A, and (early drowsy state/wake- 
fulness) for factor B. 25 ApEn values corresponding to 
25 subjects, existed per cell in the design of the two-way 
ANOVA, as described in Table 2. All of these effects 
were tested for the second average of ApEn values (de- 
pendent variable) per each region. We defined the inter-
action between any two factors (significant interaction), 
when interaction 0.05p  , as follows: if a particular combi- 
nation of factors led to results that were not simply the 
sum of the main effects of the two factors. If no interact- 
tion is present, main effects are sufficient to describe a 
data set. However, when an interaction is present, the 
main effects of the factors can mask underlying patterns 
in the data. Two-way ANOVA can determine the main 
effects of the contribution of each independent variable 
on the dependent variable. Multiple comparisons were 
then performed using Scheffe’s method, when F tests 
were significant [20]. A significant result at the 95% 
probability level was considered. This probability level 
tells us that our data are sufficient to support a conclu- 
sion with 95% confidence. This level of significance is 
generally accepted in biological research [3]. 

3. RESULTS 

All significant differences referring to the influence of  
 
Table 2. The design of two-way ANOVA, for 25 subjects per 
cell. 

 Factor B  
Factor A 

B1: Awake B2: Drowsy iA  

A1: Normal 
1

25

ApEn

ApEn

NA

NA

  
1

25

ApEn

ApEn

ND

ND

  
1A  

A2: Patient 
1

25

ApEn

ApEn

PA

PA

  
1

25

ApEn

ApEn

PD

PD

  
2A  

___

jB  
___

1B  
___

2B   
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Figure 3. Third average of ApEn in the frontal, central, temporal, parietal, and occipital regions during eyes-closed state. 
 
the subject’s health-status factor factor  with no 
significant interactions (associated with Interaction ), 
as shown in Table 3) were considered to indicate a sig-
nificant normal/patient state effect on EEG complexity 
during repetitive eyes opening/closing as shown in Table 
4. In contrast, all significant difference results related to 
the influence of subject’s wakefulness state factor 

factor  without a significant interaction (associ-
ated with , as shown in Table 3), were 

considered to indicate a significant effect of the early 
drowsy/wakefulness state during repetitive eyes open- 
ing/closing, as shown in Table 5. If any significant in- 
teraction was present, we were unable to determine the 
effects of the two examined factors associated with this 

Interaction , so these results will not be discussed. All brain 
regions and EEG frequency bands that could provide 
valid results for determining the significant influence of 
health status (factor A) and the significant influence of  

0.05Ap 
P 0.05

0.05Bp 
InteP raction 0.05

P

Copyright © 2012 SciRes.                                                                       OPEN ACCESS 



M. Alaraj et al. / J. Biomedical Science and Engineering 5 (2012) 75-94 83

   

 

Figure 4. Third average of ApEn in the frontal, central, temporal, parietal, and occipital regions during eyes-opened state. 
 
wakefulness (factor B), during repetitive eyes open- 
ing/closing are presented in Table 6 and are called pri-
mary results. After determining the main source of the 
complexity in EEG frequency bands by applying two- 
way ANOVA to the second average of ApEn values for 
five brain regions using the first average values from 
multiple electrodes, we calculated the magnitude of com- 
plexity increasing rate (CIR) as a measure of each fac- 
tor’s effect. For example, the obtained results indicate 

that the complexity of gamma band increased signify- 
cantly when the subject is patient during eyes opening 
and closing over temporal region. To calculate the mag- 
nitude of CIR related to health-status in the gamma band 
over the temporal region during eyes closure, we used 
the third average ApEn, as shown in Eqs.13 and 14. 
Thus, the percentage CIR in gamma band over the tem- 
poral region during eyes closure was calculated as fol- 
lows:  
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Table 3. p-values of interaction effect PInteraction between the factors of interest (A and B) on ApEn values, for all EEG band frequen-
cies, over five regions in the brain (EEG: Limited EEG band, γ: Gamma band, β: Beta band, α: Alpha band, θ: Theta band, δ: Delta 
band). 

Close State (p-value) Open State (p-value) 
Brain Lobe 

EEG γ β α θ δ EEG γ β α θ δ 

Frontal 0.2322 0.8847 0.5873 0.3646 0.0293 0.8996 0.1737 0.9892 0.7203 0.3765 0.7107 0.2006

Central 0.0489 0.9136 0.6746 0.3329 0.0358 0.0289 0.1592 0.5612 0.7953 0.0837 0.6765 0.2861

Temporal 0.0614 0.638 0.3385 0.3847 0.3205 0.0968 0.8815 0.3475 0.8185 0.2107 0.2165 0.1103

Parietal 0.0483 0.6753 0.7829 0.0252 0.3618 0.0493 0.4426 0.388 0.5676 0.3559 0.5688 0.5362

Occipital 0.017 0.4155 0.4032 0.05 0.0708 0.1691 0.4645 0.5469 0.7611 0.6128 0.1592 0.695 

 
Table 4. p-values of subject’s healthy status (healthy/patient) effect on ApEn values, for all EEG band frequencies, over five regions 
in the brain (EEG: Limited EEG band, γ: Gamma band, β: Beta band, α: Alpha band, θ: Theta band, δ: Delta band). 

