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ABSTRACT 

A partial equilibrium model is developed to examine conditions supporting the representation of the value of a firm by 
the lognormal diffusion process. The model formalizes the operating side of the firm and leads to a formula valuing the 
firm’s risky profit stream. The present value formula is then compared to the existing work on valuing exogenous risky 
income stream. Implications of the resulted pricing model on the volatility of the firm value processes are explored. 
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1. Introduction 

Since the work of Merton [1] on pricing risky debt of a 
firm, it becomes a standard in the finance literature to as- 
sume a geometric Brownian motion representation of a 
firm’s value process. Such a constant volatility lognormal 
distribution, the horsepower of option pricing, is rather 
consistent with some earlier influential papers by Rubin- 
stein [2] and Ross [3]. These papers take the firm’s risky 
investment cashflows as an exogenous stochastic process 
and then value these future income streams via an in- 
tertemporal arbitrary pricing operator. 

In this paper, we explicitly model a firm that performs 
intertemporal profit maximization. Our model assumes there 
is a futures market for the firm’s output. It specifies an 
internal production function for the firm and the adjust- 
ment cost function for its investment. This specification 
in conjunction with the external arbitrage market force leads 
to a present value formula for the firm’s operating profit. 
Compared to one of the key results of Rubinstein [2], our 
main result unveils some severe restrictions behind the 
exogenous cashflow approach to a firm’s value. Since the 
literature on the term structure of defaultable debt based 
on the constant volatility firm value process has not been 
empirically supported (see for instance Schonbucher [4]), 
our pricing formula also allows us to critically re-examine 
the firm value process. The main feature of our model 
imbeds a non-constant volatility value process while main- 
taining the tractable spirit of the classic structural approach 
to contingent claims analysis (CCA). 

The rest of the paper is organized as follows. Section 2 
describes the market setting. The firm’s production acti- 

vity is introduced in Section 3. The present value of the 
firm’s intertemporal profit and the resulting valuation 
equations are developed in Section 4 to 5. Section 6 con- 
cludes the paper.  

2. The Market Setting 

The analysis begins with a firm producing an output traded 
in a perfectly competitive market. The output price is as- 
sumed to follow an exogenous stochastic process 

d  = d dP P t z                (1) 

where dz is the increment to a standard Brownian motion 
process,   represents the expected growth rate of the out- 
put price and   stands for the instantaneous volatility of 
the output price. Both   and   are assumed to be 
constant values rendering the conditional output price to 
be a lognormally distributed process. 

Let F(P, t) denote the futures price at time t for deliv- 
ery of one unit of the output at time T and use T t    
to represent the remaining time to maturity. By Ito’s le- 
mma, the instantaneous change in the futures price is 
given by  

 2 2d = 1 2 d d .PP PF F F P t F    P        (2) 

The above equation represents the gains or losses gen- 
erated by holding a futures contract. Uncertainty enters 
into a futures position through the second term. The risky 
component can be eliminated via a creation of the ac- 
companying hedge portfolio. At time t an investor can 
buy one unit of the commodity at a cost of P(t) and si- 
multaneously take a short position of 1

PF   shares of 
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futures contract. The futures position does not entail any 
initial cost. 

The value of the hedge portfolio in the next instant is 
given by  where the middle term 
rewards the owner of the commodity with the conven- 
ience of having the output on hand. In percentage terms, 
the return to the hedge portfolio is given by  

1d d PP P t F F    d

   
   1 2 2

d d d

d 1 2

P

P PP

P P t PF F

t PF F F P t



 

 

    d
     (3) 

By virtue of the standard arbitrage argument forces the 
above deterministic portfolio return to be identical to the 
instantaneous return on the riskless asset dr t . This 
implies the valuation partial differential equation (here- 
after denoted as PDE) of the futures price is given by 

   1 2 2d 1 2 d   P PPt PF F F P t r t     d .  

