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ABSTRACT

In this paper, sharp upper bounds for the domination number, total domination number and connected domination
number for the Cayley graph G = Cay(D,,, Q) constructed on the finite dihedral group D,,, and a specified generating
set Q of D,,. Further efficient dominating sets in G = Cay(D,,, Q) are also obtained. More specifically, it is proved that
some of the proper subgroups of D,, are efficient domination sets. Using this, an E-chain of Cayley graphs on the dihe-

dral group is also constructed.

Keywords. Cayley Graph; Dihedral Group; Domination; Total Domination; Connected Domination; Efficient

Domination

1. Introduction and Notation

Design of interconnection networks is an important inte-
gral part of any parallel processing of distributed system.
There has been a strong interest recently in using Cayley
graphs as a model for developing interconnection net-
works for large interacting arrays of CPU’s. An excellent
survey of interconnection networks based on Cayley
graphs can be found in [1]. The concept of domination
for Cayley graphs has been studied by various authors
[2-7]. L. J. Dejter and O. Serra [3] obtained efficient do-
minating sets for Cayley graphs constructed on a class of
groups containing permutation groups. The efficient
domination number for vertex transitive graphs has been
obtained by Jia Huang and Jun-Ming Xu [4]. A neces-
sary and sufficient condition for the existence of an in-
dependent perfect domination set in Cayley graphs has
been obtained by J. Lee [5]. Total domination in graphs
was introduced by Cockayne, Dawes, and Hedetniemi [2]
and is now well studied in graph theory. T. Tamizh
Chelvam and I. Rani [6-8] have obtained bounds for
various domination parameters for a class of Circulant
graphs.

Let I be a finite group. Let Q be a generating set of I’
satisfying e ¢ Q and a € Q implies a ' € Q. The Cayley
graph corresponding to I is the graph G = (V, E), where
(G) =T and E(G)={(x, xa): x € V(G), a € Q} and it is
denoted by G = Cay(T', Q). Let G= (V, E), be a finite,
simple and undirected graph. We follow the terminology
of [9]. A set S < V of vertices in a graph G is called a
dominating set if every vertex v € V is either an element
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of S or adjacent to an element of S. A dominating set S is
a minimal dominating set if no proper subset of S is a
dominating set. The domination number A G) of a graph
G is the minimum cardinality of a dominating set in G
and the corresponding dominating set is called a y-set. A
set S < Vis called a total dominating set if every vertex v
€ V is adjacent to an element u (#v) of S. The fotal
domination number y(G) equals the minimum cardinality
among all the total dominating sets in G and the corre-
sponding total dominating set is called a y-set. A domi-
nating set S is called a connected dominating set if the
induced subgraph (S) is connected. The connected domi-
nation number y.(G) of a graph G equals the minimum
cardinality of a connected dominating set in G and a cor-
responding connected dominating set is called a y.-set. A
set S < Vis called an efficient dominating set (E-sef) if
for every vertex v € V, |N[v]NS|=1.

An E-chain is a countable family of nested graphs,
each of which has an E-set. We say that a countable fam-
ily of graphs G = {G,, i > 1} with each G; has an E-set S;
is an inclusive E-chain if for every i > 1, there exists a
surjective map f;: Gu; — G; such that f7'(S) < Si1.
And also we define that a finite family of graphs G = {G,,
i 2 0} is an inductive E-chain if every G is a spanning
subgraph of G; and each G; has an E-set S;. Let V(G;) be
any finite group and if, for each i > 0, there exists a bi-
jective map & V(G;) = V(Gi) such that (S;) < S
and S; is the subgroup of V(G;) then we say that G is an
inductive subgroups E-chain.

A graph G is called a covering of G with projection

p:G—> G if there is a surjection p:V(G)—)V(G)
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6 T. TAMIZH CHELVAM ET AL.

such that p/ :N(¥)—> N(v) is a bijection for any
vertex ve (G; and ve p'(v). We use the covering
function to show the inclusive E-chain.