Close State (p-value) Open State (p-value) 
Brain Lobe 

EEG γ β α θ δ EEG γ β α θ δ 

Frontal 0.8617 0.5662 0.1574 0.0182 0.7419 0.0016 0.1278 0.9886 0.2311 0 0.0001 0.5661

Central 0.3896 0.1618 0.105 0 0.0331 0.0006 0.0988 0.0398 0.8262 0 0.004 0 

Temporal 0.8754 0.049 0.1804 0 0.2334 0.0249 0.0495 0.043 0.2941 0 0.0789 0.003 

Parietal 0.6085 0.0524 0.2936 0 0.0065 0.0969 0.023 0.0385 0.0191 0 0.0239 0.0047

Occipital 0.1096 0.0514 0.9487 0 0.0011 0.3086 0.363 0.0596 0.0078 0 0.0049 0.0044

 
Table 5. p-values of subject’s wakefulness state (fully awake/early drowsy) effect on ApEn values, for all EEG band frequencies, 
over five regions in the brain (EEG: Limited EEG band, γ: Gamma band, β: Beta band, α: Alpha band, θ: Theta band, δ: Delta band). 

Close State (p-value) Open State (p-value) 
Brain Lobe 

EEG γ β α θ δ EEG γ β α θ δ 

Frontal 0.1489 0.3209 0.6813 0.0226 0.0141 0.7948 0.9595 0.4928 0.397 0.428 0.4455 0.4728

Central 0.0314 0.7212 0.4551 0.1033 0.328 0.4872 0.2517 0.5925 0.7023 0.0372 0.0199 0.4054

Temporal 0.0312 0.9529 0.9253 0.1966 0.0162 0.167 0.2528 0.3328 0.9216 0.0752 0.0072 0.7345

Parietal 0.0203 0.8857 0.4727 0.1062 0.1364 0.4817 0.2398 0.7205 0.9602 0.0691 0.0325 0.6534

Occipital 0.003 0.6839 0.6108 0.0345 0.0023 0.7271 0.062 0.1918 0.4033 0.045 0.0018 0.3795

 
Table 6. Summary of significant p-values (primary results) for the effects of factor A and factor B without interaction during 
eyes-closed periods and eyes-open periods, over five regions in the brain (F: Frontal, C: Central, T: Temporal, P: Parietal, O: Occipi-
tal); (EEG: Limited EEG band, γ: Gamma band, β: Beta band, α: Alpha band, θ: Theta band, δ: Delta band). 

Close State (p-value) Open State (p-value) 
Factors 

EEG γ β α θ δ EEG γ β α θ δ 

Factor A  T  F, C, T, O P, O F, T T, P C, T, P P, O All regions F, C, P, O C, T, P, O

Factor B C,T   F, O T, O     C, O C, T, P, O  
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   
   
ApEn ApEn ApEn

1.6362 1.6035 1.6035 2.04%

PA NA NACIR  

  
 

Similarly, to calculate the percentage of CIR in early 
drowsy state: 

  

And so on. 
All of the results relating to the percentage of CIR are 

shown in Tables 7 and 8. 


   
ApEn ApEn ApEn

1.6307 1.6106 1.6106 1.25%

PD ND NDCIR  

  
 

The effects of factor A (subject’s health-status) were 
calculated as follows: The results revealed that the nor-
mal state was associated with significantly greater com-
plexity of several EEG band frequencies (all EEG bands 
except the gamma band), during eyes closing and opening, 

 
Table 7. The amount of complexity increasing rate (CIR) in all EEG band frequencies, during eye closing (F: Frontal, C: Central, T: 
Temporal, P: Parietal, O: Occipital). 

 Effects of A Factor Effects of B Factor 

Band Frequency 
Significant Factor 

(A or B)  
In the presence of 

wakefulness 
In the presence of 

early drowsy 
In normal subjects  In patient subjects 

Limited EEG band B2: Early Drowsy No Effects No Effects  Over T, complexity 
increased 5.01% 

 Over T, complexity 
increased 0.35% 

Gamma A2: Patient  Over T, complexity 
increased 2.04% 

 Over T, complexity 
increased 1.25% 

No Effects No Effects 

Beta No Factor Effect No Effects No Effects No Effects No Effects 

Alpha A1: Normal 

 Over C, complexity 
increased 3.06% 

 Over T, complexity 
increased 3.31% 

 Over C, complexity 
increased 4.78% 

 Over T, complexity 
increased 4.99% 

No Effects No Effects 

Theta 
A1: Normal 

B2: Early Drowsy 
 Over P, complexity 

increased 2.88% 
 Over P, complexity 

increased 5.64% 
 Over T, complexity 

increased 5.25% 
 Over T, complexity 

increased 2.21% 

Delta A1: Normal 

 Over F, complexity 
increased 5.38% 

 Over T, complexity 
increased 1.23% 

 Over F, complexity 
increased 5.80% 

 Over T, complexity 
increased 8.19% 

No Effects No Effects 

 
Table 8. The amount of complexity increasing rate (CIR) in all EEG band frequencies, during eye opening (F: Frontal, C: Central, T: 
Temporal, P: Parietal, O: Occipital). 

 Effects of A Factor Effects of B Factor 

Band 
Frequency 

Significant  
Factor (A or B) 

In the presence of wakefulness In the presence of early drowsy 
In normal  
subjects 

In the presence 
patient  

Limited 
EEG band 

A1: Normal 
 Over T, complexity increased 1.61% 
 Over P, complexity increased 1.64% 

 Over T, complexity increased 1.86%
 Over P, complexity increased 3.25%

No Effects No Effects 

Gamma A2: Patient 
 Over C, complexity increased 1.82% 
 Over T, complexity increased. 1.59% 
 Over P, complexity increased 1.60%. 

 Over C, complexity increased 1.01%
 Over T, complexity increased 0.58%
 Over P, complexity increased 0.66%.

