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ABSTRACT 

This work considers the problems of numerical simulation of non-linear surface gravity waves transformation under 
shallow bay conditions. The discrete model is built from non-linear shallow-water equations. Are resulted boundary and 
initial conditions. The method of splitting into physical processes receives system from three equations. Then we define 
the approximation order and investigate stability conditions of the discrete model. The sweep method was used to cal-
culate the system of equations. This work presents surface gravity wave profiles for different propagation phases. 
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1. Introduction 

The research of surface gravity waves under shallow 
water conditions has a long history. The interest to wave 
propagation effects on liquid surface can be explained by 
sufficient popularity and availability of this physical phe- 
nomenon. Non-linear surface gravity waves under shal- 
low water conditions are described with shallow-water 
equations. They became the starting point of non-linear 
wave propagation effect study. In spite of a great number 
of studies, the liquid wave motion theory remains to be 
investigated. In this context the study of wave propaga-
tion effects on shallow water area surfaces taking account 
of their influence on coast formations and hydrotechnical 
constructions is of vital importance. Thus non-linear sur-
face gravity wave simulation can play the important role 
when monitoring the ecological state of shallow bays. 

Let us discuss the results of some studies, devoted to 
wave process numerical simulation within shallow water 
theory based on non-linear and non-linear-dispersion shal- 
low water equations, pursued in the past decades. 

The problems of monochromatic wave transformation 
above horizontal beach bottom were studied rather com- 
prehensively in the papers by [1] and [2]. The first four 
harmonics influence on surface wave profile with its 
propagation on shallow water was studied in laboratory 
experiments and using numerical simulation. Evolution- 
ary equation system was solved with Runge-Kutta me- 
thod numerically. The model was verified and checked 
with the data of laboratory and real experiments. 

Numerical simulation of non-steady periodic surface 

waves is described in the paper by [3]. The surface wave 
evolution problem is reduced to the solution of differen- 
tial equation system. Ggravity wave dynamics is simu- 
lated numerically in amplitude variations and with dif- 
ferent wavelengths. The gravity wave profiles are given 
at the initial instant and at the breaking moment. 

Paper [4] considers numerical simulation and experi- 
mental observations of non-linear interaction, reflection 
and attenuation effects influencing the beach propagation 
of surface gravity waves. Non-linear interactions result in 
wave crest doubling. But for the waves with the less am- 
plitude the wave crests do not double. The described ef- 
fects are viewed within Boussinesq model.  

Article [5] concerns non-linear long wave numerical 
simulation in the water bodies with a gentle bottom. 
Shallow water non-linear dispersion model is viewed con- 
sidering the topography and fluid viscosity. They carry 
out a calculation comparison between free surface plane 
disturbance transformation and experimental data. This 
article presents numerical solution of the problem con- 
cerning conic-cylindrical island, sea ridge influence on 
the wave propagation. It considers the influence of slope 
bottom friction on plane solitary wave evolution as well. 

Work [6] is concerned with the study of two-dimen- 
sional numerical influence model of flooded break wall 
on the wave propagation. It discusses the problems of 
wave simulation as before wave breaking so after it. The 
results of laboratory experiments are given to check the 
model. This work analyzes wave profile transformation. 
It also describes the dependence of wave steepness on its 
spectral structure. 
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Article [7] describes surface wave non-linear disper- 
sion under shallow water conditions within Boussinesq 
model. The linear model was obtained as the first-order 
solution; at the second approach the model contains weak 
frequency and amplitude dispersion. The article presents 
experimental data on surface waves for a slope sand 
coast. Non-linear Boussinesq theory fully describes irro- 
tational wave motion within breaker zone. 

Work [8] offers a stochastic model of surface wave 
propagation under shallow water conditions with regard 
to the bottom topography. In the beginning it describes 
determined spectral model based on wave spectrum de- 
composition. It compares the developed model with the 
known analytic expressions for deep-water and shallow- 
water modes. There are also laboratory observations on 
non-linear wave propagation given in this work. 

Paper [9] discusses the problem of single surge wave 
stability on Korteweg-de Vries equation. They use Whi- 
tham modulation theory for asymptotic description of 
surface swelling. They obtain an expression to describe 
the dependence of solitary wave form and amplitude on 
depth function. 

In article [10] algorithm for an asymptotic model of 
wave propagation in shallow-water is proposed and ana- 
lyzed. The algorithm is based on the Hamiltonian struc- 
ture of the equation, and corresponds to a completely 
integrable particle lattice. Particle trajectories on the (x,t) 
plane are presented. 