Upon simplifying, we have  

 2 21 2 0.PPPF P r P F F             (4) 

It can be readily verified that the solution to the PDE 
takes a simple form: 

     , expF P t P t r .              (5) 

The following relation, a stochastic representation of 
the futures price process, is useful for the subsequent 
development of our main result: 

 d dP P dF F P P F r t    .           (6) 

3. The Firm’s Operating Profit 

The firm is assumed to operate in a perfectly competitive 
output market where there is no tax and the output fluc- 
tuates according to the geometric Brownian motion 
process. The firm’s instantaneous revenue at time s is 
generated by P(s)Q(s) where Q(s) is the firm’s produc- 
tion function taking labor and capital as the input factors. 
We assume the firm’s labor choice L(s) can be made in- 
stantaneously whereas the adjustment cost assumption 
prohibits the firm to immediately obtain the desired 
capital stock. 

Denote the investment variable as I(t) and the capital 
stock K(t); the relationship between these is defined by 
dK = I(t)dt. The cost function associated with a given 
level of I(t) is defined by C(I). We assume that C(I) is a 
convex cost function which is increasing in investment, 
such that  and    0C I    0.C I   Convexity of the 
cost function captures the reality that a high level of in- 
vestment extracts limited resources from the firm to pre- 
pare for installation of additional capital stocks or to train 
labors with newly acquired machines. A convex adjust- 
ment cost function plays a key role in determining a fi- 
nite size of the firm. Physical depreciation rate can be 

incorporated to the above stock and flow relation. How- 
ever, for simplicity of exposition, we assume no depre- 
ciation. 

Given the output of the firm at each instant, Q(K,L), its 
net profit at time t is defined by the difference between 
sales revenue and the relevant costs involved in produc- 
ing the output: 

        π ,t P t Q K L w L t C I           (7) 

While the management chooses the current level of 
labor combined with existing capital stocks to generate 
highest possible revenue, it has to devote resources to 
prepare for the future level of capital stocks in its pro- 
duction activity. The last term in the net profit equation 
for the firm then creates an intertemporal link between the 
current profit and the future profit for the firm, given the 
entire lifespan of the company, via the differential equa- 
tion for the stock variable K(t). Given the instantaneously 
adjustable choice variable L and dynamic control vari- 
able I, the management takes the stochastic output price 
process P(t) as the exogenous state variable. In this com- 
plete futures market, risk preference does not play a role 
in valuing the intertemporal profit of the business.  

This implies there exists an equivalent martingale mea- 
sure so that the firm evaluates its risky profit stream by 
using the risk free rate to discount the conditional expec- 
tation of its future net cash flow with respect to this mar- 
tingale measure. 

Maximization of the firm’s net present value can be 
expressed as 

  
        ,

,

max exp , d
T

I L tt

V K t t

E rt P s Q L K w L C I s



    
 (8) 

where t  represents the information set generated by 
the commodity price P(t) and the expectation is taken 
with respect to the equivalent martingale measure. When 
the price process is specified as a lognormal diffusion, 
the information set can be substantially simplified. In this 
case t  can be replaced by the currently observed 
value of the price process, P(t). 

4. The Arbitrage Valuation of the Firm’s  
Income Stream 

The net present value function indicates the business 
profit is derived from producing the homogeneous product 
that is sold at the market determined price P. At any 
future instant, the firm’s profit is defined by combining 
the output price process with its production function. The 
valuation of these uncertain profit stream is parallel to 
that of determining the futures price in the earlier section. 
Denote the present value of the firm by G(P,K,t). Con- 
sider the return to a hedge portfolio consisting of owning 
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one unit of the firm’s share and a short position on 

P PG F  futures contracts. As the value of the firm is 
governed by the three state variables K and P and t, 
application of Ito’s lemma leads to 

maximizing activities. Unless the production is under 
decreasing return to scale, the size of the firm in this case 
will end up being indeterminate. The other extreme, 
   , captures the firm’s capacity constraint; any 
capital expansion is met with an infinite expense incurred 
by the firm’s operation.  2

d d d d 1 2 dP K t PPG G P G K G t G P    ,       (9) 