No Effects No Effects 

Beta A1: Normal 
 Over P, complexity increased.1.09% 
 Over O, complexity increased 0.99% 

 Over P, complexity increased 0.67%
 Over O, complexity increased 1.24%

No Effects No Effects 

Alpha A1: Normal 
 Over F, complexity increased 6.63% 
 Over T, complexity increased 5.52% 
 Over P, complexity increased 4.78% 

 Over F, complexity increased 4.57%
 Over T, complexity  
 Increased 3.43% 
 Over P, complexity increased 3.46%

No Effects No Effects 

Theta 
A1: Normal 

B2: Fully Awake  Over F, complexity increased 10.98%  Over F, complexity increased. 8.93%
Over T,  

complexity  
increased 4.90% 

Over T,  
complexity 

increased 1.85%

Delta A1: Normal 

 Over C, complexity increased 8.47% 
 Over T, complexity increased 2.77% 
 Over P, complexity increased 4.69% 
 Over O, complexity increased 3.97% 

 Over C, complexity increased 13.36% 
 Over T, complexity increased 9.16%
 Over P, complexity increased 7.40%
 Over O, complexity increased 5.33%

No Effects No Effects 
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as shown in Figures 3 and 4, respectively. Thus, to de-
termine the optimal recording region and EEG band fre-
quency for measure effects of interest in the normal state, 
we chose the condition exhibiting the maximum CIR in 
the presence of wakefulness state and in the presence of 
the early drowsy state respectively, as follows:  

As shown in Tables 7 and 8, when the effects of the 
normal state were significant during eyes closing and 
opening respectively, in the presence of the wakefulness 
state, the maximum CIR was 10.98% over the frontal 
region in the theta band during eyes opening. 

As shown in Tables 7 and 8, when the effects of the 
normal state were significant during eyes closing and 
opening respectively, in the presence of early drowsy state, 
the maximum CIR was 13.36% over the central region, in 
the delta band during eyes opening.  

The results in the patient group indicated that patient 
status was significantly associated with a significant in-
crease in the complexity of gamma band activity, during 
eyes closing and opening, over: temporal and (central, 
temporal, and parietal) regions, as shown in Figure 3(c) 
and Figures 4(b)-(d), respectively. To determine the op- 
timal brain region for examining patients, we identified 
the maximum CIR in the presence of wakefulness state 
and in presence of early drowsy state respectively, as 
follows:  

As shown in Tables 7 and 8, when the effects of pa-
tient-status were significant during eyes closing and open- 
ing respectively, in the presence of wakefulness state, the 
maximum CIR was 2.04% over temporal region during 
eye closure. As shown in Tables 7 and 8, when the effects 
of patient-status were significant during eyes closing and 
opening respectively, in the presence of the early drowsy 
state, the maximum CIR was 1.25% over the temporal 
region, during eye closure. The results indicated that pa- 
tient-status was associated with greater complexity of 
gamma band activity over temporal region, regardless of 
the subject’s wakefulness state.  

The results indicated that the early drowsy state was 
associated with greater complexity of activity in the pres- 
ence of normal state and patient state in the limited EEG 
band and the theta band in a significant manner during eye 
closure over the temporal region only, as shown in Figure 
3(c). To identify the optimal EEG band frequency for 
examining the early drowsy state, we determined the 
maximum CIR in normal subjects and in patients, as fol-
lows: 

As shown in Table 7, when the effects of early drowsy 
state were significant, for normal subjects, the maximum 
CIR was 5.25% in the theta band. Table 7 also shows that, 
when the effects of the early drowsy state were significant 
in patients, the maximum CIR was 2.21% in the theta 
band. The results indicated that the early drowsy state in 
patient subjects did not increase the complexity of the 

limited EEG band signal or the theta band as much as in 
normal subjects over the temporal region during eyes 
closing. The results indicated that the fully awake state 
was associated with greater complexity of activity in the 
presence of normal state and patient state in theta band in 
a significant manner during eyes opening over the tem-
poral region only, as shown in Figure 4(c). To identify the 
optimal EEG band frequency for examining the fully 
awake state, we determined the maximum CIR in normal 
subjects and in patients, as follows: 

As shown in Table 8, when the effects of fully awake 
state were significant, for normal subjects, the maximum 
CIR was 4.90% in the theta band.  

Table 8 also shows that, when the effects of the fully 
awake state were significant in patients, the maximum 
CIR was 1.85% in the theta band.  

The results indicated that the fully awake state in pa-
tient subjects did not increase the complexity of the theta 
band as much as in normal subjects over the temporal 
region during eyes opening. 

4. BILOGICAL VALIDATION OF THE  
RESULTS 

4.1. Brain Regions and EEG Band Activities 

Each region in human’s brain has particular functions that 
reflect some of physiological abilities, for example: frontal 
region is concerned with reasoning, planning, problem 
solving, as well as short term memory which is used to 
hold a small amount of information for a short periods of 
time. Central region is concerned with motor cortex which 
is used to manage complex movements and coordination. 
Parietal region is concerned with sensory perception in-
cluding visual perception. Temporal region is concerned 
with languages, visual reception, behavior, long term mem- 
ory which is used to hold information for a long period of 
time, as well as memory representation [21,22]. Occipital 
region is concerned with visual processing such as color 
recognition.  