Analyzing the works described above, one could note 
the iterative solution methods of discrete equations are 
used in major cases. In our case we shall use precise so- 
lution methods of discrete shallow-water equations under 
hydrophysical conditions of the Azov Sea. 

2. System of Shallow Water Equation. Initial 
and Boundary Condition 

The surface gravity waves under shallow water condi- 
tions are described by the shallow-water equation. The 
system of shallow water equations contains a continuity 
equation and dynamic equation on the conservation of 
momentum [11,12]: 

  

u u
u g

t x x

H u

t x





        
      

           (1) 

where u—medium particle velocity, ζ—surface swell 
function, H—fluid depth. Shallow water equations ignore 
the dispersion phenomenon as it is of minor importance in 
shallow water. 

The kinematic boundary condition is taken as a boun- 
dary condition on free liquid surface, i.e. surface swelling 
velocity is the same as medium particle vertical velocity: 
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             (2) 

To follow the dynamic condition, the free liquid surface 
pressure is considered the same as the atmospheric pres-
sure. As a bottom condition, vertical intensity of liquid 
particle velocity is assumed to be equal to zero:  

0
z H

u


                   (3) 

At the time zero the initial condition is assumed to be 
 ,0 0u x  , at any other time the change in the surface 

form is given according to the harmonic law 
   n t0, siu t a  , where a, ω—surface wave ampli- 

tude and circular surface wave frequency. 

3. Discrete Model Construction 

For the first equation of the system (1) we write the dis-
crete analogue derivative in the time coordinate: 
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We shall apply the method of splitting into physical 
processes for the Equation (4) 
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where —a velocity component on the current time 
layer; —a velocity component on the auxiliary time 
layer; —a velocity component on the next time layer, 
τ—a time step, μ—a lattice velocity parameter. 

u
u
û

Let us multiply the second system Equation (5) by  
(H + ζ) and take the derivative in x—time coordinate of 
both members: 
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In view of the second system Equation (1), the Equa-
tion (6) may be written as: 
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The expression is a constraint equation of level swell-
ing function ζ and velocity component  on the auxil-
iary time layer. 

u

Thus the system of Equations (1) changes to: 
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The operational algorithm of the system of Equations 
(8) is the following:  
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 from the first equation one finds the components on 
the auxiliary time layer— u , through velocity com- 
ponents on the current time layer— u ; 

 then, from the second equation one finds level swell-
ing function—ζ; 

 finally, from the third equation one finds velocity 
components on the next time layer— û .  

Extra viscosity factor μ (0 < μ < 1) has been intro- 
duced into the system of shallow water Equations (8) 
when splitting into physical processes. Shallow water 
equations are hyperbolic systems of equations. Non-linear 
hyperbolic equations, compared to linear equations, pos- 
sess a number of vital differences. These differences 
should be not overlooked in their numerical integration. 
Even if the initial conditions are as smooth as desired, the 
solution of non-linear equations can contain discontinui- 
ties.  

In order to avoid this difficulty in practical solving of 
the problems of nonlinear mechanics, a small additional 
perturbation in the form of artificial viscosity is intro- 
duced into the differential system (similar to Von Neu- 
mann-Richtmyer Method) [13]. This viscosity eliminates 
discontinuities and leads to adequate results. 

Difference scheme is used to solve numerically dif- 
ferential equations. The difference scheme is based on 
the integro-interpolation method on a uniform grid ac-
cording to the implicit scheme [14,15]. The implicit 
scheme has been chosen for its greater stability factor 
выбрана.  

The discrete analogues of the system of Equations (1) 
will be the following equations: 
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For defining the approximation order is used the de-
composition in Taylor rows of functions velocity com-
ponents and level swelling concerning knot (j) and (j + 1). 
For difference operators we will receive: 

 
11

22 O
j j

j
i i

i

t

u uu
u

t




 
 

      
,    (12) 

 

1 1 1 1

2 2 2 2
1 1 1

1
22

2 2 2 2

O

j j j jj j j j
i i i i i i i i

x x

jj
i i x

x

u
u

x

u u u u u u u u

h h

u u h

   

   





 

        
 
 

 
   

 

1  

 

1 1 1 1
2 2 2 2 2

1 1
2 2 2

1
22 O

j j j j

i i i i

x x

j

i x

xx

u u u uu

x h h

u h

 



   

 



 
       

 
 

   
 

 

