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ABSTRACT 

This paper is devoted to the study of a translation plane π(C) associated with a t-spread set C and its transposed t-spread 
set C t. In this paper, an explicit matrix form of the inverse of an isomorphism from a translation plane into another 
translation plane associated with t-spread sets is derived and proved that two translation planes associated with t-spread 
sets are isomorphic if and only if their corresponding transposed translation planes are isomorphic. Further, it is shown 
that the transpose of a flag-transitive plane is flag-transitive and derived a necessary and sufficient condition for a 
translation plane π(C) to be isomorphic to its transposed translation plane. 
 
Keywords: t-Spread Sets; Translation Planes; Transposed Translation Planes; Flag-Transitive Translation Planes;  
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1. Introduction 

A t-spread set C over a Galois field GF(q) where q is a 
power of a prime (see [1]), has become important since a 
translation plane π(C) of order qt+1 can be constructed 
from it. The early study and use of t-spread sets can be 
found in the papers of Bruck and Bose [2,3]. Sherk [4] 
and Maduram [5] called t-spread sets as indicator sets 
and matrix representative sets respectively and studied 
them. Narayana Rao [6] has given a method of construc-
tion of t-spread sets. Several finite translation planes 
have been constructed using t-spread sets. 

Maduram [7] considered C t, the t-spread set obtained 
by transposing the matrices of the t-spread set C and 
called the translation plane π(C t) associated with C t as the 
transposed translation plane of π(C). Maduram has 
proved that the translation complement of a translation 
plane and its transpose are isomorphic and exhibited the 
isomorphism explicitly ([7], Proposition 3). In the same 
paper Maduram considered eight classes of translation 
planes and shown that the transpose of a plane of a class 
belong to the same class ([7], Proposition 5). 

In this paper (1) an explicit matrix form of the inverse 
of a given isomorphism T from a translation plane π(C1) 
into another translation plane π(C2) is derived, (2) the 
existence and an explicit form of an isomorphism 

2  corresponding to each isomorphism 
T: π(C1) → π(C2) is derived and the particular case when 
C1 = C2 = C is studied, (3) the one-one correspondence 
between the set G of all isomorphisms from π(C1) to π(C2) 
and the set G of all isomorphisms from 

   1T : π πt C C t

 1π tC  to 
 is established and it is shown that this result 

strengthens to G  G, in the particular case when C1 = C2 
= C, where G and G are translation complements of π(C) 
and its transposed translation plane π(C t) respectively, (4) 
it is shown that the transpose of a flag-transitive plane is 
a flag-transitive plane and (5) finally a necessary and 
sufficient condition for a translation plane π(C) to be iso-
morphic to its transposed translation plane π(Ct) is de-
rived under a given set of conditions. 

 2π tC

The results proved in (2) and (3) above are for iso-
morphisms between planes and in the particular case they 
turn out to be results related to the collineations of the 
planes and these results in the context of collineations 
coincide with the results in Proposition 3 of Maduram [7]. 
In this way the results proved in (2) and (3) are more 
general. 

The result proved in (4) enables us to add the class of 
flag-transitive planes to the already existing eight classes 
of planes in Proposition 5 of Maduram [7].  

2. Preliminaries and Some Results 

In this section, we furnish general background necessary 
for this paper. Throughout this paper F, V(n,q), Xt and 
π(C) denote the Galois field GF(q) of order q where q is 
the power of a prime p, the vector space of all n-tuples 
over GF(q), the transpose of the matrix X1 and a t-spread 
set over GF(q) respectively. 

2.1. Andre’s Interpretation of Translation Planes  
[8] 

Let   2 1,V V t q  . A set  10 t
iV i q   S  of  

Copyright © 2012 SciRes.                                                                                OJDM 



K. SATYANARAYANA  ET  AL. 36 

(t + 1)—dimensional subspaces of V is a spread in V if  
            Vi ∩ Vj = {0}, i ≠ j, 0 ≤ i, j ≤ qt+1. 

If π is an incidence structure with the vectors of V as 
points of π and the subspaces Vi (0 ≤ i ≤ qt+1) of S to-
gether with their cosets in the group (V, +) as lines of π, 
with the inclusion as incidence relation then π is a trans-
lation plane of order qt+1. A collineation of π fixing the 
point corresponding to the zero vector is a nonsingular 
linear transformation of V permuting the subspaces of the 
spread S  among themselves. The translation comple-
ment of a translation plane π is the group of all collinea-
tions which fix the point corresponding to the zero vector 
of π, i.e., the stabilizer of the origin. 

