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ABSTRACT 

Coordinates transformation is generally required in GPS applications. If the transformation parameters are solved with 
the known coordinates in a small area using the Bursa model, the precision of transformed coordinates is generally very 
poor. Since the translation parameters and rotation parameters are highly correlated in this case, a very large condition 
number of the coefficient matrix A exists in the linear system of equations x bA . Regularization is required to reduce 
the effects caused by the intrinsic ill-conditioning of the problem and noises in the data, and to stabilize the solution. 
Based on advanced regularized methods, we propose a new regularized solution to the ill-posed coordinate transforma- 
tion problem. Simulation numerical experiments of coordinate transformation are given to shed light on the relationship 
among different regularization approaches. The results indicate that the proposed new method can obtain a more rea- 
sonable resolution with higher precision and/or robustness. 
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1. Introduction 

Coordinate transformation plays a very importance role 
in the numerical treatment of global positioning system. 
For transforming GPS coordinates from WGS-84 coordi- 
nate system to a local coordinate system, the Bursa mo- 
del is generally used to solve transformation parameters, 
including three translation parameters, three rotation pa- 
rameters and one scale parameter. From a theoretical point 
of view, a great number of algorithms have been devel- 
oped to solve these problems. Early publications such as 
Grafarend et al. [1], Vanicek and Steeves [2], Vanicek et 
al. [3], Yang [4], and Grafarend and Awange [5] have 
given some detail algorithms of coordinate transformation. 
In general, their algorithms to solve transformation pa- 
rameters are all based on the classical least squares crite- 
rion. Recently, better methods are available in literature, 
e.g. hard or soft fixing of certain transformation parame- 
ters (e.g. rotation around some coordinate axes are strongly 
correlated with translations), reduction of coordinates to 
the centre of “gravity” etc., however, ill-posed problems 
were rarely considered in those methods. Actually, ill- 
posed problems often impact this kind of data processing.  

In the coordinate transformation, the Bursa model is 
more suitable for global data, so global distributed data is 
normally required to solve coordinate transformation pa- 
rameters. However, an engineering GPS control network 

covers only hundreds of square kilometers, or even 
smaller. In this case, the translation and rotation parame- 
ters are highly correlated and the mathematical model is 
thus ill-posed. Generally, parameters obtained by tradi- 
tional algorithms from the ill-posed model will have poor 
precision and robustness. 

As is well known, regularization is a powerful tool to 
solve ill-posed problems, which have been widely ap- 
plied to solve inverse ill-posed geodetic problems and sig-
nal processing. Tikhonov proposed a well-known regu- 
larization method to ill-posed models [6,7]. Golub [8] pro- 
posed a singular value decomposition (SVD) method to 
least squares solutions and Hansen analyzed the truncated 
SVD as a method for regularization [9] in mathematics. 
Xu and Rummel [10] advanced a multiple parameters 
regularization method to solve ill-posed problems in ge-
odesy [11]. These investigations are almost based on pure 
mathematics and not considered the characteristics of 
practical surveying applications. 

In this paper, we will propose a new approach to solve 
ill-posed problems in the coordinate transformation. The 
process starts with discussion of early methods for solv- 
ing ill-posed problems in mathematics, and analysis of 
the characteristics of ill-posed coordinate transformation 
problems. Taking account of the characteristics of coor- 
dinate transformation in GPS applications, a new algo- 
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rithm is proposed. On other hand, based on the new algo- 
rithm we formulate a new approach to choose regulariza- 
tion parameters. In the new algorithm, information borne 
by small and large singular values has been kept by dif- 
ferent methods. 

2. Main Equations and Notations 

We introduce main equations and notations used through- 
out this paper. Matrices are represented by the uppercase 
English alphabet and I denotes identity matrix. Scalars 
are represented by lowercase Greek letters or English 
alphabet with double subscripts. Superscript T denotes 
the transpose of a matrix. Let 

2
A  denotes the 2-norm 

of matrix A. Let  A  denotes the range of the matrix 
A. In this paper, we deal with the linear finite-dimension 
equations. 