As a result the continual problem is equivalent to the 
discrete problem with the following approximation order: 
 2O xh  , where hx—step in the spatial coordinate. 
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The approximation condition is not sufficient for re- 
ception of the precise solution at step reduction. For such 
schemes maintenance of stability condition is necessary 
still. It is possible to present these schemes as some lin- 
ear operator. It will transform function values at the mo- 
ment t to function values at the moment of t + h. The 
stability condition demands, those values of this operator 
did not exceed in module 1 + ch, where c-constant. At 
default of the given condition an error of the scheme qui- 
ckly increase and the small step, the less precise result. If 
approximation and stability conditions are satisfied the 
result difference schemes converges to the solving the di- 
fferential equation. According to the Courant-Friedrichs- 
Levy condition grid steps are limited by the following  

expression: 
2

1
x

gH

u h


 


. 

For the calculating the discrete equations one of eco- 
nomic direct methods—a sweep method is used. The 
sweep method represents a variant of Gauss method. It is 
applied to special systems the linear algebraic equations 
with tape structure of matrix. 

The program has been developed for calculation of 
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functions velocity components and level swelling. The 
program has been made and realized in language C++ in 
operational system Windows Vista. 

depth is about 8 m [16].  
There are ten bays in the Azov Sea; three of them are of 

the closed type: the Gulf of Taganrog, the Sivash and the 
Gulf of Taman. In the North-East the strongly desalted 
Gulf of Taganrog is connected with the sea by the wide 
strait between the Belosarayskaya and Dolgaya Spit. The 
least gulf’s width (about 26 km) is stated between the 
Petrushina Spit and the Tchumburskaya Spit. The gulf’s 
bottom is intensely receding from the delta of the Don 
River to the sea; the average underwater gradient is 0.06%. 
To the West of Taganrog the gulf depth reaches 5 m, and it 
is less than 1 m near the Don’s delta [17].  

4. Simulation of Non-Linear Surface Gravity 
Wave Propagation under Bay Conditions 

Let us consider simulation features of surface gravity 
wave propagation under shallow-water conditions. Some 
hydrophysical data of shallow water area are required for 
simulation. We shall use the conditions of the Gulf of 
Taganrog of the Azov Sea (as it is geographically avail-
able) as a shallow water area. Though, hydrophysical 
conditions of other shallow water areas can be used.  In the Azov Sea wave motions are firstly shown as wind 

waves. They quickly develop, and after 2 hours the wind 
appears, reach the steady state. On the high seas, as a rule, 
short and very steep waves appear. Through the cold part 
of the year the reigning North-East and East winds cause 
very rough sea, with the wave height growing to 2.1 m, 
even 3.0 m. More often wave length reaches 10 - 12 m and 
wave height is from 0.5 m up to 1 m. 

The Azov Sea and its subsurface relief were formed at 
drowning of the Azov-Kuban basin. The Azov Sea is an 
interior sea, its shape is comparatively simple, its coasts 
are relatively regular and the bottom configuration is 
rather simple. The Azov Sea is surrounded by escarpment 
and spit forms. The smooth coast grades to plane and flat 
bottom. The inmost depths are in the central part of the sea. 
The inmost depth of the Azov Sea is 14 m, and the mean Figure 1 shows the results of numerical calculations  
 

 

Figure 1. The profile dependence of surface gravity wave on the initial steepness: Frequency f = 0.045 Hz; wave length  = 
155.6 m; depth H = 5 m; velocity c = 7 m/s; kH = 0.2; (а) 2a/ = 0.0024; ε = 0.04; (b) 2a/ = 0.0039; ε = 0.06; (c) 2a/ = 0.006; ε 
= 0.09. 
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for particle velocity of a surface gravity wave for differ- 
ent values of initial wave steepness ratio. Surface wave 
parameter values are adapted to the bathymetrical condi- 
tions of the Gulf of Taganrog. For calculations the depth 
values within 0.5 ≤ H ≤ 5 m are used. And the depth val-
ue is kept constant for specific conditions. In our case the 
surface gravity waves are free, i.e. they are ripples, so we 
neglect the wind effect. 

For our conditions surface gravity waves are conside- 
red to be shallow under the following condition [11]: 

1 2H   , where  —surface gravity wave length. The 
lengths of surface gravity waves should be fully 2 times 
longer than the shallow water depth. Then for the condi-
tions of the Gulf of Taganrog the surface gravity waves 
with the lengths more than 30 m can be considered as 
shallow. 

