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ABSTRACT 

This paper investigates State Space Model Predictive Control (SSMPC) of an aerothermic process. It is a pilot scale 
heating and ventilation system equipped with a heater grid and a centrifugal blower, fully connected through a data ac-
quisition system for real time control. The interaction between the process variables is shown to be challenging for sin-
gle variable controllers, therefore multi-variable control is worth considering. A multi-variable state space model is ob-
tained from on-line experimental data. The controller design is translated into a Quadratic Programming (QP) problem, 
in which a cost function subject to actuators linear inequality constraints is minimized. The outcome of the experimental 
results is that the main control objectives, such as set-point tracking and perturbations rejection under actuators con-
straints, are well achieved for both controlled variables simultaneously. 
 
Keywords: Multi-Variable Control; Aerothermic Process; Actuators Constraints; Process Identification; State Space 

Model Predictive Control 

1. Introduction 

The heating and ventilation system plays an important 
role in our daily life where certain desired temperature is 
controlled in order to maintain the healthy and safe 
working environment to the conditioned space. It is also 
the case in many industrial sectors including chemical, 
mineral, drying and distillation processes, as well as 
pharmaceutical and agroalimentary production units. It is 
argued that the temperature control is no more a chal-
lenging control problem in most of these applications. 
Nevertheless, some practical issues in many temperature 
control applications stimulate new developments and 
farther investigations [1-4]. 

For education and training purposes many aerothermic 
processes are available. They highlight most heating and 
ventilation problems, and they are widely referenced in 
process control literature. Different prototypes of these 
processes have been used to check new control strategies 
and many results were reported for the single variable 
control cases [5-9]. The aerothermic processes have gen-
erally a thermal protection for which they are entirely 
stopped when electrical power is maximal and the venti-
lator speed signal is under a given threshold. 

In addition to these physical limits, there exists a sig-
nificant interaction between the main processes variables 
which results from the nonlinearity of the process as re- 

ported in [8]. However, these constraints were not ex-
plicitly considered in most reported control approaches 
for aerothermic processes. Hence, the design of a multi- 
variable feedback control system is worth to investigate. 
Among the many valuable approaches to face this kind of 
control problems, the Model Predictive Control (MPC) 
with constraints has been considered in this work. This 
choice is motivated by the fact that the MPC control has 
been investigated and successfully employed in some 
complex industrial processes [10-16]. 

In this paper, the State Space Model Predictive Control 
(SSMPC) with actuators constraints is considered for a 
pilot scale aerothermic process. To fulfil the requirement 
for integral action in most industrial control systems, we 
have embedded the SSMPC design model with integra- 
tors to achieve this objective and ensure outputs steady- 
state error free. This strategy is transformed into a Quad-
ratic Programming (QP) problem, in which a quadratic 
cost function subject to linear inequality constraints is 
minimized on-line. The implementation of the predictive 
control in real time is based on the result of this minimi-
zation and only the first input of the optimal command 
sequence is used each time a new state is updated. In the 
synthesis of the SSMPC controller, a state space model is 
identified using the Numeric Subspace State Space Sys-
tem IDentification (N4SID). This technique has attracted 

Copyright © 2012 SciRes.                                                                                  ICA 



M. RAMZI  ET  AL. 51

an increasing attention of several researchers in the last 
few years [17-22]. It provides a robust and accurate me- 
thod for the identification of dynamical systems under 
the influence of perturbations. Among the advantages of 
the N4SID method, we mention its ability to deal with 
multi-input multi-output identification in a straightfor-
ward manner from process experimental data and the 
ease of use due to the small number of parameters which 
have to be chosen by the user. This is a method that does 
not require nonlinear searches in the parameter space, but 
it is based only on computational tools such as the QR 
factorisation, and the singular-value decomposition (SVD), 
which make it robust and numerically stable [20]. The 
method contrasts with the robust design used in [1]. In 
this paper, we examine various issues of both N4SID 
identification and SSMPC control performances achieved 
experimentally on a pilot scale aerothermic process. The 
objectives of the proposed control technique which are 
about reaching reference set-points for the temperature 
and the air flow, subject to effects of both actuators con-
straints and the external perturbations. These goals are 
achieved by manoeuvring the heating resistance and the 
ventilator speed under constraints on the manipulated 
variables and their rate of change to handle the factory 
set thermal protection. Worth to mention herein that the 
basic factory control system delivered with the process is 
restricted to classical analog PID control, and most re-
ported literature work on this kind of process deal with 
mainly mono-variable digital control. The results re-
ported herein highlight further aspects of multivariable 
control of the considered process. 