In this paper, we obtain upper bounds for domination
number, total domination number and connected domi-
nation number in a Cayley graph G = Cay(D,,,Q) con-
structed on the dihedral group D,,, for n>3 and a
generating set Q. Further, we obtain some E-sets in
G =Cay(D,,,Q). Note that the dihedral group D,,
with identity e is the group generated by two elements »
and s with o(r)=n,0(s)=2 and rs=sr"'. From these
deﬁninf relations, one can take

2 .3 n—1 n-1
D, =ier,r 1,1

2
LS, ST, SP” - ST } and

2n>

Throughout this paper, n>3 be an integer, I'=D,,,

G= Cay(D Q) , where Q is a generating set of D,, .

m= nT—l and £, ¢ be integers such that 1<k <m,

1<t <n.We take the generating set Q in the form that
Q=

b

b b ’
LSP2 e ST

{ral ’raz ,"',Vak ’rn—ak ’r"“’k—l "“’rn—al ST
where 1<qg, <a,<---<aq,<m and
0<bh <b,<---<b <n-1. Let d =a,.,d =a,—a,_, for
2<i<k, d/=b,d;=b,-b, for 2<j<t and
d=max {di,dj’.}. Some of the results are listed
below for further reference.
Theorem 1[4] Let G be a k-regular graph. Then

(G)>M ith th lity if and only if G h
14 2= , With the equality if and only if G has an

efficient dominating set.

Theorem 2 [5] Let p: G—>G bea covering and let
S be a perfect domination set of G. Then p (S) is a
perfect domination set of G. Moreover, if S is inde-
pendent, then p' (S ) is independent.

Theorem 3 [10] Every subgroup of the dihedral group
D, is cyclic or dihedral. A complete listing of the sub-
groups is as follows:

1) cyclic subgroups <rd> , Where d divides n, with in-
dex 2d.

2) dihedral subgroups <rd,ris>, where d divides n
and 0<i<d-1 with index d. Every subgroup of D,,
occurs exactly once in this listing.

2. Domination, Total Domination and
Connected Domination Numbers

In this section, we obtain upper bounds for the domina-
tion number, total domination number and connected
domination number of graph G =Cay(D,,,Q). Also

whenever the equality occurs we give the corresponding
sets.

-1
Lemmad Let n>3 be an integer, m= = and k,
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t are integers such that 1<k<m,1<t<n. Let
Q =

n—ay _ n—ap_;

7r "'.5 bl }&

{r“‘,r“z,-u,ra",r T s sr ,w,srb’}
andG:Cay(DZn,Q).If d =a,d =a,—a_, for
2<i<k, dl':bl,dj’.:bj—bj_1 for 2<j<¢ and
d=max, {di,dj'.} , then

y(G)<2d

n
2d +2a, +b,—b,

n

Proof. Letx=2qa, +2d+b,—b, and l:[ —‘ Con-

X
sider the set

S =

{rl’“g,sr"““k dheinng) 0<i<]—land 0< g <d — 1}.
Clearly |S|=2dl and
N[S]= Uf:) {N |:rfx+g :I UN |:Srn’(£lk +d—by +ix+g) :|} ,

where 0<i</-1 and 0<g<d-1 We have to prove
that ¥ (G)< N[S]. If veV(G), then we can write v
as either one vertex of the form v=r° or v=sr"" ",
where 0<c<n-1.By the division algorithm,
c=xi+j,where 0<i</-1 and 0<j<x-1.

Suppose v =r. We have the following cases:

Casel. Suppose 0<i</-1 and 0<j<aqa, +d-1.

Subcase 1.1 If 0< j<a,, then by the definition of
d,veS c N[S].

Subcase 1.2 If j=a,+g, for some integers m, g
with 1<m<k and 0<g<d-1 then v=p""""¢
whereas "¢ €S andso ve N[r""¢]c N[S].

Case 2. Suppose 0<i</-1 and
a+d<j<a, +d+b—-b+d-1. In this case, there
exists an integer A with 1<h<b,—b +d -1 such that
V- Sl"h — Srn—(ak +d b +ix).

Subcase 2.11f heQ, ={b,b,, -,b,
e N(srn—(ak +d by +ix) ) c N[S]

Subcase 2.2 Suppose h=b, + g , for some integers m,
gwith 1<m<¢ and 1< g<d-1.In this case,
vespin = gpt @b which means that
= Srn—(a,c +d—b +ix+g) c N[S]

Case 3. Suppose 0<i</-2 and

}, then

a,+d+b-b+d<j<a +d+b —-b+d+a, 1.

In this case, there exists an integer 4 with 1<h<aq,
such that v-7" = p(*

Subcase3.11f heQ, = {al,az,--‘,ak} , then
ve N(r'"™)c NLS].

Subcase 3.2 Suppose & =a, —g , for some integers m,
g, with 1<m<k and 1< g<d-1.Inthis case,
vortn =D which means that
ve N(rie ) NIS].
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T. TAMIZH CHELVAM ET AL. 7

Case 4. Suppose i=/-1 and
a,+d+b-b+d<j<a +d+b-b+d+a, 1.