These abilities are not separated from the neural ac-
tivities of different EEG bands, which reflect the synchro- 
nization of neural oscillatory assembles which thought to 
underlie the formation of cortical object representation 
[23]. An oscillatory component is defined by the pres-
ence of rhythmic activity. In EEG analysis domain, there 
are two assumptions about the dynamics of EEG signals: 
First assumption referred that limited EEG band signal 
represents the dynamics of the entire brain as a unified 
system and needs to be treated as a whole. Second as-
sumption referred that limited EEG band is a signal that 
represents the effects of the superimposition of the di-
verse processes in the brain and hence, more neural de-
tails may be revealed when each sub band is analyzed 
separately. In the current study, both previous assump-
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tions had been taken into consideration and hence, both 
limited EEG band signals and their sub bands had been 
analyzed by using ApEn during eyes opening/closing. 
Eye closure is an ideal environment than eye opening for 
interpreting any non linear physiological properties in 
EEG signals to limit the variables that may effect on those 
properties. So far, the influences of light on the whole 
dynamics of non linear properties in EEG band limited 
(when it is treated as a whole system without analyzing 
any sub bands) still unknown and hence, the interpreta-
tion of light effects on EEG band limited (as a whole sys- 
tem) during eyes opening could not be interpreted using 
complexity term. Hence, the complexity of limited EEG 
band signals during eyes opening will not be discussed in 
this study. To facilitate the task of understanding our 
results, a brief review about EEG sub bands is shown as 
below: 

Gamma band activity is related to a variety of func-
tions such as: memory and consciousness [24]. Moreover, 
gamma band activity has an important role in complex 
and large movement during eyes opening and visual in-
terpretation [25,26]. Beta band activity is related to vis-
ual perception during a wakefulness state and associates 
with eyes opening. Alpha band activity associates with 
early drowsiness [12,27], and it has a regular activity in 
relaxed fully awake subjects and could be obtained dur-
ing only continuous eyes closing. The activity of alpha 
band is greatly attenuated by eyes opening and early state 
of drowsiness [12,27,28]. In normal subjects, two types 
of theta activity have been described [29]. First, was re-
ferred to drowsiness. Second, was referred to the frontal 
midline theta and its role in arousal state [18]. Delta band 
activity in normal subjects is related to deep sleep stages 
(II, III, and IV), movement, as well as information trans- 
mission over frontal region during eyes opening, and it is 
usually considered abnormal in other circumstances [30, 
31]. Usually, during eyes opening, the activity of theta 
band and delta bands is attenuated gradually by the light 
flux. Finally, in the current study, all the explanations of 
limited EEG band signals were related to the whole physio- 
logical dynamics of EEG over their location of their oc-
currence over the brain. 

4.2. Biological Justification of the Primary  
Results 

In this paper, we ignored all results that related to sig-
nificant interactions between the two examined factors of 
interest (factor A and factor B). All the primary results, 
as shown in Table 6 were justified biologically during 
eyes opening/closing, as described below:  

The functions of gamma band activity associates with 
its location over the brain. Our results indicated that the 
complexity of gamma band activity over temporal region 

during eyes closing was greater in patients than normal 
subjects. Whereas, during eyes opening our results indi-
cated that the complexity of gamma band activity over 
central, temporal and parietal regions were greater in 
patients than normal subjects. These findings indicated 
that gamma band over those regions was instable, due to 
an increase in the unpredicted fluctuation (complexity) in 
gamma band rhythm, and that there were some effects of 
healthy status of the subjects on the main functions of 
gamma band over these regions. These effects were re-
lated to the functions of gamma band which were dis-
cussed in the previous sub Section 4.1. Posterior beta 
band activity relates to the function of posterior region of 
the brain (i.e., occipital and parietal regions). Our results 
indicated that the complexity of beta band activity over 
posterior region during eyes opening was greater in nor-
mal subjects than patient, as shown in Table 6 and Fig-
ures 4(d), (e). This finding indicates that beta band over 
posterior region was instable. Our result is consistent 
with result of another study which linked between the 
stability of beta band activity over this region and some 
neural disease like epilepsy [12].  

Comparing the durations of several temporal patterns 
referred to as unclear significant patterns to the relative 
short periods of eyes opening/closing in our EEG data set, 
revealed that these types of patterns increased the unpre-
dictable fluctuation, decreased the repetitive patterns, 
and hence increase the ApEn values in the EEG fre-
quency bands associated with an increase with the non 
linear properties of EEG frequency bands. In general, 
these patterns are normal findings in normal subjects, 
they associate with alpha and theta bands and their dura-
tion were ranging from several seconds to several min-
utes depending on type of the pattern. Early drowsiness 
and fully awake states are often accompanied by such 
types of patterns.  

During eye closure, when the effects of factor A (sub-
ject’s health-status) were significant, the complexity of 
alpha band was increased over all regions of the brain 
except parietal region. Alpha squeak patterns are consid-
ered one type of unclear significant patterns and associ-
ate with alpha band. Usually, alpha squeak accelerates 
the frequency of alpha band [12], and this acceleration 
leads to an alteration in the frequency which could make 
an increase in the extent of the unpredicted fluctuations 
over these regions. Usually, alpha squeak occurs imme-
diately after closing the eyes, when the state of the sub-
ject is fully awake [12] as shown in Figures 3(a)-(c), (e). 
Whereas, during eyes opening alpha band was gradually 
attenuated by light flux and this situation could make an 
increase in the values of ApEn due to fluctuation, as 
shown in Figures 4(a)-(e).  