Letting   fall between the two extreme parametric 
values, the constant parameter   can be interpreted as 
a measure of the speed of adjustment to the newly 
installed capital stocks. The case of a linear cost function 
where 1  , when combined with a constant return to 
scale production function leads to a firm’s profit function 
that is linear in the capital stock. The implication of having 
a linear adjustment cost function is that the speedy capital 
formation indicates an unbounded acquisition of new 
capital to maximize the firm’s profit. The resulting firm’s 
size is again indeterminate. The convex adjustment cost, 
represented by 1  , can be justified as placing a bound 
to the firm’s size. The chosen adjustment cost function is 
then combined with the firm’s production technology.  

where the last term captures the Jensen’s inequality 
representing the plausible non-linear relation between the 
firm’s value and the output price. Recalling that the firm’s 
current profit from producing the output is given by 

we add these terms as income con- 
tributions to obtain the total change in the firm’s value. 
On the other hand, the short futures position in the hedge 
portfolio generates the payoff given by  

  ,P Q w L C I   

 d .P PG F F   
Combining the instantaneous value changes in each 

component of the hedge portfolio leads to  

   
 

 

2

2

d d 1 2 d

d d

d d 1 2 d

   d .

P K PP

P P

K t PP

G P G I t G P

PQ wL C I t G F F

G I t G t G P t r P G t

PQ wL C I t



  

     
      

    

dP

 
The latter is assumed to be the Cobb-Douglas pro- 

duction function      1, ,Q K L L t K t
   where   

is assumed to be a constant and 0 1  . 
The right side of the above equation results from sub- 

stituting the expressions for dP and dF from Equations (1) 
and (8) and simplifying. This equality indicates that the 
hedged portfolio return is non-stochastic. In the absence 
of arbitrage opportunity, the hedge portfolio return must 
grow at the riskfree rate leading to the following valu- 
ation PDE: 

The above specification of the investment cost function 
and the production technology reduce the generality of 
our model but it is motivated by the search for a closed 
form solution to the valuation problem. To further 
enhance the tractability of the problem, we assume that 
the firm is infinitely long-lived, removing the calendar 
time as one of the three state variables in the partial 
differential equation. The consequent valuation PDE 
derived from the last section is reduced to 

 
 

2 21 2 PP P K

t

P G r G G I

G PQ wL C I r G

    

     
        (10) 

 

  
2 2

1
,

1 2

  max .

PP P

I L K

rG P G r P G

G I P L K wL I  

 



    

    
 (11) The solution function G(P,K,t) to the partial differential 

equation represents the present value of the firm under a 
defined operating policy. The space of solution functions 
can be narrowed down and the solution form can be 
sharpened as soon as optimal choices to the control are 
made in the firm’s decision problem and appropriate 
boundary conditions are specified. 

Performing the required maximization and substituting 
the resulting optimal choices yield the nonlinear PDE 

 

      

2 2

1 1 1 1
               

1 2

1

PP P

K

rG P G r P G

G P
 

 

  
 

   

     
K

  (12) 5. The Solution to the Profit Maximization  
Problem and the Value of the Firm 

where     1 11 w      .  The above valuation 
equation for the firm’s value is expressed in terms of the 
state variables P and K given the parameters of the 
production and cost functions. Appendix A shows that 
the above valuation PDE has a solution given by  

This paper assumes a parametric form for the adjustment 
cost function      ,  0 and 1.C I I t

    
 0,  The parameter  measures the significance 

of the adjustment cost. When 0  , adjustment cost 
does not play any role in determining the firm’s profit 

 
      

         
1

22

1
,

1 1 2 1 1 1
G K P K

r

 
   


        


 

 
       2

                 (13) 
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where  

  

     
    

1 1

22

1

1 1 2 1

and  1

P

r

w



 


   

  






   

 

 

Discussions on this equation are in order. There are 
three sets of variables forming the inputs to the formula. 
The first set consists of the production technology 
parameter   and the per unit labor cost w. The second 
set consists of the adjustment cost technology parameters 

and    measuring the significance and speed of 
adjustment. These two sets of parameters are assumed to 
be constant. The last set consists of state variables K and 
P. The former is deterministic and the latter stochastic 
with coefficients and   . Finally, the market required 
return on the spanned source of uncertainty dz is given by 
the riskless interest rate under the risk neutrality argument. 