For the calculations we used the grid with number of 
points n = 5000, the node capacity for the wave length is 
1556, width value in space hx = 0.1 m, shallow water 
parameter H/λ = 0.032, non-linear parameter ε = a/H. The 
profile of sine surface wave in Figure 1 does not suffer 
special changes on its propagation way. With the growth 
of surface wave steepness the original sine profile is 
changing, primarily valleys become sloping (Figure 1(b)), 
further on an intermediate crest appears in the valley. On 
its propagation way the intermediate crest is flattening and, 
the leading edge of the leading wave crest is steeping 
(Figure 1(c)). 

With the less steepness the leading edge steeping is 
slow, i.e. it requires to accumulate non-linear effects at 
long distances. The increase of wave steepness value re- 
sults in non-linearity increase and the surface wave comes 
to the leading edge steeping faster. The steeping of the 
surface wave leading edge is connected with the influ- 
ence of non-linear term of shallow-water equations. Ap-
proaching the land the wave crest moves faster than a 
valley for its bottom friction. At the moment when “the 
crest is catching the trough up” the leading edge becomes 
vertical, and the wave breaks. 

For more detailed monitoring of the leading edge steep- 
ing, Figure 2 shows the surface wave distortion stage by 
stage with the following parameters: frequency f = 0.045 
Hz, length  = 49.2 m, depth H = 0.5 m. The depicted 
functional connections correspond to different time layers: 
t = 99; 199; 299; 399. The size of grid is n = 1000; the 
node capacity for the wave length is 492, width value in 
space hx = 0.1 m. 

At the beginning of its propagation way t = 99 the sur- 
face wave crest is still sine, further on the valley starts 
falling behind and moves to the next crest t = 299. It re- 
sults in steeping of the crest leading edges t = 399 (Figure 
2(d)). When the leading edge is vertical, the wave starts 
breaking. The surface wave distortion is caused by the 
depth effect. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 2. Gradual distortion of surface gravity wave profile: 
f = 0.45 Hz;  = 49.2 m; H = 0.5 m; c = 2.2 m/s; kH = 0.06; 
2a/ = 0.0073; ε = 0.4; (а) time layer t = 99; (b) t = 199; (c) t 
= 299; (d) t = 399. 

5. Analysis and the Result Comparison 

To check the developed model let us compare our results 
with the results of laboratory and real experiments. Work 
[18] presents the results of laboratory experiment on the 
surface wave propagation above the step horizontal bot- 
tom with planes of different gradients. Article [6] shows 
numerical and experimental research on flooded break- 
wall influence on the surface wave propagation. Two- 
dimensional finite-difference numerical model was made 
on the basis of Navier-Stokes equation. 

To compare the results we shall use experimental and 
numerical profiles of surface waves given in the work by 
[6] (the length of laboratory tank is 30 m, width is 0.7 m, 
depth is 0.95 m, wave periods are T = 0.8; 1.2; 1.68 s). 

Figure 3 shows the results of numerical simulation and 
experimental profiles of a surface wave on different pro- 
pagation stages [6]. On their comparison with the deve- 
loped model (Figures 1 and 2) one can note the following: 
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Figure 3. Estimated and experimental profiles of surface wave [6] (the coast is on the left): (2a/λ = 0.03, h/λ = 0.2; η(x)—sur- 
face swell function)); (a) at the beginning of the breakwall (x/λ = 0.1); (b) above the breakwall (x/λ = 0.3); (c) above the 
breakwall (x/λ = 0.4); (d) behind the breakwall (x/λ = 0.7). 
 
 at the beginning of the breakwall surface wave ex-

perimental profiles start distorting as the depth de-
creases, the leading edge of the crest l starts steeping, 
valleys flatten (Figures 3(a) and (b)); 

 with further wave propagation above the breakwall the 
crests sharpen, the intermediate crest appears in a 
valley; 

 in Figure 2(d) the surface wave (for depth influence) 
with further propagation transforms from sine into 
non-linear one with steep leading edge, as it was at the 
initial stage of experimental way in Figure 3(a); 

 the growth of initial steepness for our model results in 
intermediate crest appearing in a valley Figure 1(c), it 
is analogue to the experimental profile, Figure 3(c); 

 the depth increases behind the breakwall and the wave 
crests break up because of dispersion. This stage of 
wave profile transformation cannot be described by 
shallow-water equations. It should be also noted that 
primary processes of crest sharpening and its further 
leading edge steeping were described with the ap- 
proximate analytics in the works by [19,20]. 

Finally, based on the comparison, one can note that the 
results of the numerical simulation of non-linear surface 
gravity waves on shallow-water equations agree reasona-
bly well with experimental measurements. 
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