The paper content is organised as follows: Section 2 
introduces the description of the aerothermic process and 
underlines the interaction between the main process va- 
riables. Section 3 discusses the multivariable state space 
identification, which is the first step in the design of the 
controller. Section 4 introduces the SSMPC algorithm 
where integral actions and set-point tracking are naturally 
embedded in the algorithm. In this section, we recall the 
main steps in the development of quadratic programming 
which implement the SSMPC. Section 5 reports the ex-
perimental control results of the aerothermic process op-
eration under various inputs perturbations. Robustness of 
the SSMPC controller is also discussed and a final con-
clusion is given. 

2. Aerothermic Process Description 

The considered pilot scale aerothermic process [23], is 
shown as a schematic diagram in Figure 1 and depicted 
in a three dimensional view in Figure 2. As described in 
[24], it has the basic characteristics of a large process, 
with a tube through which atmospheric air is drawn by a 
centrifugal blower, and is heated as it passes over a 
heater grid before being released into the atmosphere. 

 

Figure 1. Schematic illustration of aerothermic process. 
 

 

Figure 2. Three-dimensional view of aerothermic process. 
 

The command objective for the aerothermic process is 
to regulate the temperature and the air flow by guaran-
teeing the verification of the full actuators constraints. 
The temperature control is achieved by varying the elec-
trical power supplied to the heater grid. There is an ener-
gized electric resistance inside the tube, and due to the 
Joule effect, heat is released by the resistance and trans-
mitted, by convection, to the circulating air, resulting in 
heated air. The air flow is adjusted by varying the speed 
of the fan. 

This process can be characterized as a non-linear sys-
tem. The physical principle which governs the behaviour 
of the aerothermic process is the balance of heat energy. 
Hence, when the air temperature and the flow inside the 
process are assumed to be uniform, a linear system mo- 
del can be obtained. 

As shown in the schematic of the aerothermic process, 
the system inputs, (u1, u2), are respectively the power 
electronic circuit feeding the heating resistance and the 
ventilator speed. The outputs, (y1, y2), are respectively the 
flow and air temperature. The input-output signals are 
expressed by a voltage, between 0 and 10 V, issued from 
the transducers and conditioning electronics. 

To examine the possibility of interaction between the 
temperature and air flow of the aerothermic process, two 
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experiments were carried out. In each case, the two pro- 
cess inputs were held constant and allowed to settle. If 
one of them undergoes a step change, the behaviour of 
the other output will be observed to see if this change had 
any effect on it. Figure 3 shows the results from both 
experiments. In the first half plot, the electric voltage 
supplied to the heater grid is held constant (at 4 V) and 
the speed of the fan undergoes a step change from 30% 
to 70% of its full range. The air temperature varied con-
siderably from 4 V (45˚C) to 2 V (35˚C). The second half 
plot shows the results when the fan speed is held constant 
and the electric voltage of the heater grid undergoes a 
step change, from 40% to 80% of full range. As can be 
seen, the air temperature is varied accordingly but the air 
flow is remained unaffected. These results show that the 
air temperature behaviour depends also strongly on the 
operating conditions of the air flow. 

3. State Space Identification 

System identification is an experimental approach to de-
termine the transfer function or equivalent mathematical 
description for the dynamic of an industrial process 
component by using a suitable input signal. This ap-
proach represents the first step in the design of a control-
ler. 