Then there exists an integer # with 1</ <g, such that
V- l”h = }"0 .
Subcase4.11f heQ,then ve N(r’)< N[S].
Subcase 4.2 Suppose / =a, — g, for some integers m,
g with 1<m<k and 1<g<d-1. In this case,
v-r“ =% which means that ve N(r*)c N[S].
Suppose v =sr" ") We have the following cases:
Case 1. Suppose 0<i</-1 and
0<j<b —b +d-1. In this case, there exists an integer
hwith 0<h<b —b+d-1 suchthat v.sr" =r"
Subcase 1L1If heQ,,then ve N(r*)c N[S].
Subcase 1.2 Suppose & =b,, + g , for some integers m,
gwith 1<m<t¢ and 1< g<d-1.Inthis case,
vesr’ = "¢ which means that v e N(r"“g ) < N[S].
Case 2. Suppose 0<i</—-1 and
b —b+d<j<b—-b+d+a,—-1. In this case, there
exists an integer 4 with 1<k <gqa, such that
V- }”h — Srn—(ak +d—by +ix) )
Subcase2.11f heQ, then
ve N(sr =) - N7,
Subcase 2.2 Suppose /1 =a, — g, for some integers m,
gwith 1<m<k and 1< g<d-1.In this case,
yopn = gptT@rd=hrite) which means that
Ve Srn—(aker—Iq +ix+g) c N[S] .
Case 3. Suppose 0<i</-1 and
b-b+d+a <j<b —-b+2d+2a,-1. In this case,
there exists an integer # with 0</h<a, +d -1 such
that v.p" = gp" (@D
Subcase 3.1 If 0<h<a,, then by the definition of
d,ve S c N[S].
Subcase 3.2 Suppose 4 =a, + g, for some integers m,
g with 1<m<k and 0<g<d-1. In this case,
yepin = gp @) which means that
Ve srn—(ak +d—b +ix+g) c N[S] .
Thus S is a dominating set of G.
The following lemma provides an upper bound for the
total domination number in G = Cay(D,,,Q).

Lemmab Let n>3 be an integer, m= LHT_IJ and

k, t be integers such that 1<k<m,1<t<n. Let
Q:

ay

“ap n—ap - b b b
{r“',r”2,~~-,r LT TR L T l,srz,m,sr’},

and GzCay(DZ”,Q).If d =a,d =a,—a,_, for
2<i<k, d/=b,,d;=b,~b,, for 2<j<t and

d=max, ., ... \d,.d}}, then y,(G)<2d

d+2a,

Proof. Let x=d +2a, and /= [ﬁ—‘ . Consider the set
x
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t

S ={r"x+g,sr"7(ix+g7b') :0<i</-and0< g< d—l} .

Clearly |St| =2dl . We have to prove that

V(G)c N(S,) If veV(G), then we can write v as
cither one vertex of the form v=r° or v=sr" ") ,
where 0<c<n-1.By the division algorithm,
c=xi+j, where 0<i</-1 and 0<j<x-1. We
have the following cases:

Case 1. Suppose 0<i</-1 and 0<j<gq . For
some integer g with 0 < g <d -1 and by the definition
of d, if v=r°, then ve N(sr"’(i)‘*g’b') ) c N(S,) or if
v =gt ,then ve N(r’“g ) c N(S,) )

Case 2. Suppose 0<i</-1 and q <j<a, +d-1.
We can write j=a,+g, for some integers m, g with
1<m<k and 0<g<d-1.1f v=r°, then
v=r"""n whereas "¢ €S, and so
ve N(r’“'+g ) c N(S,) orif v= 57" then

m{ﬂ+g+am7h)

ix+g

—(ix —by
v=sr whereas sr" (570

ve N(sr"*(i”gfb') ) cN(S,).

Case 3. Suppose 0<i</-2 and
d+a, < j<d+2a,.]In this case, there exists an integer
hwith 1<h<a, suchthat vs" =r"" or
vt = Srn—((i*—l)xfbl) ]

Subcase 3.1 Suppose heQ ={a,,a,,--,a,} and if
v=r°, then ve (r("“)" ) = N(S,) or if v= s

then ve N(sr"_(("”)x_b‘) ) = N(S,).

€S, andso

Subcase 3.2 Suppose & =a, — g, for some integers m,
g with 1<m<k and 1<g<d-1. In this case, if
v=r°,then v-r =r"*¢ \which means that
ve N(r(i”)”g ) c N(S,) orif v= 57" then

yopon = g (D) Gich implies that
ve N s (ereh) c N(St) )

Case 4. Suppose i=/-1 and d+a, <j<d+2a,.
Then there exists an integer # with 1</ <qa, such that
vt =r0 or v =gl

Subcase 4.1 When heQ,, and if v=r°, then
ve N(ro) = N(S,) orif v= sr" ™) then
veN(sr”'b')gN(S,).