Lambda wave is one of the most famous waves in theta 
rhythm. Lambda wave is a sharp transient wave occurred 
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over the posterior region of the brain during eyes open-
ing [12]. Usually, in normal subjects, lambda waves and 
theta waves exist together which could make an increase 
in irregularity and hence, an increase in the complexity. 
Lambda wave attenuates during eye closure, and this at- 
tenuation could make an increase in the unpredicted fluc-
tuation over posterior region during eyes opening/closing 
due to its existence with theta band and hence, this fluc-
tuation could make an increase in the complexity (ir-
regularity) of posterior region, as shown in Figures 3 
and 4. Moreover, during eyes opening, theta waves over 
central region are also attenuated gradually due to light 
effects which could make an increase in the complexity 
of theta band in normal subjects as shown in Figure 4(b). 
Correspondingly, the distribution of theta activity over 
frontal region is characterized by frontal midline theta 
activity, which associates with focus attention in normal 
subjects. Frontal midline theta activity is closely associ-
ated with normal subjects but it was attenuated gradually 
due to light flux, as shown in Figure 4(a).  

Our results indicated that the complexity of delta band 
activity over all the regions of the brain except frontal 
region during eyes opening was greater in normal sub-
jects than patient. These findings indicated that delta band 
over those regions was instable; due to an increase in the 
unpredicted fluctuation (complexity) in delta rhythm, and 
that there were some effects of healthy status of the sub- 
jects on the main functions of delta band over these re- 
gions. Our result is consistent with the results of another 
study which observed the role of delta band over frontal 
region during short term memory load process during 
eyes opening [33]. Hence, a stable presence of delta band 
over frontal region is quite important for short term mem- 
ory process [33].  

Another study found that memory load process was 
limited by eye closure [34], and hence, activity of delta 
band during eye closure would be limited accordingly 
[34]. Moreover, if the activity of delta band over frontal 
region is instable, this will lead to produce abnormal pat- 
terns called FIRDA (frontal intermittent rhythmic delta 
activity) which is considered one of the signs of most 
neural diseases [12]. Whereas, during eyes closing, the 
complexity of delta band over frontal and temporal re-
gions was greater in normal subjects than patient. These 
findings indicated that delta band over those regions was 
instable. Our result is consistent with the result of an-
other study which could reveal the relationship between 
stable delta band activity over frontal and temporal re-
gions and some neural diseases like brain disorder (e.g., 
dementia with Lewy bodies, Alzheimer and epilepsy) 
[12,35].  

On the other hand, when the effects of factor B (sub-
ject’s wakefulness state) were significant, several neu-
rophysiological changes appeared and the level of wake-

fulness tended to fluctuate. Usually, when the early state 
of drowsiness starts, the cortex over particular regions 
becomes inactive, and this stage enhances as the person 
goes through from (sleep stage I) to the next sleep stages. 
Hence, in early state of drowsiness, all the neural acti-
vates which associate with body movement, attention, 
and languages, will also be inactive [12,18]. Most of the 
neural structures that thought to be responsible for those 
abilities are located over central and temporal regions 
[12,18], and hence, the extent of unpredicted fluctuation 
(i.e., complexity, or instability) in all the neural bands 
over those regions will be increased accordingly. These 
facts are consistent with our results which indicated that 
the complexity of limited EEG band signals over central 
and temporal regions were greater during early state of 
drowsiness than during fully awake state. These findings 
indicated that limited EEG band signals over those re-
gions were instable and hence, early state of drowsiness 
could make an increase in the complexity of limited EEG 
band over those regions.  

In normal subjects, early state of the drowsiness can 
be considered as a transitional state from wakefulness to 
the fully asleep state. During this transition, the frequency 
of alpha band typically exhibits a gradual decrease, with 
activity reducing to 2 - 7 Hz as the person falls into deep 
sleep. Due to frequency alternations during the early 
drowsy state in normal subjects, the extent of unpredict-
able fluctuations of alpha and theta bands over occipital 
region were instable, and that there were some effects of 
early state of drowsiness of the subjects on those bands 
over occipital region during eye closure as shown in Fig-
ure 3(e). Moreover, when the effects of early state of 
drowsiness were significant, one type of unclear signifi-
cant patterns appeared with alpha band activity, which is 
called: rhythmic mid-temporal theta burst of drowsiness 
(RMTD) patterns, which are best seen over temporal re- 
gion during eye closure [12].  

It could be noticed also from Table 6 and Figures 3(a), 
(e), our results indicated that the complexity of alpha 
band activity over frontal and occipital regions in normal 
subjects was greater in early drowsy state than wakeful- 
ness state during eye closure. Our results are consistent 
with results of Cantero et al. [36], who observed a sig- 
nificant decrease in alpha band activity over frontal and 
occipital region on the moment of drowsiness onset dur- 
ing eyes closing. Cantero et al. [36] suggested that alpha 
band activity over frontal and occipital regions could be 
used as an index to detect subject’s wakefulness state. As 
stated before, due to fully awake state and light flux ef- 
fects, theta band was attenuated gradually which could 
make an increase in the complexity of theta band over all 
regions on the brain except frontal region (for one reason 
as described below), as shown in Figures 4(b)-(e). Usu- 
ally, over temporal region, this gradual attenuation of 
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theta activity is accompanied by one type of unclear sig- 
nificant patterns, which is called: sub clinical rhythm elec- 
trographic discharge in adults (SREDA), which are best 
seen during relaxed fully awake state during eyes open- 
ing over temporal region [12,37]. Here, it should be no- 
ticed two important things: first, the complexity of theta 
band over temporal region during eyes opening when fully 
awake state was significant stemmed from two sources 
which they were: light flux source and SREDA patterns 
source. This fact is consistent with our results which in- 
dicate that the complexity of theta band over temporal 
region is greater in normal subjects than patients when 
fully awake state effect was significant. Second, as stated 
before, in normal subjects, the complexity of theta band 
over frontal region was associated with frontal midline 
theta activity. Hence, there was no any significant effect 
of subject’s wakefulness state on theta activity over frontal 
region. Moreover, frontal midline theta activity will be 
further discussed in next sub Section 4.3. 