The exogenous commodity price P, which is the 
fundamental source of value to the firm’s profit stream, 
affects the firm’s present value through a composite 
variable   defined above. Since the composite variable 
appears in the two separate terms of the value function in 
(13), it is useful to isolate the discussion of the influence 
of   channeled through these two terms. The first term 
is the product of   and K. Given that K is the existing 
capital stock owned by the firm, K   is naturally 
interpreted as the total value contribution to the firm by 
the exiting capital. Financial economists define   as the 
marginal revenue product of the firm’s capital. 

It is worth pointing out that   has a noticeable 
format reminiscent of the present value of a perpetual 
income stream under certainty. This perpetuity interpreta- 
tion is consistent with the presumption that the business 
is infinitely lived with its future risky stream of profit 
discounted by a complete arbitrage free financial market. 
It is now useful to compare   in this paper with the 
earlier result derived by Rubinstein [2]. Rubinstein’s 
model sets the standard methodology for firm’s valuation 
problem in finance. Given an exogenous stochastic cash- 
flow process for a business firm, an appeal to an efficient 
financial market governed by a martingale pricing operator 
is necessary and sufficient to produce a fair market value of 
the firm’s cashflow. Rubinstein assumes a discrete 
stationary random walk process, which is a discrete 
counterpart of the geometric Brownian motion process for 
our commodity price process with a zero drift. 

Our perpetuity reasoning for   in this paper is 
different but consistent with Rubinstein’s result.  

The difference arises from the fact that the firm’s 
production activity is endogenized and the technology 
parameter   plays a role in producing the transformed 

ex- pected growth of the commodity price via  
       2 21 1 1 2 1 .        The difference 

between the required market return r and the expected 
growth opportunity stands for the market net required 
return used to discount the marginal revenue contribution 
by the installed capital. 

The consistency of the first term with Rubinstein’s 
result also allows us to emphasize the contribution of the 
second value component. The second term highlights the 
presence of the adjustment cost parameters and    
that, when combined with the production parameter, 
further transform the expected growth of the commodity 
price process. As it takes time and resource for the firm 
to turn the raw capital into its ultimate production form, 
the firm has earned an access to the future benefit accrued 
by these new capital via the firm specific cost technology. 
Such adjustment cost associated benefit is spread over 
the indefinite future and the financial market discounts 
those benefits stream through an appropriately adjusted 
cost of capital. The result is the rational appearance of 
the second value component. 

Two special cases arise from limiting arguments that 
would vanish the second term and reduce the present 
value formula to the standard result where value arises 
mainly from the firm’s production technology. The first 
case corresponds to no adjustment cost incurred when 
new capital is acquired ( 0  ). The second case arises 
when the adjustment cost function is linear in investment 
( 1  ). Substituting either one of the these cases is 
sufficient to reduce the second term of the value function 
to zero. As discussed earlier, both cases correspond to a 
situation where the firm’s size is indeterminate and the 
intertemporal optimization problem has no interior 
solution. The standard perpetuity formula in the finance 
literature appears to thrive on the validity of these two 
cases. 

An additional disquieting feature of the valuation 
formula begins to surface when one continues examining 
the stochastic evolution of the valuation function G(K,P). 
Whereas the commodity price process follows a simple 
geometric Brownian motion with a constant volatility, 
the resulting process for G is not a geometric Brownian 
motion with a constant volatility. A causal observation1 
of the functional form for G suggests this consequent 
feature. Some lengthy algebraic developments are presented 
in the Appendix B to verify this claim.  