, ,m n m d , ,x b b   A A m n m d 
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where x y z   and  0 0 0 ,
T

T x y z R    
denote the translate parameters, rotation parameters and 
scale parameter, respectively. 

We also denote the SVD of A by 

1
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with  
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The numbers   are called the singular values of A, 
while the vectors i  and i  are the left and right sin- 
gular vectors of A, respectively. 

u v

exact noise, , ,m n m d

3. Methodologies for Ill-Posed Problem 

The ill-posed problems are with a very large condition 
number of the coefficient matrix A in a linear system as 
Equation (1), and most of discussion about solutions of 

ill-condition-ed matrices require knowledge of the SVD 
of the matrix A [12]. In particular, the condition number 
of A is defined as the ratio between the largest and the 
smallest singular values of A. 

The numerical treatment of equations with an ill-condi- 
tioned coefficient matrix depends on the type of ill-con- 
dition of A. There are two classes of ill-posed problems. 
The first is rank-deficient problems in which the matrix 
A has a cluster of small singular values, and there is a 
well-determined gap between large and small singular 
values. The second is the discrete ill-posed problem that 
all of the singular values of A, on the average, decay 
gradually to zero, that means there is no gap in the sin- 
gular value spectrum. For some more details on ill-posed 
problems, the reader may refer to Hansen [13] and Tar- 
antola [14]. 

Considering an ill-posed linear system as Equation (1), 
with nonsingular matrix A and the right-hand side b pol- 
luted by white noise, thus Equation (1) can be rewritten 
in the form 

x b b     A b A b b   (4) 

where 

exact noise2 2
b b

1
exact exact

             (5) 

We wish to approximate 

x A b

b
b

  1T T
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              (6) 

However, exact  cannot be directly divided from a 
observation vector , we get the direct least squares 
solution 

A A


 A bx             (7) 

It is well known that the direct solution is completely 
dominated by noise, when the coefficient matrix A is 
ill-posed. Based on the SVD of A, the direct solution can 
recast 
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Considering Equation (8), to get an applicable directly 
solution, it is necessary to make sure that the following 
assumption which is called the Discrete Picard Condition 
is satisfied: The exact SVD coefficient Tu bi  decay fas- 
ter than the i . More details and analysis can also be 
fund in Hansen [13,15]. When the coefficient matrix A is 
ill-posed, the solution naivex  is with poor robustness and 
not applicable. 

Next considering Equation (9), the first sum in Equa- 
tion (9) must converge to exactx . It means the numerators 
in the first sum in Equation (9) decay faster than (or, at 
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least, as fast as) the singular values in denominators, with 
growing i. On other hand, noise  represents white noise 
in second sum in Equation (9). It means noise Fourier 
coefficients 

b

noise  cannot decay faster than (or, at least, 
after some point) the singular values, with growing i in 
ill-posed problems. That means noise  will dominate the 
solution naive

T
iu b

b
x  after some point. Consequently, ill-posed 

problems with perturbations in observation vector may 
magnify the noise information by the corresponding sin- 
gular value which is very small. The magnified noise 
completely cover the useful information, 

1  naive
1

exact , and noiseA bA b  x  thus does not ap- 
proximate to exactx . 

For solving the first class ill-posed problems, for which 
there is a well-determined gap between the large and 
small singular value of coefficient matrix A, Hansen pro- 
posed a well-known approach [9,13,16,]—truncated SVD. 
The key idea in this approach is to obtain the truncated 
point k, then Equation (8) can recast as 

1

Tk
i

k i
i i

u b
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              (10) 

The solution x  is referred to as the truncated SVD 
solution. 