4.3. Biological Validation of the Maximum  
Complexity Increasing Rate Results 

At the intracellular level, gamma oscillations have been 
shown to occur with depolarization of cells [38-42]. Dur-
ing wakefulness cortical neurons become relatively de- 
polarized and cells show a burst firing pattern with an 
intraburst frequency of 200 - 400 Hz and a recurrence 
rate of 30 - 40 Hz [41,42]. Any cognition task associates 
with an increase of depolarization process in cells, but 
those tasks are not the only factors are influencing on the 
state of cell depolarization [43].  

However, it can be noticed from all the previous stud- 
ies that particular association was found between gamma 
band and depolarization process. On the other hand, other 
studies have shown that gamma band activity could be 
modulated by a variety of processes such as arousal, lan- 
guages, object recognition, and long term memory [24, 
26,44,45]. Therefore, gamma band activity is assumed to 
reflect the most of cognition tasks [46]. Neurons in the 
brain can be connected to each other either via very strong 
or rather weak connections. These connections among 
the neurons constitute the basis of human memory. Usu- 
ally neural signals among those connections are regularly 
bidirectional and increases whenever the brain perceives 
a known object in case when the object recognition task 
is required. This mechanism leads to an increase in 
gamma band activity than it is for case of unknown ob- 
jects for which no such activity or weak activity occurs 
due to the missing memory representations [47,48]. This 
match and utilization model (MUM) is mainly based on 
perceptual forms of memory. MUM offers the advantage 
to explain many findings of stronger or weaker gamma 
activity observed in various experimental conditions es- 

pecially in memory representation [49-51]. Several stud- 
ies have shown that words induce higher gamma band 
activity than pseudo words [52], and in identifiable ob- 
jects more than random dot patterns [53]. Because mem- 
ory representations exist for words and objects, but not 
for pseudo words and dot patterns, the former ones lead 
to more gamma activity than later ones. It was demon- 
strated that memory and cognitive activity is characteris- 
tic for certain pathological conditions such as dementia, 
epilepsy, Alzheimer, schizophrenia, and other cerebrovas-
cular diseases (e.g., autism, Williams syndromes, migraine, 
brain stroke, hyperkinetic, and hallucinations) [46]. More- 
over, invasive recordings in the temporal lobe of patients 
have revealed a close association between gamma band 
over temporal region and memory [54]. 

Arousal level closely related to gamma band activity, 
and it reflects a fundamental property of human behavior 
and, partly, is associated with ability to process the in-
formation [12,18,46]. In general, the lowest end of the 
arousal level is drowsiness state, and the opposite ex-
treme end is fully awake state in normal and patient sub-
jects. Hence, the level of arousal state during early state 
of drowsiness in patient subjects is less than during fully 
awake state in patient subjects. This means that gamma 
band activity during early state of drowsiness is less than 
during fully awake state in patient subjects and hence, its 
oscillation within drowsy state will be instable and ir-
regular comparing with fully awake state, which leads to 
an increase in r parameter of ApEn, because the standard 
deviation of the signal will increase accordingly (i.e., r = 
a. STD(S)). As the value of r parameter increases, the 
variability in the tested activity of EEG sub band de-
creases continually for the corresponding dimension m 
[16]. Hence, ApEn values of gamma band over temporal 
region were decreased in the presence of early state of 
drowsiness comparing with fully awake state when pa-
tient state was significant during eye closure.  

On the other hand, in normal subjects, maximum CIR 
could be obtained also in theta band over temporal region, 
when early state of drowsiness and fully awake state 
were significant during eyes-closed and eyes-opened re- 
spectively. As stated before, early state of drowsiness is 
often accompanied by RMTD waves, and their frequen-
cies are ranging from 5 to 7 Hz. RMTD patterns are char- 
acterized by their arch shaped and notched waves. These 
notches may give the waves a somewhat shapely con-
toured appearance [12]. RMTD patterns in normal sub-
jects are characterized by their gradual onset and at- 
tenuation, which increases the complexity. Whereas, in 
patient subjects, RMTD patterns could not be recognized 
due to its similarity with the EEG patterns of the patients 
[55,56]. Hence, RMTD in patient subjects does not in-
crease the unpredictable fluctuation, and hence ApEn val- 
ues decreases in patient subjects comparing with normal 
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about 3.04% (5.25% – 2.21% = 3.04%). Correspondingly, 
during eyes opening, theta band activity over temporal 
region is accompanied by SREDA waves, which their 
frequencies ranging from 5 to 7 Hz. SREDA patterns are 
mostly seen during, relax fully awake state and are char-
acterized by their sharply contoured, arch form and are 
flat topped [57]. SREDA patterns are closely similar to 
patient patterns and sometimes SREDA leads to misdi-
agnose [12]. Hence, ApEn values decreases in patient 
subjects comparing with normal about 3.05% (4.9% – 
1.85% = 3.05%). Moreover, during eyes opening, the 
frequency of theta band was increased, and hence, the 
extent of unpredictable fluctuations in theta activity was 
increased accordingly. All of the previous facts could 
make an increase in CIR of theta band over temporal re-
gion during eyes opening/closing regardless to subject’s 
health status. 