2.2. The t-Spread Set and the Translation Plane  
Associated with It 

Let t be a positive integer. A collection C of  
(t + 1)  (t + 1) matrices over F is a t-spread set [1] (ma-
trix representative set) over F if it satisfies the following; 

1) C contains qt+1 matrices. 
2) Zero and identity matrices of order t + 1 are ele-

ments of C. 
3) If X, Y C, X ≠ Y, then determinant of (X  Y) ≠ 0. 
From this it follows that each non-zero matrix of C is 

nonsingular. 
Let Ft+1 be the vector space of (t + 1)—tuples over F. 

For each M  C, define  

    1, , ,tV M F M  x y x y y x   

    1, tV F   0 y y  

where 0 is the zero element of Ft+1 and 

       V M M V  S C C   

The members of S (C) are (t + 1)—dimensional sub-
spaces of V = V(2(t + 1), q ) and S (C) is a spread in V, 
since C is a t-spread set over F.  

Let π be the translation plane of order qt+1 constructed 
from the spread S(C) as in 2.1. The translation plane π 
constructed via the t-spread set C in this way is denoted 
by π(C) and is called the translation plane associated 
with the t-spread set C. The t-spread set C is the matrix 
representative set of π(C) with the fundamental subspaces 
V(∞), V(0) and V(I), i.e., x = 0, y = 0 and y = x respec-
tively. 

The following is the result established by Maduram [5] 
on matrix representative sets. 

Proposition 2.2.1: Matrix representative sets of any 
translation plane with the same fundamental subspaces 
are equivalent (conjugate). 

2.3. Isomorphic Translation Planes and a  
Collineation 

The discussion in this section is based on the work of 
Sherk [4] and Maduram [5]. 

Theorem 2.3.1 ([4], p. 217): Let C1 and C2 be t-spread 
sets over F. Let π(C1) and π(C2) be the translation planes 
associated with C1 and C2 respectively. The translation 
planes π(C1) and π(C2) are isomorphic if and only if there 

exists a nonsingular linear transformation 
A  B

C  D

 
   

 
, 

where A, B, C and D are matrices of order (t + 1) over F 
with the following properties: 

Either 
a) C = 0, A is nonsingular and for each M  C1 there 

exists an N  C 2 such that   

 1A B MD N    

or 
b) C is nonsingular and there is a P  C2 such that 

C1D = P. Also there is a Q  C1 such that A + QC = 0. 
For each of the other matrices M  C1, A + MC is non-
singular and there exists an N  C2 such that 

   1
A+ MC B MD N

    

Taking C1 = C2 = C in the above theorem we get a nec-
essary and sufficient condition for  to be a collineation 
of π(C). 

Theorem 2.3.2: Let C be a t-spread set over F. A non-

singular linear transformation 
A  B

C  D


  

 


 , where A, B, 

C and D are matrices of order t + 1 over F, induces a 
collineation in π(C) if and only if the following properties 
hold: 

Either 
a) C = 0, A is nonsingular and for each M  C there 

exists an N  C such that 

 1A B MD N    

or 
b) C is nonsingular and there is a P  C such that 

C1D = P. Also there is a Q  C such that A + QC = 0. 
For each of the other matrices M  C, A + MC is non-
singular and there exists an N  C such that  

   1
A+ MC B MD N

    

The following is the relation between the matrix rep-
resentative sets of isomorphic translation planes: 

Proposition 2.3.3 [5]: If two matrix representative sets 
are equivalent then the corresponding translation planes 
are isomorphic. Conversely, isomorphic translation planes 
have equivalent matrix representative sets. 
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The matrix representative sets of a translation plane 
and collineations are related in the following way: 

semi-field planes, d) generalized Hall planes, e) Lune-
burg planes, f) Bol planes, g) generalized Andre planes, 
and h) C-planes. Proposition 2.3.4 [5]: In a translation plane there ex-

ists a collineation, mapping three given lines through a 
point onto another three such lines if and only if the ma-
trix representative sets corresponding to these two sets of 
fundamental lines are equivalent. 

2.5. Flag-Transitive Planes 

A finite affine plane π is a flag-transitive plane if it ad-
mits a collineation group that is transitive on the incident 
point-line pairs or flags of π [9]. Wagner [10] has shown 
that π is a translation plane so that its order is some posi-
tive integral power of prime. 

2.4. Transposed Translation Planes 

Maduram [7] considered the transposed t-spread set (ma-
trix representative set) C t = {Mt|M  C} of a given 
t-spread set C over F and shown that Ct is also a t-spread 
set [7, p. 266]. Let 

    1, , ,t tU M F M  x y x y y x t  

The translation plane π = π(C), of order qt+1, associated 
with the t-spread set C over F is flag-transitive if there 
exists a collineation group which permutes the subspaces 
of the spread S (C) in V.  