Subcase 4.2 Suppose h =a, — g , for some integers m,
g with 1<m<k and 1<g<d-1. In this case, if
v=r° and v-r" =r® which means that
ve N(rg ) c N(S,) orif v=s""" then

vor = sr" €M) which means that
ve N(sr"f(gfbl) c N(St) .
Thus S, is atotal dominating set of G.
7, <|S,|=2dl.
Now we obtain an upper bound for the connected
domination number.
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8 T. TAMIZH CHELVAM ET AL.

Lemma6 Let n>3 be an integer, m= LnT_lJ and

k, t be integers such that 1<k<m,1<t<n. Let
Q=

by

- -, - b b
{r“‘,r“z,---,r”k,r" Y A TN T sy 2,---,sr’},

and G=Cay(D,,,Q). If d =a =1,d =a,—a,,
2<i<k, d{=b,,d;=b,~b,, for 2<j<tand

for

d:maxlggkjlgfg{di,dj'.},then 7.(G)<2d A

Ara

Proof. Let x=a, +d—-land /= {ﬁ—‘ Consider the set
x

S, :{r"“g,sr"*"”g*’") :0<i</-land0<g sd—l}.
In the notation of Lemma 5, a; =1 and x=gq, +d -1
and S, is a total dominating set. Since » € and for
each i with 0<i</-1,we have paths

rix rix+l rix+(d71) and

Srnf(ixfbl ) , Srnf(ierlfb] )
P and
Srn—(1x+d—l+ak ~by)

nf(ierdflfb]
. e . S’/‘
ix+(d—1)+ay, _ r(i+1)x

(i+1)x-by)

). Also note that
Srn—(ix+d—1—b]) and

= s are connected. Hence the
induced subgraph (S,) is connected.

3. Subgroups as Efficient Domination Sets

In this section, we obtain some E-sets in
G = Cay(D,,,Q) . Moreover we have identified certain

2n>

subgroups of D,, which are also efficient domination
setsin G.

Theorem 7 Let n>3 be an integer, m = LnT_lJ and

k, t be integers such that 1<k<m, 1<t<n anddis
an integer such that d (2k +t+ 1) divides n. Let

o) ={ d’r2d’“.’rkd,r(n—kd)’rn—(k—l)d’.._’

Ay d 2
P s s d,---,srtd}

2n
and G=Cay(D, ,Q). Then G)=——_ In this
case, G has an E-set.
Pr oof. Letlzz—n and x=d(2k+1+1). In
d(2k+1+1)

the notation of Lemma 4, d,’s and d/’s are same,
a,=id forall 1<i<k and b, =jd forall 1<;<¢.

Letx=d(2k+t+1) and l:[ﬁ—‘ . By Lemma 4,
x
S = {rl’xw,sr"‘("d*"**g) 0<i</-1,0<g< d—l}

is a dominating set and hence }/(G) Since

<
2k +t+1
G is 2k+t regular, by Theorem 1, one can conclude
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that § isanE-setin G.

Remark 8 Note that Theorem 3 identifies all sub-
groups of the dihedral group D,,. Now we us identify
some of the subgroups as efficient dominating sets.

Theorem 9 Let n>3 be an integer, m = LnT_IJ and

k, t be integers such that 1<k<m, 1<t<n and
2k+t+1 divides n.Let H={(r" sr"")be a subgroup
of the dihedral group D,, , where a=2k+t+1 and b,
0<b<k—1 Then, there exists a generating set Q of
D,, such that H is an efficient dominating set for the
Cayley graph G = Cay(D Q) .

2n>

Proof. Let
Q:{r,rz,---,rk,r"’k,r"’(k’”,---,r"’l,sr,srz,---,sr’},
I=—"  and x=2k+t+1. By taking d=1 in
2k+t+1

Theorem 7,
S:{ro T N L I Srn—(k+(l—l)x)}

is an efficient dominating set of G .

Remark 10 Under the assumptions of Theorem 9,
S.x is an efficient dominating set for the Cayley graph
G =Cay(D,,,Q) forall xeD,,.

4. E-Chainsin Cayley Graphs

Theorem 7 and 9 provide a tool to produce E-sets and
visualize some of the subgroups as E-sets in
Cay(D,,,Q). We use this tool to obtain an inclusive
E-chain and inductive subgroups E-chain of Cayley
graphs on the dihedral group.