For solving the second class ill-posed problems in 
which the singular values of matrix A decay gradually to 
zero, the above TSVD method cannot applied for solving 
this problem. Tikhonov regularization method is a well- 
known method for solving this kind of ill-posed problem. 
The key idea in Tikhonov’s method is to incorporate a 
priori assumptions about the size and smoothness of the 
desired solution. Tikhonov regularization in general form 
leads to the minimization problem 

 2 22

2 2
min Ax b Lx          (11) 

where the regularization parameter λ controls the weight 
given to minimization of the regularization term, relative 
to the minimization of the residual norm, and L repre- 
sents regularization matrix. In this paper, we only con- 
cern L = I. Then the Tikhonov solution x  is given by 

  12T Tx A A I A b


            (12) 

Tikhonov method can be rewritten in SVD form with 
filter factor defined as 

2
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and the regularized solution is 
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Then the regularized solution is turn to the truncated 
SVD solution. Clearly, the key idea in Equation (14) is to 
modify the small singular values of matrix A, and Equa- 
tion (15) is use to decide from where the singular values 
should be modified. Here we propose a new method for 
modifying the singular values in a specific method, and 
its solution is noted as reg k  which is called as the 
modified singular value (MSV) solution.  

For solving ill-posed problems in GPS coordinate trans- 
formation by the Buras model, the characteristics of in- 
dividual real model should be considered. That is, after 
the ith, the true Fourier coefficients exacti  cannot 
decay faster than singular values, however, there is still 
some useful information exist in 

Tu b

exacti , one of real 
example is presented in Figure 1. In Figure 1, singular 
values i

Tu b

  is connected with circle dash line, true Fou- 
rier coefficients exacti  is connected with cross dash 
line, and total Fourier coefficients 

Tu b
Tu bi  is connected with 

red circle solid line. We can see from i = 5, error Fourier 
coefficients noise  are greater than corresponding sin- 
gular values i

T
iu b
 , but the true Fourier coefficients 

exacti  are still significant. If we use TSVD method, 
the true Fourier coefficients from i = 5 to i = 7 will be 
discarded. Our new MSV method will try to use these 
discarded items for improving the solution. 

Tu b

As above, Tikhonov regularization is to modify those 
small singular values, so as to absorb discarded items by 
TSVD. However, this method also modifies large singu- 
lar values, and thus influences the precision of coordinate 
transformation. 

Our proposed MSV method is similar with Tikhonov 
regularization method, but only items with small singular 
values in Equation (14) will be modified and items with 
large singular values will be kept unchanged, that means 
f = 1 in Equation (14). 

4. Estimation of Regularization Parameter 

The key question in regularization method is how to 
choose the regularization parameter, either the Tikhonov 
method’s parameter   or the TSVD method’s parame- 
ter k. Thus, estimation of regularization parameter plays 
a very importance role in solving ill-posed problems. 

Perhaps the most convenient graphical tool for deter- 
mining of regularization parameter is so-called L-curve 
which is a plot of regularization parameter solution (semi) 
norm e.g., the 2-(semi)norm 

2
, for all possible regu- 

larization parameters versus the corresponding residual 
norm e.g.,

 

Lx

2
Ax b . The L-curve clearly displays the 

compromise between minimization of these two quantities, 
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Figure 1. Compare singular values with Fourier coefficients. 
Singular values (circle with dash line), true Fourier coeffi- 
cients (asterisks with dash line), error Fourier coefficients 
(crosses with dash line), and total Fourier coefficients (red 
circle with solid line) for coefficient matrix A and observa- 
tion vector . b
 
which is the main concerns of any regularization method. 
For some more details and analysis on L-curve, the 
reader may refer to Hansen [17], and also Hanke [18].  