    1, tU F   0 y y  and 3. Explicit Matrix Form of the Inverse of an  
Isomorphism 

       t tU M M U  S C C   Let C1 and C2 be t-spread sets over F and π(C1) and π(C2) 
respectively be the translation planes associated with 
them. If T is the matrix form of an isomorphism from 
π(C1) to π(C2), then an explicit form of the isomorphism 
T1 is given in the following theorem: 

Clearly S (C t) is a spread in V.  
Let π(C t) be the translation plane of order qt+1 con-

structed from the spread S (C t) as in 2.1. It is the transla-
tion plane associated with C t and π(C t) is said to be the 
transposed translation plane of π(C). Maduram [7] stud-
ied various properties of transposed translation planes. 

Theorem 3.1: If 
A  B

T
C  D

 
  
 

 be an isomorphism from  

π(C1) to π(C2) then the explicit form of the isomorphism 
T1 from π(C2) to π(C1), is given below.  

The following are important results obtained by Madu- 
ram on transposed translation planes. 

Proposition 2.4.1 ([7] Proposition 3, p. 267): The tran- 
slation complement of any translation plane is isomor-
phic to that of its transpose.  

If C = 0, then A and D are nonsingular and  

1 1
1

1

A      A BD
T

            D

  




1 
  
  0

         (3.1.1) 
Maduram explicitly had given the following isomor-

phism ψ ([7], p. 268) from the translation complement of 
π(C) onto the translation complement of its transposed 
translation plane S (C t): 

If C is nonsingular then either A = 0 or A is nonsingu-
lar and either D = 0 or D is nonsingular. Further,  

a) If A = D = 0, then  

:
t

A  B     I A  B   I

C  D I   C  D I    


       
            

0 0

0 0





 
1  

1

1

     C
T

B    






 
  

  

0

0
            (3.1.2) 

Proposition 2.4.2 ([7] Proposition 5, p. 269): The trans-
pose of the following classes of planes belong to the same  b) If A is nonsingular, then C1D  A1B is nonsingular 

and class: a) Desarguesian planes, b) near—field planes, c)  

   
   

1 11 1 1 1 1 1 1 1

1

1 11 1 1 1 1 1

    
 

  

C D C D A B A       A B C D A B C
T

C D A B A                       C D A B C

        


      

      
    

              (3.1.3) 

c) If D is nonsingular then AC1  BD1 is nonsingular and  

   
   

1 11 1 1 1 1 1 1

1

1 11 1 1 1 1 1 1
 

C AC BD          C AC BD BD
T

D AC BD          D AC BD AC

       


       

      
    

                (3.1.4) 
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Proof: If C = 0 then A and D must be nonsingular 

(s
 

π(
 C1 such that C D = 

P, 

a) Let A = 0, D = 0 in T. Then B must be nonsingular 
(s

1

ince T is nonsingular) and the result follows trivially.  
Let C be nonsingular. Since T is an isomorphism from
C1) to π(C2) the following hold:  
There exists matrices P  C2, Q  1

A + QC = 0, i.e., Q = AC1 and for each M ≠ Q in C1, 
A + MC is nonsingular and there is an N ≠ P in C2 such 
that (A + MC)1(B + MD) = N. Now we can have either P 
= 0 or P ≠ 0 and Q = 0 or Q ≠ 0. If P = 0 then D = 0. If P 
≠ 0 in C2, then P is nonsingular (since C2 is a t-spread set) 
and D is nonsingular. By a similar argument if Q = 0 then 
A = 0, and if Q ≠ 0 then A is nonsingular. Thus, we get 
either A = 0 or A is nonsingular and D = 0 or D is non-
singular. 

ince T is nonsingular) and the result follows trivially. 
b) Let A be nonsingular. Then Q is nonsingular in C  

and hence Q ≠ 0. Thus we can take M = 0 and there is a 
matrix N ≠ P in C2 such that A1B = N. Since C2 is a 
t-spread set, P  N is nonsingular. i.e., C1D  A1B is 
nonsingular. 