A considerable number of system identification meth-
ods have been investigated and they are generally classi-
fied into parametric approaches. In contrast to these clas-
sical algorithms, the State Space Method Identification 
(N4SID) does not suffer from the problems caused by a 
priori parameterizations and non-linear optimisations. 
They identify MIMO systems in a very simple and ele-
gant way. Among his advantages we mention: these abil-
ity to deal with multi-input multi-output in a straightfor- 
ward manner from process experimental data and the  
 

 

Figure 3. Interaction between the aerothermic process main 
variables. 

ease of use due to the small number of parameters which 
have to be chosen by the user. They are methods which 
do not require nonlinear searches in the parameter space, 
but it is based only on computational tools such as the 
QR and the singular-value decomposition (SVD), which 
make it robust and numerically stable [20]. 

In order to generate estimation and validation data for 
system identification, an experiment is performed. Data 
set used for the parameter identification step is build up 
with Pseudo Random Binary Sequence (PRBS) signals 
which are applied simultaneously to the two manipulated 
variables. This data set is displayed in Figure 4. 

The sampling interval is Ts = 1 second. The signals 
collected, via the MF624 data acquisition module, are 
yield in the interval (0 V, 10 V). After the application of 
N4SID algorithm on first half experimental data of iden-
tification (i.e.: 100 minutes), the model of the aerother-
mic process is given by the following discrete state-space 
representation:  

     
     

1 1p p p

p p

x k A x k B x k

y k C x k D u k

   
  

0.9819 0.0024 0.0009 0.189

0.0800 0.5159 0.2760 0.0679

0.0270 0.6286 0.2750 0.2292

0.0810 0.0442 0.3830 0.7457

pA

  
 
 
   
 

  

0.0005 0.0003

0.0001 0.0256

0.0018 0.1002

0.0085 0.0222

pB

 
  
 
 
 

25.2618 1.0062 0.8844 2.4627

2.2614 14.8776 3.5444 1.2790pC
 

     

      (1) 

with 

 

 

 

The matrix Dp is equal to zero, u = [u1, u2]
T and  

y = [y1, y2]
T. 

 

 

Figure 4. Data set for state space identification. 
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The system described by these matrices is stable, 
completely observable and controllable. 

Once the model is identified, we have validated it by 
comparing his estimate output, when the input of the re- 
maining experimental data is applied, with the true sys-
tem output. This comparison is represented by the Figure 
5. 

As shown in this figure, it appears a good similarity 
between the true system output and the identified one. 

4. Control Problem and SSMPC 
Formulation 

The deterministic model of aerothermic process be con-
trolled has two inputs, two outputs and four states. When 
the plant noise and perturbation are taken into considera-
tion, the Equation (1) describing the aerothermic process 
becomes: 

   
     

1 1p p

p p

   
 

p d

d

x k A x k B

y k C x k D u k

   
  

x k B w k

D w k




    (2) 

where xp(k) is the (4 × 1) state plant vector, u(k) is the (2 
× 1) control input vector, y(k) is the (2 × 1) process out-
put vector and w(k) is a (2 × 1) vector of perturbations. 
The matrices Du and Dd are assumed to be zero, this im-
ply that there is not direct feed through of the manipu-
lated variable and the perturbations on the output vector. 
Ap, Bp, Bd and Cp are matrices of appropriate dimensions. 
In order to ensure that integrators are embedded in the 
identified model, we need to change the model to suit 
this design purpose as in [10]. Taking a difference opera-
tion on both sides of the state equation in (2) yields: 

        
    

1

1

px k

w k

 

     
1

1

p p p p

p d

x k x k A x k

B u k u k B w k

  

   
    (3) 

In general, the incremental of the variable v(k) is de- 
 

 

Figure 5. Outputs (solid line) and their estimates (dotted 
line). 

noted by 

     1v k v k v k     

With this information, the incremental state-space 
equation can be written as: 

       k 1p p p p dx A x k B u k B k           (4) 

where Δu(k) is the input to the state-space model, also 
called the rate of change of the control inputs, and  
     1k w k w k  

     ,
TT

px k x k y k

. 
In order to relate the output y(k) to the state variable 

Δxp(k), a new state variable vector is chosen to be 

     

where superscript T indicates matrix transpose. 
From (4) we deduce that 

     
   

1 p p p

p p p p

y k y k C A x k

C B u k C B k

   

  

 
 

 
 

   

   
 

1 0

y 1

0

T
p pp p

p p q q

p d

p p p d

p
q n q q

x k x kA

k y kC A I

B B
u k k

C B C B

x k
y k I

y k





 

       
           


   

      
    
         

        (5) 

Putting together (4) and (5) leads to the following 
augmented state-space model: 

   (6) 

where the subscripts q and n are respectively the number 
of outputs and the state space model dimension. 0q×n is a 
q × n zero matrix and Iq×q the q × q identity matrix. 