In geodetic problems, L-curve method has often in- 
duced oversmoothed solutions [19]. Minimizing the trace 
of mean squared error (MSE) method is also a powerful 
approach to estimate regularization parameter  , Shen 
and Li [20] presented this method in GPS numerical 
treatment. In this method, minimizing the trace of mean 
squared error is required, the criterion as 

min Trace( )M            (16) 

where Trace(.) denotes the trace of the matrix, and M 
denotes the mean squared error matrix. From Shen and 
Li the second order derivative of Trace (M) satisfies 

 2d T
2

race
0

d


M

   
 

           (17) 

Thus the unique solution exists for Equation (16), and 
it can be solved by letting the first-order derivative of 
Trace(M) to zero. 

Another approach to estimate regularization parameter 
is through the condition number of coefficient matrix A 
[21], in this method a relation between the regularization 
parameter and the sensitivity of the regularized solution 
is investigated. As in Regińska 

max

min





A

A
A

            (18) 

where ( ) A shows the sensitivity of Equation (4) on 
data perturbations. In this method, through analysis of the 
optimal , the regularization parameter can be chosen 

as 

   min max   A A

mod , 1, 2,3ify i i i

          (19) 

Many authors have discussed estimation of regularized 
parameter, and there are also some other methods, like 
Generalized Cross-Validation [22]. In fact, each method 
for estimating regularization parameter has different ad- 
vantages and disadvantages. There is no unique method 
applicable to all ill-posed problems. Based on those early 
methods, we propose a new method to estimate regulari- 
zation parameter in coordinate transformation. 

Considering Equations (14) and (15), and the charac- 
teristics of coordinate transformation mentioned in the 
above, we concern how to modify the small singular 
values and from where they should be modified. The 
form of coefficient matrix A in coordinate transformation 
has been given by Equation (2), and the singular values, 
the true Fourier coefficients and the error Fourier coeffi- 
cients of an example of matrix A are presented in Figure 
1. As in Figure 1, the first three singular values are sig- 
nificant larger than zero and their corresponding total 
Fourier coefficients, moreover, the true Fourier coeffi- 
cients are larger than their corresponding error Fourier 
coefficients, i.e., total Fourier coefficients are completely 
dominated by true Fourier coefficients, so we decide to 
keep these three singular values unmodified 

        (20)   

The singular value decays at the fourth, and the last 
three singular values are approximate to zero. The fourth 
total Fourier coefficient is less than the fourth singular 
value, thus ill-posed problems is not significant. How- 
ever, Figure 1 shows the fourth error Fourier coefficient 
is almost equal to the fourth true Fourier coefficient, thus 
perturbations may influence the exact solution, so this 
singular value is modified as 

opt

mod , 4ify i i i
 


  

,

       (21) 

where  

5 cm

 denote error level and error adjustment co- 
efficient, respectively (In our simulation examples, 
  and choosing 4.53  

mod , max 5,6,7ify i i

). 
The last three singular values are obviously smaller than 

the corresponding total Fourier coefficients. Moreover, the 
corresponding error Fourier coefficients are larger than 
the corresponding true Fourier coefficients respectively. 
Clearly, in this situation, the model is ill-posed, and the 
useful information is completely covered by perturba- 
tions. For keeping the useful information for coordinate 
transformation, the singular values are modified as 

      (22)   

So, we obtain “new” singular values using Equations 
(20)-(22) so as to the solution of our MSV method, it can 
be rewritten as 
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5. Numerical Experiments 

The data used in our experiments is the simulated coor- 
dinates of GPS stations distributed in 2000 square kilo- 
meters. We use five GPS points as control points, and 
apply “true” coordinate transformation parameters to get 
corresponding “true” coordinates in the local coordinate 
system. From initial investigations, we know that if 
points locate in the interior of a network composed by 
control points, we can get their corresponding coordi- 
nates with acceptable precision in a local coordinate sys- 
tem by coordinate transformation parameters even using 
the classical least squares method. Moreover, the results 
of coordinate transformation are also acceptable when 
coordinates of control points have smaller noise in both 
coordinate systems. So, the coordinates of points outside 
the region of the control network will be used to check 
the precision of coordinate transformation by different 
methods. 