Let 1 . Now 1 I    
TT

 I
  
  


0

0  
X   Y

T
Z  W

  
  
  

. This in turn  

im AX + BZ = I,  = 0; AY + BW

 
c) Let D be nonsingular then P is nonsingular in C2 and 

he

plies CX + DZ  = 0 and CY 
+ DW = I. Solving for X, Y we get X = C1DZ, Y = 
A1BW. Finally we get Z = (C1D  A1B)1A1, W = 
(C1D  A1B)1C1. There by X = C1D(C1D  A1B)1A1, 
and Y = A1B(C1D  A1B)1C1. Thus 

   
   

1 11 1 1 1 1 1 1 1

1

1 11 1 1 1 1 1

C D C D A B A        A B C D A B C
T

C D A B A                       C D A B C

        


      

      
    

 

nce P ≠ 0. Thus, we can take N = 0 and there is a ma-
trix M ≠ Q in C1 such that (A + MC)1(B + MD) = 0, im-
plying (B + MD) = 0 i.e., M = BD1. Since C1 is a 
t-spread set, Q  M is nonsingular, i.e., AC1  BD1 is  

nonsingular. Taking 1 X   Y
T

Z  W
  
   and considering  



1 I   
T T

   I
  

  


0

0 
, we get XA + YC = I, XB + YD = 0,  

ZA + WC = 0 and ZB + WD = I. Solving for Y, W, we 
g

 1

et  
Y = XBD1, W = ZAC1. Finally, we get  

11 1 1 1,X C AC BD D ACZ  1 1BD
          

 1 1 1Y C AC BD BD 1     

and 1  11 1 1D AC BD ACW
   . 

Thus, 

1

 
Hence the theorem. 

form of T1 given in (3.1.3) holds 
in

nonsingular b) The form of T1 given in (3.1.4) holds in 

 

1

1

 

Corollary 3.3: Let 

   
   

1 11 1 1 1 1

1

1 11 1 1 1 1 1 1

C AC BD         C AC BD BD
T

D AC BD        D AC BD AC

      


       

      
    

 

1

Remark 3.2: a) The 
 the case either D = 0 or D is nonsingular when A is 

the case either A = 0 or A is nonsingular when D is non-
singular c) If A and D are both nonsingular in T, then 

   1 11 1 1 1        

   
   
   

1 1 1 1

1

1 11 1 1 1 1

1 11 1 1 1 1 1

1 11 1 1 1 1 1 1
        

C D C D A B A     A B C D A B C
T

C D A B A                       C D A B C

C AC BD          C AC BD BD

D AC BD         D AC BD AC




      

       

       

     
    
   


  


 
 
 

 

A B

C D


 
  


 


be a collineation of a  

tr  The expl

by (3.1.1). 
er A = 0 or A is nonsin-

gu
 (3.1.2), b) If A is nonsingular, then 

C  

anslation plane π(C). icit matrix form of the 
collineation α1 is given below: 

If C = 0, then A and D are nonsingular and α1 is given 

If C is nonsingular, then eith
lar and either D = 0 or D is nonsingular a) If A = D = 

0, then 1 is given by
1D  A1B is nonsingular and α1 is given by (3.1.3), c) 
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If D is nonsingular, then AC1  BD1 is nonsingular and 
α1 is given by (3.1.4). 

Proof: Proof follows from the above theorem with C1 = 
C2 = C.   

4.

tra lanes are isomorphic. We start with the fol-

 Isomorphic Planes and Their Transposed  
Planes 

In this section, we prove that two translation planes are 
isomorphic if and only if the corresponding transposed 

nslation p
lowing definition: 

Definition 4.1: Let T be an isomorphism from π(C1) into 
π(C2) and S be an isomorphism from  1π tC  to  2π tC . 
We say that T and S have the same action ither 

at 

 if, e

       T SV V V V        

and for each M  C1, there exists an N  C2 such th



      StT tV M V N V M V N  . 
or there exist matrices Q  C1 and P  C2 such that  

       ,T TV Q V V V P  
 

       ,S St tV Q V V V P  

and for each M  C1 (M ≠ Q) there exists an N  C2 such 
that  

      StT tV M V N V M V N  . 
following Theorem proves that for each isomor-

phism T from π(C1) to π(C ) there exists an isomorphism 
T from  to  such that T and T h e the 
sa

The 
2

 2π tC 1π tC av
me action. Further, the explicit matrix form of T is 

derived and the particular case when C1 = C2 = C is stud-
ied. 

Theorem 4.2: If 
A  B

T
C  D

 
  
 

 is an isomorphism from  

the translation plane π(C1) to the translation plane π(C ),  

the  isomorph

2

n there exists an ism 

1t tD      B
T

t tC      A


 

      
  

from to Further, the action of T from 
tion of T from π(C1

P o t 

 1π tC  

2). 

 2π tC . 
 1π tC  to  2π tC  is same as the ac ) 

to π(C

ro f: Le
A  B

T

C  D


  
 

 be an isomorphism from π(C1) 

to π(C2). 