With the assumption that ε(k) is a zero-mean white 
noise sequence, the predicted value i samples ahead ε(k + 
i) is assumed to be zero. 

For notational simplicity, we rewrite the augmented 
state-space model (6) as: 

     
   

1x k Ax k B u k

y k Cx k

   
 

0.9819 0.0024 0.0009 0.0189 0 0

0.0800 0.5159 0.2760 0.0679 0 0

0.0270 0.6286 0.2750 0.2292 0 0

0.0810 0.0442 0.3830 0.7457 0 0

25.0614 0.9046 0.3986 1.6305 1 0

1.2297 0.9652 5.5689 0.9110 0 1

A

  
 
 
   

  
  

 
   

 

        (7) 

where A, B and C are matrices corresponding to (6). 
Their computation for the identified state space model of 
the considered aerothermic process yields the following 
results: 
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0.0005

0.000

0.0018

0.00

0.011

0.0024

B






0.0003

1 0.0256

0.1002

85 0.0222

 
 
 
 
 
 

, 
0 0 0 0 1 0

0 0 0 0 0 1
C   

The eigenvalues of the augmented model are given by: 

1

0.0208

0.1774

0.8423

 
 
 
 

  
 
 
 

 

The first two components of λ are from the augmenta-
tion of the state space model, and the last four are from 
the original plant. This means that there are 2 integrators 
embedded into the augmented desi  model, which en-
sures integral action for the SSMPC controller. 

Define the vector Y and ΔU as 

 1
T

cu k N  

e control 
ho

Based on the state-space model (7), the future state 
variables are calculated sequentially using the set of fu-
ture control parameters. After calculating the pre
output variables, we have the following compact matrix 

.. 0

0

. .
p cN N

CA B








 
 

 

easurable (i.e.: 
C is different to the identity matrix). The control law is 
computed using the estimated state variables given by the 
following equation: 

1 0.0168

0.0019

  
   

1

          ˆ ˆ ˆ1 obsx k Ax k B u k K y k Cx k       

where Kobs is the Kalman filter gain Obtained by solving 
recursively (for i = 0, 1,···) the following equation: 

      
   

0.9694 
 



gn

   1
T T

U u k u k       

     1 2
TT T

pY y k y k y k N




       


  (8) 

where Np denotes the length of the prediction horizon or 
output horizon, and Nc denotes the length of th

rizon or input horizon. 

dicted 

 Y Fx k U              (9) 

where 

C 

...
pN

CA
F

CA

 
   
 
  

 

2

1 2 3

0 0

0 .

...

. . .

...p p pN N N

CB

CAB CB

CA B CAB CB

CA B CA B CA B
  




 



At time k, the state variable x(k) is not m

... 0 


    

1

( 1)

T T
obs

T T

K i AP i C CP i C

Ap i A i C




 

    

gnal r(k) at sample time k, the 
main control objective is to bring the predicted output as 

p

o find 
the control parameter vector ΔU such that an error func-
tion between the set-point signal and the predictive out-
put is minimized. The cost function J that reflects the 
control objective is defining as: 

1T T

P i AP

CP i C CP i A 


 

where α and β are the matrices to be chosen by the user. 
For a given set-point si

close as ossible to the set-point signal and annulled the 
effect of the perturbations with respect the actuators con-
straints. This objective is translated into a design t

   2 s T T T TJ U R U U R Fx k           (10) 

Subject to the inequality constraints 

M U    

where M is a matrix reflecting the constraints and  
 

pxq

T
s NR I r k  

The matrix ΦTΦ has dimension mNc × mNc and ΦTF 
has dimension mNc × n and ΦTR equals the last q col-
umns of ΦTF. The weight matrix R is a block matrix with 
m blocks and has its dimension equal to the dimension of 
ΦTΦ. 