In that appendix it is also shown that either 0   or 
1   would allow one to restore the geometric Brow- 

nian motion representation for G. On the contrary, when 
the firm possesses a significant convex adjustment cost 

1The fact that β and γ appear more than once in the second term of the 
pricing formula does not simplify that term immediately to zero when 
evaluated at β = 1 or γ = 0. Some delicate limiting arguments are estab-
lished in Appendix B to justify that this second term reduces to zero. 
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function, one does not have a lognormal diffusion 
representation for its value process. The implication of 
this analysis has some nontrivial bearing on many existing 
models that rely on assuming a value process for a firm’s 
assets following a geometric Brownian motion with a 
constant volatility. Although the popular lognormal 
diffusion model gives rise to numerous useful mathematical 
features and valuable economic insights in finance, our 
analysis has uncovered the severe limitations imposed on 
the business entity when the constant volatility assumption 
is adopted. 

6. Conclusions 

This paper begins with a neoclassic firm model and 
explores conditions leading to the lognormal diffusion 
price process that becomes the standard exogenous 
stochastic process in modeling a firm’s value process 
since the work of Merton [1]. There are works in finance 
literature that traces the economic connection between 
the lognormal diffusion process and the general equilibrium 
fundamentals. Such interesting connection is essentially 
behind the term viable price process after Bick’s [5] 
influential analysis. The result of this paper is based on a 
partial equilibrium firm value model in a complete market 
setup which keeps the representative agent behind the risk 
neutral probability. In the end, the geometric Brownian 
motion value process with a constant volatility emerges 
as a special case of a more general adjustment cost 
technology. The resulting non-geometric Brownian motion 
value process can also be qualified as a viable firm value 
process. 

In standard option pricing models, the assumption that 
stock prices follow a geometric Brownian motion processes 
has long been criticized as lacking empirical supports. 
Proponents of the non-constant volatility model emphasize 
the need to add random volatility and jumps in the 
generalization of the original Black-Scholes model. The 
notion that volatility is a non-diversifiable exogenous 
process turns the original Black-Scholes option pricing 
environment into an extended two state variables pricing 
framework. 

Earlier works of Hull and White [6], Scott [7] and 
Heston [8], while offering substantial insights to the 
extended pricing framework, add necessary economic 
and computational complications. This paper is aligned 
with the extended constant volatility literature, but it 

aims at producing a tractable result on a firm’s value 
with only one state variable. The next task is to take the 
implication of the present paper to modify some of the 
existing works that are crucially based on a geometric 
Brownian motion process for the firm asset values, the 
horsepower of Merton [1] seminal structural approach to 
corporate securities. 
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Appendix A 

In this appendix we derive the solution to the non-linear 
PDE stated as Equation (12) in Section 5. We conjecture 
the following solution function  

     ,G K P A P K B P   

where A(P) and B(P) are functions assumed to be at least 
twice continuously differentiable with respect to the va- 
riable P. Then the valuation PDE take an additively 
separable form  

    
   

         

2 2

1 1 2 2

1 1

1 2

1 2

 1 1

PP

P P

r A P K B P A K P

A K r P P K B P

B r P A
P



.

P





  

   





 

   

       

 

First adopt a functional form    1 1A P q P    and 
we need to verify it satisfies the first segment of the en- 
tire PDE. It is a matter of taking the necessary partial 
derivatives, substituting the A(P) and its derivatives on 
both sides of the above PDE. Then the unknown co-effi- 
cient q comes out to be  

      2 2

1
.

1 1 1 2 1 1
q

r r  


    

Finally, substitute q back into the conjectured solution 
gives 

 

      
 1 1

2 2

1

1 1 1 2 1 1

A P

P
r r


   


    

 

We have half of the solution for G(P,K) worked out as 

      ,G P K A P K B P K B P      

where   is the chosen notation in Section 5 and it is 
identical to A(P). It remains to solve for B(P). Let us 
conjecture B(P) with the following solution form 

          

   

1
1 1

1 1

1 1

       

B P b q P

bHP

 

  

   


 

 



 

where we set  

      1
1 1H q

 
   


   


 

Next, substitute B(P) into the remaining segment of 
the PDE with the corresponding partial derivatives appro- 
priately taken in order to solve for the unknown coeffi- 
cient b. The resulted b comes out to be  

             2 22

1

1 1 1 2 1 1
b

r r          


        1
 

Further, putting b back into the conjectured solution B(P) gives 

       

            
1

2 22

1
.