 

t C = 0 in 
sing e T is an isom C1

ts an N  C2 such that 

Case a): Le T. Then A and D must be non-
ular. Sinc orphism for each M   

there exis

 1A B MD N                (4.2.1) 

Notice that  

    
    1    

,

       , t

V T F

F V

 D

D 

  

  

 
 



0
0

0

x x

x x
 

1t A B  

    

   
    

1

1
2

1 1            

, ,

,

            , ,

t

t

t

V M T M F M

B MD F

N F N

A B

 

A

V

D

N



 



  



 
 



  

 





0
x x x

x x x

x x x

C

C

 

Thus,        ,T TV V V M V   . 
osing (4.2.1), we get (Bt + DtMt)At = Nt

N
Transp  and 

t  (4.2.2) 

t  
such that (4.2.2) holds. Ther

   1t t t t t tD D B A M A N
        

This shows that for each Mt  tC  there exists an N1

efore, 2
tC  

 -t

D   D
T

        A

t t t tB A   
   

  0
 

 1π tCis an isomorphism from  to . As before it 
is easy to see that  

 2π tC

       and  .t tU U U M NT T     U

Thus,        , tTtU U M U . 
y be seen that 

TU   N
It ma

1

'
t t

t

D    B
T

      A


 

  
   0

 

and T and T' have the same action.  
Case b): Let C be nonsingular in T. Since T is an iso-

morphism, the following hold: 
There is a P  C2 such that   

1C D P                (4.2.3) 

There is a Q  C1 such that  

A QC  0             (4.2.4) 

For each M (≠ Q) in C1, A + MC is nonsingular and 
there is an N (≠ P) in C2 such that 

   1
B DC MA M N

           (4.2.5) 

From the above, we see 

    

     
     

1

1

1

            

    

,

,

       , 

t

t

t

V Q T Q F

A Q

A B

C B QD F

C 

QD F V

D

B







 

  



 
 


  





 0

x x x

x x x

x x
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    

     
    

1

111

1

            

            

,

, ,

,

t

t t

t

V T F

F

A B

C 

F

F V

D

C D C D

P P



 



  



 
 
 

  

  

0 x x

x x x x x x

x x x

 

      
     

    

1

1

1

1

            

            

,

, .

t

t

t

V M T A MC B MD F

A MC B F

N

MD

F V N









   

  

  



x x x

x x

x x x

 

Thus, P  and  

Pt(Ct) 
= 0.Thus there is a Pt   such that  

         (4.2.6) 

osing (4.2.4) we get Qt = CtAt = (
Thus there exists Qt  such that  

   TV Q V  , 
 T V N . 

osing (4.2.3), we get 

   TV V 

DtCt = Pt, i.e., Dt + 
 V M
Transp

2
tC

  .t t tD P C  0  

Transp Ct)1At. 
  1

tC  

  1t t tAQ C


             (4.2.7) 

Transposing (4.2.5) and simplifying
(Dt  Nt Ct)Mt = NtAt  Bt. Notice that
N

C
rces D onsingular. Hence 

(D  CN)t  = (Dt  NtCt) is nonsing
Nt t t h that  

 we get  
 N, P = C1D  C2, 

 ≠ P. Since C2 is a t-spread set, the difference of any two 
distinct matrices of C2 is nonsingular. Hence N 1D is 
nonsingular. This fo   CN is n

ular. Thus, for each  
t t(≠ P ) in 2 there exists a M (≠ Q ) in 1C  suc

   1t t t t t t t

tC  

M D ACN B N


        (4.2.8) 

From (4.2.6), (4.2.7) and (4.2.8), it follows that  
t t

t t

D    B
S

C   A

 
  

  
 is an isomorphism from  2π tC  to  

 tC  and 1π  

     ,t tS SU Q U U U     ,P

   St tU N U M
 

Since S is an gular a ce  

S1 exis  = S1 then  is an iso-  

morphism from  to 

 isomorphism, S is nonsin nd hen

ts. Let T'

1t t

t t

D    B
T

C   A


 

   
  

 1π tC  2π C t  and 

     U    , ,t tTU P U Q 

   Tt tU M U N
 

T U

It may be readily seen tha e same ac-t T and T have th
tion.  

rem. 
Note 4.3: It may be seen that  
Hence the theo

1 tt t

t t

 D    B     I A B   I
T

I  C D I    C      A

                      

0 0

0 0
 





Corollary 4.4: Let C be a t-spread set. If 
A B

C D


 
  
 

 

is tion plane π(C), then   a collineation of the transla
1t t

t t

  D    B

C      A



 

   
  

 is a collineation of the transposed  

translation plane π(C t). Further, α and α have the same 
action on the subspaces of the underlying spreads of π(C) 
an

Proof: Proof follows from the Theorem 4.2 when C  = 

We have derived this explicit form in the context of 
isomorphisms, whe
context of collineations. In Theorem 4.2 we have in fact 

f their corresponding transposed translation 
pl

5.