Since the cost function (10) is a quadratic, and the 
co roblem of funding 
an optimal predictive control bec mes on of finding an 

is written as mi mizing 

nstraints are linear inequalities, the p
o

optimal solution to standard Hildreth’s quadratic pro-
gramming problem [10,11] and [25]. Hence, the problem 

ni

1 2 T TJ                (11) 

Subject to the inequality constraints 

M                   (12) 

where  

 2 T R     and   2 T
sR Fx k     

One the optimal solution to (11) at time k is obtained 
on line, its first element is applied to (1). The optimiza-
tion (11) is repeated at time k + 1, based on the new state 

 ˆ 1x kp  , yielding a moving horizon control strategy. 

5.

The objectives of the control te
thermic process are summarized below: 

 Experimental Results 

chnique applied to aero-

Copyright © 2012 SciRes.                                                                                  ICA 



M. RAMZI  ET  AL. 55

 The temperature and the air flow must reach given 
reference set-points. 

 The actuators constraints must be verified and re-

tilator
described in the previous 
ulation using the model 

uses 

 
IS

spected. 
 The effect of the perturbations must be annulled. 
 The effect of the interaction caused by the speed ven-

 on the air temperature must be eliminated. 
The predictive control setup 

section was first tested in sim
obtained from identification. This investigation was done 
especially to evaluate the computational complexity of 
the controller and to find the Nc and Np before the appli-
cation of the controller in the real aerothermic process. 
Hence, we find Nc = 3 and Np = 20 and the weight matrix 
R = 0.5I6×6. 

The implementation of the SSMPC, in real time, 
the Humusoft MF624 Data Acquisition Card of 14-bit 
Analog to Digital (A/D) conversion module, plugged into

A port. The signals are transmitted between the PC and 
the Aerothermic Process via a 37-way cable and connec-
tor block. 

In this experimental study, two types of echelon per-
turbations can be envisaged in order to challenge the 
control performances. The first one is characterized by 
the rotating of the diaphragm to 90 degrees. This pertur-
bation affects the temperature and the air flow outputs. 
The second perturbation is characterized by the changing 
of the switch position (S) of the resistance heating. This 
perturbation affects the heater grid value, which in-
creases the air temperature. The Figure 6 represents the 
aerothermic process controlled by the MIMO SSMPC 
technique. y, u, r and ω represent respectively the meas-
ured output or controlled variable, the manipulated input, 
the set-point and the perturbations. These vectors can be 
written as follows: 

1 1 1 1

2 2 2 2

, , ,
y u r w

y u r w
y u r w

       
          
       

 

where w1 is the opening of the diaphragm and w2 is the 
heater grid level. 

The constraints on the manipulated variables u(k) and 
their rate of change Δu(k) are taken into account to ac-
commodate the system thermal protection for which the 
 

 

Figure 6. Block diagram of MIMO SSMPC application. 

aerothermic process is entirely stopped when electrical 
power is maximal and the ventilator speed signal is under 
a threshold of about 1.25 V. Based on practical consid-
erations of the process operation, these constraints may 
be summarized as follows: 

 1.25 V 7 Vu k   and 1 V 1 VU     

Furthermore the set of linear inequality constraints 
given by (12) is formulated into the following matrix 
form: 

 

1

2

2

M

M M

M

 
   
  

, 
 
 

 

 2 2

u k

u k

 

   

  
6 1

6 11.25 1u k I





 

2

1

2

1

1

1

2

u k

u k

u k



 
  

  
  
  
 

 

1

u k 

  

6 1

6 1

7 1

I

u k I






I 
 
    
 
    

where I6×1 is a column vector of ones and I6×6 denotes the 
identity matrix, M1 = [I6× –I6×6]

T, 

2

1 0 0 0 0 0

0 1 0 0 0 0

1 0 1 0 0 0

0 1 0 1 0 0

1 0 1 0 1 0

0 1 0 1 0 1

M

 

6, 

 
 
 
 

  
 
 
 
  

 