Recent studies have implicated the anterior cingulated 
cortex (ACC) as a potential generator of frontal midline 
theta activity [58,59]. Other studies reported that either 
medial prefrontal cortex (PFC) or dorsolateral prefrontal 
regions (DL-PFC) is the source of frontal midline theta 
activity [58,60]. ACC activation was often accompanied 
by any activation process in frontal region particularly in 
DL-PFC [61,62]. Other studies reported direct and indi-
rect evidence for a tight coupling between neuronal ac-
tivity and energy metabolism [62,63]. These studies are 
consistent with another study which observed that neural 
activity is closely associated with glucose utilization be-
cause glucose utilization reflects synaptic (i.e., particu-
larly pre-synaptic) activity [64]. A significant association 
was observed between theta band activity in ACC, which 
is located over frontal region and metabolism activity as 
well as between theta band activity in ACC and DL-PFC 
[62]. Hence, it could be noticed here, that theta band ac-
tivity is closely associated with frontal region throughout 
its connection with ACC and DL-PFC in normal subjects 
due to metabolism activity.   

Another study observed that frontal midline theta ac-
tivity is closely associated to concentration, arousal and 
attention during eyes opening, by measuring frontal mid-
line theta activity during playing preferred video games 
[65]. Whereas, when the same experiment was done to 
another group of subjects during watching uninterested 
and boring animations, the extent of frontal midline theta 
activity was observed to be decreased significantly [65]. 
It could be noticed here; frontal midline theta activity 
was attenuated during eyes opening in normal relaxed sub- 
jects and closely associated with arousal level (focused 
attention) of the subjects. It is well known that the level 
of arousal during drowsiness is less than fully awake state 
(i.e., the activity of frontal midline theta during drowsi- 
ness is less than fully awake state) and hence, frontal 
midline theta oscillations within drowsy state will be 

instable and irregular comparing with fully awake state 
which can make an increase in r parameter and decreased 
in ApEn values. Moreover, frontal midline theta activity 
is accompanied by special types of unclear significant 
patterns which are called: Ciganek patterns, which are 
best seen during resting wakefulness state over frontal 
region, their frequencies are ranging from 4 to 7 Hz and 
they are characterized by their sinusoidal shape [12]. All 
of the previous factors and facts could make an increase 
in CIR of theta band over frontal region in presence of 
fully awake state more than early drowsiness about 2.05%. 
(10.98% – 8.93% = 2.05%).  

All the types of movements are usually controlled by 
the motor cortex which is located over the central region 
over the brain [12]. Some studies reported a direct evi-
dence for a tight coupling between delta band activity 
and movement [66,67]. These studies are consistent with 
another study which suggested that delta band activity is 
important for normal functioning of both the brain and 
peripheral organs [68]. During early state of drowsiness 
most of peripheral activities tends to be inactive and 
hence, a reduction in delta band over central region is 
expected. In addition to that, during eyes opening, delta 
band activity becomes instable, and this will lead to an 
increase in the complexity of delta band during early 
state of drowsiness more than fully awake state. All of 
the previous circumstances could make an increase in 
CIR of delta band over central region in presence of early 
state of drowsiness more than fully awake state about 
4.89% (13.36% – 8.47% = 4.89%). 

5. DISCUSSION 

5.1. Complexity Increasing Rate (CIR) 

The percentages of CIR values were calculated for all 
regions where there were no significant interactions be-
tween the factors of interest, and where the effects of the 
factors of interest were not in the same regions. For ex-
ample, during eyes closing, factor A (subject’s health- 
status) was found to affect the complexity of alpha band 
activity. Normal subjects exhibited an increase in the 
complexity of alpha band activity over all regions except 
the parietal region, as shown in Figures 3(a)-(c), (e) and 
Table 6. At the same time, factor B (subject’s wakeful- 
ness state) was found to affect the complexity of frontal 
and occipital regions. The results also indicated that early 
drowsy state could make an increase in the complexity of 
alpha band over these two regions.  

This finding suggests that the complexity of alpha band 
activity over frontal and occipital regions was affected 
by the sum of the effects of both factors A and B, because 
there was no significant interaction in those two regions, 
and, at the same time, both factors exhibited significant 
effects. As such, we were unable to determine how much 
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each factor could increase in the complexity of alpha band 
to be able to calculate the CIR values.  

The dependent variable (ApEn values) was calculated 
for all EEG band frequencies. These data were decom- 
posed from eyes-closed and eyes-opened periods using 
DWT.  

The average of ApEn that related to all EEG frequency 
bands for three trials of relative short period of eyes 
opening/closing over each electrode’s signal per group of 
subjects was calculated. The second average was calcu- 
lated from the first average over multiple electrodes that 
corresponded to a particular region out of five regions in 
the brain. By taking the averages twice, we were able to 
eliminate differences that might have existed in the se-
quence of repetitive eyes opening and closing, and dif-
ferences that might have existed among the electrodes 
that corresponded to a particular region. Thus, the effects 
of the two factors of interest: subject’s health-status and 
subject’s wakefulness state were tested on the second 
average of ApEn values using two-way ANOVA, for 
each region in the brain.  

After determining the main effects on the complexity 
for each EEG band for each region, we calculated the 
third average of the ApEn values for all the EEG sub- 
bands across all subjects per each group. By calculating 
the third average, we were able to eliminate differences 
among subjects within each group. This averaging was 
also performed because we sought to test the magnitude 
of the significant factor’s effect on the complexity of each 
particular EEG sub-band in the presence of the second 
factor (i.e., the non significant factor’s effect) during 
eyes opening and closing.  

This test was performed by calculating the magnitude 
of the CIR (as a percentage) for all significant effects for 
each factor without an interaction. Repetitive eyes open- 
ing and closing during the early drowsy state in normal 
subjects is typically similar to the wakefulness state. 
Moreover, the early drowsy state and fully awake is often 
accompanied by unclear significant patterns, and hence, 
unpredictable fluctuations in the EEG frequency bands 
are also increased.  