In

d π(C t). 
1

C2 = C. 

re as Maduram [7] has derived in the 

proved the following result. 
Theorem 4.5: Two translation planes are isomorphic if 

and only i
anes are isomorphic. 

 A Study of Isomorphisms in a Translation  
Plane and in the Corresponding  
Transposed Translation Plane 

 this section, we prove that G, the set of all isomor-
phisms from π(C1) to π(C2) and G, the set of all isomor-
phisms from  1π tC  to are in one-one corre-
sponden when C  = C  = C, we 

ll isomor-
ph to 

 2π tC  
rticular case ce. In the pa 1 2

prove that G  G 
Theorem 5.1: If G and G are the sets of a
isms from π(C1) to π(C2) and  1π tC   2π tC  re-

spectively, then the map ψ: G→G  defined by 

1t t

t t

A  B   D    B

C  D C      A


  


  



   
 

 

is bijective. 

Proof: a) Let 
A  B

C  D

 
 
 

, 
P  Q

R  S

 
 
 

nd  G  a

A  B P  

C  D R  S
 

Q  



   
   

.  

mputation shows that Dt = St, Bt = 
Rt and At = Pt. This in turn implies A = P, B 

=  = S. It w follows t  one-one. 

b) Let 

A straight forward co
Qt, Ct = 

Q, C = R and D  no hat ψ is
P Q

T
R S

 
  
 

 be any isomorphism from  1π tC   

to  2π tC  i.e., T  G. By Theorem 4.2, there exists an  
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isomorphism rom (C1) to π(C2).  

  

are nonsingular and 


 = 0 or P is nonsingular 
the following ca

a) If P = S = 0 in T, then by Theorem 3.1,  

.  

Now there exists  


1

'
t t

t t

   S    Q
T

R     P


 

  
  

f

1t t

t t

         Q       R
T G

R          Q          





   


   
    

     

0 0

0 0

    
 π

Note that T  G. To prove ψ is onto, we prove ψ(T') = T. 
This is done in the following different cases. 

Case i): Let R = 0 in T. Then by Theorem 3.1, P and S
1 1 1

1

1

P     P  QS
T 



 
   . Now there  

           S

 

  0




  

and  

T   
11

11

-1

      R
T T

Q     



 

   
  

0

0
 

exist 
         P

 
    0 0

 and  

1t t t t t t  

t t

S         Q S      S  Q P
T G

        P      

   
    



   
11

11
- -1 -1

-1

P  P  QS
T T T

           S



 

    
  0

 



P is nonsingular in T, then by (b) of Theorem 3.1, 
R1S  P1Q is nonsingular and  

1

b) If 

   
 

1 1 1 1 1 1 1

11 1

R S R S P Q P     P  Q R S P Q

R S P Q P           

      

    

1

1 1

1 1 1 1

T

  R S P Q R



 

  



    


. 


    Case ii): Let R be nonsingular in T. Then by Theorem 
3.1, we have either P and either S 
= 0 or S is nonsingular. Now ses arise. 

Now there exists a 

1t t

t t

  S    Q
T G

R     P


 

   
  

1 1 t t t t
1

1

1

         R
T

Q        






 
  
  

0

0

. Clearly Pt is  

nonsingular and (R S  P Q)  = S R  Q Pt is nonsin-
gular. There by StRt + QtPt is nonsingular. By (c) of 



an

T

 S is nonsingular in T, then by (c) of Theorem 3.1, PR1  QS1 is nonsingular and 

 

Now for this T, there exists a .  
We readily see that S  is nonsingular, (PR1  QS1)t = 

RtPt  StQt is nonsingular and Rt Pt + St Qt is nonsin-
gular. By (b) of Theorem 3.1, 



Theorem 3.1  

 
  1-

– –

– –

t t t t t

t t t t t

R S R Q P   
T

P S R Q P   
 

   


 
  1

–

–

t t t t t t t

t t t t t

S R Q P Q P

S R Q P S R

   

   

 


 

 

1 1
–

– t t

 R

 P

   

d  

 
   

   
 

11 11 1 1 1 1 1 1
11

1 11 1 1 1 1 1

– – –

– – –

R S R S P Q P      P  Q R S P Q
T T

R S P Q P             R S P Q R


       


      

      
   

 

c) If

   
   

1 11 1 1 1 1 1 1

1

1 11 1 1 1 1 1 1

– – –

– – –

R PR QS       R PR QS QS
T

S PR QS       S PR QS PR

       


       

 
   
  

 

1 t
t t

t t

  S     Q
T G

R      P


 

   
  

   
 

1 1

1 1

– –   

–   

t t t t t t t t t t t t t t

t t t t t

R P R P S Q S      S Q R P S Q R
T

R P S Q S    

       

     t t t t t         R P S Q R     

        
  –         

 



and  

T

   

 
   
   

 
11 11 1 1 1 1 1 1

11

1 11 1 1 1 1 1 1

– – –

  

R QS PR       R QS PR QS
T T

S QS PR     S QS PR PR     


       


       

 
    

   
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Combining all the cases above, we have shown that for 

any T  G there exists a T  G such that ψ(T) = T. This 
shows that T is onto. Thus, ψ is bijective.  