In our experimental application, the computation of 
K  gives the following result: 

0.0082

0.0025 0.0118

0.0053 0.0094

1.9866 0.0217

0.0004 1.1572

obsK

obs

0.0382 0.0025

0.0057

 
 
 
  

  
 
 
 
  

 

As shown in Figure 7, the set-points of the tempera-
ture and the air flow are changed respectively at 10 and 
20

reach their set-points 
imposed by respecting the operational full actuator con-
straints. The Figures 8 and 9 show the associated control 
signal responses and rates of change on both control sig-
nals respectively. The Figure 8 shows clearly the com-
portment of the control u1 at time 20 minutes in order to 
maintain the temperature at his desired set-point when 

 minutes. From this figure, it can be observed that both 
the temperature and the air flow 
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Figure 7. Closed-loop response: air temperature (top figure); 
air flow (bottom figure). 
 

 

Figure 8. Closed-loop control signal response with actuator 
nstraints. Top figure: heater grid (1.25 ≤ u1(k) ≤ 7); bot-

tom figure: Ventilator speed (1.25 ≤ u2(k) ≤ 7). 
 
the air flow reference has been changed. What means that 
the aerothermic process variables are coupled. 

The Figure 10 shows the output responses when the 
perturbations are affected u1 and u2 respectively; while 
Figures 11 and 12 show the associated control signal 
responses and rates of change on both control signals 
respectively. As shown in the Figure 10, the perturbation 
on the air flow caused by opening of the diaphragm to 90 
degrees, at time 31.75 minutes of the experience, is com-
pletely rejected. The perturbation on the air temperature, 
at time 42.8 minutes is also rejected. These rejections are 
due to the two integrators effect embedded in the SSMPC 
controller. The Figure 11 shows clearly the behaviour of 
the two command variables towards this rejection. 

co

These experimental results show the efficiency of the 

 

Figure 9. Rate of changes in control signal respons
fig

e. Top 

to 2

≤ 1). 
 

ure: rate of change for heater grid (–1 ≤ Δu1(k) ≤ 1); bot- 
m figure: Rate of change for ventilator speed (–1 ≤ Δu (k) 

 

Figure 10. Closed loop response with perturbations. Top 
gure: afi

 
ir temperature; bottom figure: air flow. 

SSMPC strategy, proposed in this paper, to control the 
temperature and air flow of the aerothermic process re-
gardless the possible mismatch between the nonlinear 
process and his identified model. Furthermore, the 
SSMPC optimization problem has well taken into ac-
count the full actuators constraints compatible with the 
aerothermic process instruments. Noting that, the plant 
output constraints can be used. But, they are not required 
in this experimental application. 

6. Conclusion 

In this paper we have described a predictive control de-
sign approach with embedded integrators for a pilot scale 
aerothermic process. The number of these integrators is 
set equal to the number of outputs which make them 
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Figure 11. Closed loop control signal response with actuator 
constraints perturbations. Top figure: heater grid (1.25 ≤ 
u1(k) ≤ 7); bottom figure: Ventilator speed (1.25 ≤ u2(k) ≤ 7). 
 

 

Figure 12. Rate of changes in control signal response. Top 
figure: rate of change for heater grid (–1 ≤ Δu1(k) ≤ 1);
tom figure: rate of change for ventilator speed (–1 ≤ Δ
≤ 1). 
 
steady-state error free. The proposed control approac
versatile in that it allows embedding full actuators con-
straints. The SSMPC application results completely satisfy
the requested specifications. The State Space Method 
Identification (N4SID) is used to identify the basic model
of the SSMPC controller. An observer based on 
Kalman filter is used to estimate the aerothermic process 
state variable. In conclusion, the use of MIMO SSMPC
demonstrates robust performance for tracking set 
changes and rejecting the perturbations without viol
constraints. It constitutes a worth extension of the mono- 
variable control methods and an alternative to the basi

uthors would like to thank Professor Liuping Wang 
chool of Electrical and Computer Engineering, Royal 

 bot-
u2(k) 

h is 

 

 
the 

 
point 
ating 

c 
classical control for these kind of processes used for both 
engineering education and research training. 
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