In our experiments, we give five centimeters perturba- 
tions to coordinates of control points in both systems. 
Firstly, we use the “true” transformation parameters to 
get some “true” coordinates outside the control network 
in both coordinate systems. Secondly, we transform co- 
ordinates of those outside points to the local system with 
different coordinate transformation parameters which ob- 
tained by different regularization methods, and compare 
each of them with their “true” coordinates. 

Root mean square error (RMSE) of points by least 
squares method is presented in Figure 2. Here, we simu- 
lated coordinates of 100 points in exterior area with a 
white noise with zero means and standard deviations of 5 
 

 

Figure 2. RMSE of transformed coordinates solving by least 
squares method. 

centimeters, and 500 coordinate transformation experi- 
ments have been repeated for obtaining mean of RMSE 
with statistical significance. Figure 2 shows that the 
mean of RMSE is clearly larger than the noise has been 
imposed in the coordinates, and the results have large 
oscillations. 

The results solving by TSVD, Tikhonov regularization 
with L-curve, and MSE methods are presented in Fig- 
ures 3(a)-(c) respectively. Clearly, the means of RMSE 
are smaller than the result in Figure 2, especially the 
mean value by MSE is approximate to the error which has 
been given before, and also has stronger robustness. 

Figure 4 presents the results solving by our MSV 
method with the modified “new” singular values. Obvi- 
ously, the results solving by MSV method have the 
smallest mean of RMSE and stronger robustness. Table 
1 summarizes means of RMSE and their corresponding 
standard deviations of different methods. 

The performance about two of those points in 500 tests 
by MSV method are presented in Figure 5. Clearly, The 
No. 68 point (red) is more seriously corrupted by noise 
than the No. 28 point (black). In order to present some 
good properties of our new method, the results of the No. 
68 point by MSV, TSVD, and Tikhovon regularization 
with L-curve are drawn in Figures 6(a)-(c), respectively. 
Table 2 summarizes mean of RMSE and their corre- 
sponding standard deviations of No. 68 points through 
using different methods. Clearly, when the point has poor 
precision, our MSV method can balance the point preci- 
sion and robustness well. 

6. Conclusions 

It is well known that regularization has been successfully 
applied to solve ill-posed problems by significantly im- 
proving the condition number of ill-condition matrix. A 
very large condition number is usually caused by the 
small singular values of matrix, so we propose a new me- 
 

Table 1. Mean of RMSE and standard deviations. 

 Mean of RMSE (m) Standard Deviations

LS 0.1930 0.04989 

TSVD 0.1408 0.04648 

L-curve 0.1347 0.03743 

MES 0.1351 0.02858 

MSV 0.1116 0.03384 

 
Table 2. Mean of RMSE and standard deviations of No. 68 
point. 

 Mean of RMSE (m) Standard Deviations

MSV 0.1561 0.08363 

TSVD 0.2076 0.1034 

L-curve 0.1634 0.0910 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 3. RMSE of transformed coordinates solving by TSVD 
(a); Tikhonov regularization with L-curve (b); and MSE (c) 
methods. 

 

Figure 4. RMSE of transformed coordinates solving by MSV 
with “new” singular values by new method. 
 

 

Figure 5. Point error of the No. 28 (black) and No. 68 (red) 
solving by new method. 
 

 

Figure 6. Point error of the No.68 solving by new method 
(a); TSVD (b); and Tikhonov regularization with L-curve 
(c). 
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thod for solving ill-posed problems in coordinate trans- 
formation through modifying small singular values. The 
numerical experiments have demons-trated that the new 
method can solve these kinds of ill-posed problems, and 
gain an applicable precision, moreover, perform stronger 
robustness. In practical coordinate transformation prob- 
lems, we do not know the true and error Fourier coeffi- 
cients, the total Fourier coefficients can be used to mod- 
ify the singular values so as to implement the MSV 
method. 
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