Hence the theorem. 
In the particular case when C1 = C2 = C, G and G turns 

u  t

omplement of 
a at

o t to be the translation complements of π(C) and π(C ) 
respectively. The bijection ψ: G→G strengthens to be an 
isomorphism and thus proves the result of Maduram ([7] 
Pr i.e., the translation coposition 3, p. 267) 

given translation plane and th  of its transpose are iso-
morphic. 

Theorem 5.2: If G and G are the translation comple-
ments of π(C) and π(C t) respectively, then G is isomor-
phic to G and the isomorphism from G onto G is given 
by ψ where 

1

:
t tC  D C      A


t tA  B   D    B  

        
 

Proof: In the above Theorem 4.1, let us take C1 = C2 = C. 
Then G and G will become the groups of all collinea-
tions of π(C) and π(C t) respectively, i.e., G and G will be 
the translation complements of π(C ) and π(  t). Define a 
map ψ: G → G by 

C

1

:
t t

t t

A  B   D    B

C  D C     A



  

   
    

 

Clearly this map ψ is bijective (by Theorem 5.1). Let α,  

β  G and 
A   B

C  D
   

 
, 

 P  Q

R  S


 
  
 

. Now  

 








 
   –

t t 
CP DR      AP BR

   
   

   

 
 

–1

–1

–

–
           

–

– –
           

– –

t t

t t t t t

t t t t t t t t

t t t t

t t t t

CQ DS      AQ BS
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          
        

 
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 

1
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t t t t

t t t t

D    B  S     Q  
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   

 
   

    
      

 



Thus, ψ is a homomorphism and ψ: G→G is an iso-
morphism. Hence G  G.  

Hence the theorem. 

6. On the Transpose of a Flag-Transitive  

 the transpose of a flag-tran- 
si sitive. 

Theorem 6.1: The transpose of a flag-transitive plane 
is flag-transitive. 

Proof: Let C be a t-spread set over F. Then S (C) = 
{V(M)|M  C } {V(∞)} is a sprea  in V = V(2(t + 1),q). 
Let π(C) be sitive plane of order qt+1 and G 
be its translation complement. Since π(C) is flag-transi-

se 
of ead set of C. Then S (Ct) is a spread in V. Let 

im of this result is to 
pr

: G→G  is given explicitly as  

Plane 

In this section we prove that
tive plane is also flag-tran


 the flag-tran

d

tive, it admits a collineation group H  G which is tran-
sitive on the members of S (C). Consider Ct, the transpo

 the t-spr
π(Ct) be the transposed translation plane of π(C) and G be 
its translation complement. The a

ove π(Ct) is flag-transitive. By Theorem 5.2, G  G and 
the isomorphism ψ 

1

:
t t

t t

A  B   D    B

C  D C      A


  

    
    

a class 
belong to the same class. By the above theorem the class 
of flag-transitive planes is to be annexed t e already 
existing eight classes in the proposition 5 of Maduram 
[7

on-
di

eorem 7.1: Suppose that i) Every collineation of π(C) 

V( nions b) H, the collineation 

a co

 

Clearly, H = ψ(H) is a subgroup of G. By the Corol-
lary 4.5, H and H have the same action on the members 
of S (C) and S (C t) respectively. Since H is transitive on 
the members of S (C), H is also transitive on the mem-
bers of S (C t). This shows that π(C t) is flag-transitive. 

Hence the theorem. 
Maduram [7] considered eight classes of translation 

planes and shown that the transpose of a plane of 

o th

]. 

7. Existence or Otherwise of an Isomorphism  
from π(Ct) to π(C)  

In this section we derive a necessary and sufficient c
tion for π(Ct) to be isomorphic to π(C) under a given set 

of conditions. 
Let X, Y  C. We say that V(X) and V(Y) are compan-

ions if every collineation of π(C) that fixes V(X) also fixes 
V(Y) alone and if every collineation of π(C) that fixes V(Y) 
also fixes V(X) alone.  