To reflect such situations, maximum CIR rather than 
minimum CIR was chosen as a tool for complexity 
evaluation of the significant factor’s effects in the pres- 
ence of the second factor (the non significant factor’s 
effect). It could be noticed from the obtained results in 
CIR as shown in Tables 7 and 8 that normal state exhib-
ited more CIR in theta band activity and delta band ac-
tivity during eyes opening over frontal and central re-
gions respectively. Correspondingly, patient state exhib-
ited more CIR in gamma band activity over temporal 
region during eye closure. Moreover, it could be noticed 
that fully awake state and early drowsy state exhibited 
more CIR in theta band activity over temporal region dur-

ing eyes opening and eyes closing respectively. All of 
the previous results were related to maximum CIR, as 
shown in Tables 7 and 8. 

5.2. Subject’s Health Status Detection 

In the current study, we could use the results of our EEG 
data set as an index to the subject’s health status, as dem- 
onstrated below:  

During eyes opening/closing gamma band activity over 
temporal can be used to detect several pathological con- 
ditions (e.g., epilepsy, schizophrenia, dementia, and Alz-
heimer), regardless of subject’s wakefulness state.  

Beta band activities are associated with eyes opening 
and are common over posterior region of the brain. Other 
studies have mentioned that large amount of beta band 
activity over this region would be considered abnormal 
and leads to several neural diseases like epilepsy [12].  

Our results indicated that the complexity of alpha band 
was increased significantly in normal subjects, on the 
moment of eyes closing due to alpha squeak which could 
be used as an index to subject’s health status. Moreover, 
in patient subjects, the onset of early drowsiness is quite 
poorly defined comparing with normal subjects.  

Lambda waves are best seen over posterior region only 
during eyes opening in normal subjects together with theta 
band, and could be considered abnormal in other circum- 
stances. Frontal midline theta activity is closely associ-
ated with normal subjects throughout its relationship 
with metabolism process and arousal level. Hence, fron-
tal midline theta activity could be used as a good indica-
tion for the subject’s healthy status regardless of sub-
ject’s wakefulness state.  

Delta band activity over frontal region during eyes 
opening only plays an important role in normal subjects 
by transmitting the information from and to short term 
memory, and its instability over this region can be con-
sidered abnormal sign, and leads to cognition impairment 
like dementia and Alzheimer. On the other hand, during 
eye closure, delta band activity over temporal and frontal 
regions associates with some of neural diseases [12,35]. 
Moreover, our results could reveal the role of delta band 
and its association with the peripheral movements in 
normal subjects from complexity perspective. Hence, delta 
band over central region during eyes opening could be 
used as an index to subject’s health status. 

On the other hand, when the effects of early state of 
drowsiness and fully awake state were significant during 
eyes closing and eyes opening respectively, those states 
could make an effect on the complexity of theta band in 
normal subjects more than patients by around 2.4 times 
(5.25%/2.21% ≈ 2.4), and 2.6 times (4.9%/1.85% ≈ 2.6), 
during eyes-closed and eyes-opened state respectively, as 
shown in Tables 7 and 8. 
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5.3. Limitations of the Study 

This study involved two major limitations, which should 
be addressed in the future research. First, the relationship 
between the observed effects and the age of the subjects 
should be investigated, since the average age of the pa- 
tient group was higher than that of healthy group, as 
shown in Table 1. Second, for the present method sug- 
gested to be applied in diagnosis, a value of parameter r 
in ApEn estimation should be calculated for all possible 
values of standard deviation from 0.1 to 0.25, as dis- 
cussed in sub Section 2.3. 

6. CONCLUSIONS 

The present results tested the ability of ApEn to detect 
the early drowsy/fully awake state, and distinguish nor- 
mal/patient status based on the complexity of EEG band 
frequencies over five different brain regions, based on 
three trials of the eyes opening and closing task. This 
detection was performed by applying ApEn to the limited 
EEG band and its sub-bands, which were decomposed 
from EEG using DWT during the repetitive states of eyes 
opening/closing in each of five regions. Depending on 
whether the early drowsy state could be characterized by 
the appearance of the alpha rhythm, and associated with 
a decrease of its frequency to 2 - 7 Hz, we were able to 
estimate r by choosing a = 0.15 of the standard deviation 
of our original data signal, and m = 2 values as an input 
parameter for ApEn. The average of ApEn was calcu- 
lated three times: first, across the eyes-closed periods and 
eyes-opened periods for each electrode; second, for the 
first average of ApEn values related to multiple elec- 
trodes that corresponded to particular region, during eyes- 
closed and eyes-open periods respectively; third, the av- 
erage of all ApEn values, for all EEG sub-bands, across 
all the subjects in each group, was calculated. Two-way 
ANOVA was applied to the second average of ApEn val- 
ues to test the effects of the two factors: the subject’s 
health-status and wakefulness state. After determining the 
significant factor’s effect on the complexity of EEG band 
frequencies using two-way ANOVA, we tested the mag- 
nitude of this effect under the presence of the second 
factor using the third average. The maximum CIR was 
used as an indicator of the optimal conditions for distin- 
guishing normal/patients subjects and the early drowsy/ 
fully awake state, depending on several facts that indi- 
cate normal subjects, early drowsy state and wakefulness 
in repetitive short period of eyes opening/closing could 
make an increase in the complexity of EEG band fre- 
quencies. Further research is required to improve the de- 
tection of early drowsy state/wakefulness as well as dis- 
tinguishing normal subjects and patients using other non 
linear techniques as dependent variables. The study of 
other non linear properties in the brain will help to elu- 

cidate other characteristic features of EEG signals. 
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