Theorem 11 Let n>3 be an integer, m:LnT_IJ

and k be an integers such that1 <k <m,
G, = Cay(DZ”,DZH —{e}) s

_ 2 k _n—kd _ n—(k-1) n—1 2 n—>b;
Q, —{r,r JEEEIN A S S b ST SET e ST ‘}

and G, =Cay(D,,,Q,) (i21) Assume that |Q|+1
divides n and |Ql.+1|+l divides |Ql.|+1. Then the finite
Sfamily of graphs G ={G,,i >0} is inductive subgroups
E-chain.

Proof. Let 4 :|Q,.|+1. By the assumption A4, .
divides 4 . Define the map ¢, :V(G,)—>V(G,,) by
¢, (v)=v for all veG,. By Theorem 9, G, has an
efficient dominating set and it is of the form

n

4
S,.I rO:e,rl",ru’,'“,Fﬂ’ ’srn—(lﬁ-i,)’

nf(kJr[ifl]Z[J
n—k’srn—(k+21i)’__. 4

sr ,SF
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T. TAMIZH CHELVAM ET AL. 9

and also S, ’s are subgroups. It implies that

¢ (S,)cS,, for every i>1. Hence the family of

graphs G ={G,,i >0} is inductive subgroups E-chain.
The construction of an inclusive E-chain of Cayley

graphs is based on the following lemma.

Lemmal2 Let n>3 be an integer, m = L 21J k,t

be integers such that 1<k <m, 1<t<n anddis an in-
teger such that d(2k+ t +1) divides n. For i>1, let

d 2 k 2ipn-d 2n-2d
Qi:{r ,red,-rtd,r Ng TP
Yn-kd d 2 ‘
ro " st srod, e, st d}

and G, = Cay(D,I,Q ) Then G,, is a covering of
G.

Proof. Define the surjective map
£V(Ga) =V (G) by f(r)=
f (srf): sr ™" for all j, where 0< ;<2 (n-1).
Note that f; is a group homomorphism from D,

onto D, . Let #,veG,, . Suppose u and v are
adjacent i in G,

] mod?2' n and

. Then, there exists r* with

ISkSLnT_lJ or s#' with 1<¢#<n-1 such that

d=vror di=7s
phism and _
figrk):rk Y/ (s ): , we have
(@)= f,(9)-r* or f(d)=f,(7) s and so  f; (i)
and f (~) are adjacent in G, . Consider the map
fif vt V)—> N(v) for any vertex veV(G,,)
and ve V(G) Claim ﬁ/N(G) is bijection. Any ele-
ment x in N (V) as either one vertex of the form
x=r" or x=sr°, where 0<;<2™(n-1). Let
x,y € N(v). Then we have following three cases:
Case 1. Let x=r" and y=r®? with ¢ #e,. Sup-

pose ]f() f(y) ie.

7 mod2' n ) mod2' n — r(el ~e;)mod2’ n —e.ie

o(r)=(e —e,)mod2'n <n, which is a contradiction to

o(r)=n. Therefore f;(x) = f;(»).
Case2.Let x=r" andy=sr" . Suppose

fi(x)=f(y),ie r9 mod2'n _ gpe2modZn This means

(e—e;)mod2'n

. Since f; is a group homomor-

t mod2'n _

— d2! . .
r =e or s=s ™2 o hich is a

contradiction. Therefore f; (x)# f; ().
Case3.Let x=sr" and y=sr" with ¢ #e,.Sup-

pose f (x)=f,(y),ie

e mod2' n ("l —e ) mod 2 n

=>r =e.le.

e mod2' n

sr =sr
o(r)=(e,—e,)mod2'n<n which is a contradiction.
Therefore f;(x)# f;(y). Hence distinct elements of
N (V) are distinctly mapped onto N (v) and so

fi / Ny s arequired bijection.

Copyright © 2012 SciRes.

Theorem 13 Let n>3 be an integer, m :LnT_lJ,
k, t, be integers such that 1<k<m, 1<t<n and d is

an integer such that d (Zk +1+ 1) divides n. For
i1 let

d 2 k 2in-d 2n-2d
Q, ={r ,red,-rtd,r Ng TP
2n-kd . d 2 t
ro T s srid, e, s d}

and G, = Cay(Dzin,Qi) . Let S, be an efficient domi-
nating set for G,. Then the finite family of graphs
G ={G,,iz1} is an inclusive E-chain.

Proof. Since by above Lemma, GH1 is a covering of
G., (i=1). Since by Theorem 2, f'(S,)<S,,,. Hence
the finite family of graphs G ={G,,i>1} is an inclu-
sive E-chain.
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