Th
that fixes V(∞) also fixes V(0) and no others and ii) π(C) 
has a collineation  that flips V(∞) and V(0). Then a) 
∞) and V(0) are compa

group that fixes V(∞) and V(0), partitions the members of 
S other than V(∞) and V(0) into orbits of length greater 
than 1, c) The t-spread sets of C·P1 and C·Q1 are 
equivalent if and only if V(P) and V(Q) belong to the 
same orbit of S   {V(∞), V(0)} under H. 

Proof: a) Given that no collineation of π(C) moves V(0) 
while fixing V(∞). Assume that π(C) has llineation  
that fixes V(0) and moves V(∞). Then −1 fixes V(∞) 
and moves V(0), a contradiction. This proves that every 
collineation that fixes V(0) also fixes V(∞) and no others. 
From this it follows that V(∞) and V(0) are companions. 

Copyright © 2012 SciRes.                                                                                OJDM 



K. SATYANARAYANA  ET  AL. 43

b) Clearly, H fixes V(∞) and V(0) and no others. The 
result (b) follows trivially.  

c) If V(P) and V(Q) belong to the same orbit of  
S  {V(∞), V(0)} under H then there exists a collineation 
  H such that  

           , 0: 0V V V V V P V Q，  

By Proposition 2.3.4, the matrix representative set of 
π(C) corresponding to the fundamental subspaces V(∞), 
V(0), V(P) is equivalent to the matrix representative sets 
of π(C) corresponding to the fundamental subspaces V(∞), 
V(0), V(Q) i.e., C·P1 is equivalent to C·Q1.  

    

Conversely, suppose C·P1 is equivalent to C·Q1. By 
proposition 2.3.4, there exists a collineation  mapping 
V( spec-

V and V(Q) belong to the same orbit of  
S {V(∞), V(0)} under H.  

Hence the result. 

 C·X  for 
so

 to C·X for some X  C
w ne member taken from the orbits of 
S 

 4.4, for eac
lin

paces of
is it 

fo

 onto V(0), V(∞), and

 
ss of gener-

(∞), 
U(I) onto V(∞), V(0) and V(X) respectively for 

so

[2] C. Bose, “The Construction of Trans-
lation Planes from Projective Spaces,” Journal of Algebra, 
Vol. 1, No. 1, 19
doi.org/10.1016/0021-8693(64)90010-9

∞), V(0) and V(P) onto V(∞), V(0) and V(Q) re
tively. This means that   H and  sends V(P) onto 

(Q). Thus V(P) 

Theorem 7.2: Suppose that i) every collineation of π(C) 
that fixes V(∞) also fixes V(0) and no others ii) π(C) has a 
collineation  that flips V(∞) and V(0) and iii) H is the 
group of collineation that fixes both V(∞) and V(0). Then 
π(C t)  π(C) if and only if C t is equivalent to 1

me X C where V(X) is any one member taken from the 
orbits of S  {V(∞), V(0)} under H.  

Proof: From the above theorem, V(∞) and V(0) are 
companions and H partitions the members of  
S {V(∞), V(0)}into orbits of length greater than 1. 

Suppose C t is equivalent 1 , 
 here V(X) is any o

{V(∞), V(0)} under H. Notice that C·X1 is a matrix 
representative set of π(C) with fundamental subspaces 
V(∞), V(0) and V(X). By Proposition 2.3.3, the corre-
sponding translation planes associated with C t and C·X1  

are isomorphic. Thus π(C t)  π(C). 
Conversely, suppose π(Ct)  π(C). Let  be the isomor-

phism from π(C t) to π(C). By Corollary h col-

 
eation  of π(C), there is a collineation  of π(C t) such 

that  and  have the same action on the subs
the underlying spreads of π(C) and π(C t). From th

llows that U(∞) and U(0) of π(C t) are companions. 
Now the isomorphism  must map companions of π(C t) 
onto the companions of π(C). Therefore, we have either  
: U(∞)→V(∞),U(0)→V(0), U(I)→V(P) or  
: U(∞)→V(0), U(0)→V(∞), U(I)→V(Q), for some  
P,Q  C. 

If  maps U(∞), U(0) and U(I)  

V(Q), Q C, then  is an isomorphism from π(C t)  to 
π(C) mapping U(∞), U(0) and U(I) onto V(∞), V(0) and
V(R) respectively for some R  C. Without lo
ality, we may take that the isomorphism  maps U
U(0) and 

me X  C. By Proposition 2.3.3, the matrix representa-
tive set of π(C t) with fundamental subspaces U(∞), U(0) 
and U(I) is equivalent to the matrix representative set of 
π(C) with fundamental subspaces V(∞), V(0) and V(X) for 
some X  C, i.e., C t is equivalent to C·X1. By (c) of 
Theorem 7.1, X  C and V(X) is any one member taken 
from the orbits of S {V(∞), V(0)} under H. 

Hence the theorem. 
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