1 1 1 2 1 1 1
B P

r r

    

         

    
          

 

Combining the verified solution forms for A(P) and B(P) gives 

           

            
1

2 22

1
,

1 1 1 2 1 1 1
G K P A P K B P K

r r

    


         


   

        
 

This completes the derivation of the claimed solution. 

Appendix B 

In this appendix, we examine the stochastic dynamics of the firm’s value process given the closed form solution in 
Section 5. For convenience we recall Equation (12), the pricing formula,  

       

           
1

2 22

1
,

1 1 1 2 1 1 1
G K P K

r

    


         


 

       
 

where  

  

           
2

1/ 1
1

2
,   1

1 1 2 1

P
w

r


  

   


 

   
   
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Since P is the only stochastic state variable, let 

    1 2 21 1 2(1 )
D

r


   


   

 

      

         
1

1
2 2 22

1

1 1 2 1 1 1

D
D

r

 
  

        


 


      

  

 
Then G(K,P) can be rewritten as 

      1/ 1 1 1
.1 2,G K P D P K D P        

Also, recall the commodity price dynamics is given as 
 d dP P t zd    and the capital stock dynamics is 
d d .K I t   Next, apply Ito’s lemma to the function G to 
obtain  d dGG t G P P     d .z  Our goal is to in- 
vestigate whether the instantaneous return on the firm’s 
value process will have a constant volatility, given that 
the volatility   to the commodity price process is a 
constant. To pursue this goal, it suffices to examine the 
stochastic part of the above dG process. Taking the par- 
tial derivative of the value function and rearranging, we 
obtain 

  
  

    
    

1

1 1 1
2

2

1 1 1

1 2

1 1

1

1 1
  

DG P
P

G D P

D

D K P D

 

 

 


   

 

  

  
  

  
     
   

 

where P is non-vanishing in each of the two terms on the 
right hand side. We also want to examine the case when 

1  . At this juncture we set aside some delicate issues 
involving the limiting value of the second term when   
approaches one. On the premise that the second term 
approaches zero when   approaches one, we consider 
the simplified value function for the firm  

   1 1
1, .G K P D P K  

In this case, taking the partial derivative and re-arran- 
ging we obtain 

  1 1 .
G P

P
G

   
    

This verifies that when   approaches one, the firm’s 
instantaneous return process has a constant volatility. 

We are left to examine the limiting value of the second 
term in the valuation equation when   approaches one. 
When 1 

use 
, the value of the numerator tends to in- 

finity beca of the presence of   1    in the ex- 

ponent to  , 0  , . On the
 

 other hand 
 2

1 1  1    enter into the deno
entire denominator to approach 

negative infinity when 1

 and  1 minator in 
such a way to lead the 

   The consequent ratio leads 
to an indeterminacy. Nevertheless, the following lemma, 
an adaptation of the generalized mean-value theorem, re- 
solves the ambiguity. Before stating the lemma, let  

  
    221 2 1 1h        

 

Next, we write the second term as 

1,  ,   1 ,x g          

   
 

/ x

1 2
.

M x
W x

N xr gx h  
 

 

Lemma: Suppose M(x) and N(x) are differentiable 
fu

x  

nctions, except at 0 ,x  in a x b   and  

  
0 0

 limx x x xx  lim ,   M N x     

0 .a x b   where Then 

 
 

 
 0 0

lim  limx x x x

M x M

N x N


 





 

for  0 .a x x x b     
he proof of this resuT lt is found in Goldberg [9], p. 

204. The intuition of the above lemma is that one can 
avoid the indeterminacy from the ratio of two infinities. 
Let us specialize the lemma to our second term in the 
G(P,K) function and observe that letting 0 0x   is equi- 
valent to setting 1  . Then 

 
 

 1

1 2

ln exp ln
.

2 3

M

N r g h

 
  



 

  


  
 

Provided ,0 1    
tio pointw

we have  It follows that 
th

ln 0. 
e above ra ise converges to zero as 0x x . 

A similar argument can be developed to show th  
0

at when
   the second term of the valuation equation con- 

 to zero. verges
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