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ABSTRACT 

In this paper, sharp upper bounds for the domination number, total domination number and connected domination 
number for the Cayley graph G = Cay(D2n, Ω) constructed on the finite dihedral group D2n, and a specified generating 
set Ω of D2n. Further efficient dominating sets in G = Cay(D2n, Ω) are also obtained. More specifically, it is proved that 
some of the proper subgroups of D2n are efficient domination sets. Using this, an E-chain of Cayley graphs on the dihe-
dral group is also constructed. 
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1. Introduction and Notation 

Design of interconnection networks is an important inte-
gral part of any parallel processing of distributed system. 
There has been a strong interest recently in using Cayley 
graphs as a model for developing interconnection net-
works for large interacting arrays of CPU’s. An excellent 
survey of interconnection networks based on Cayley 
graphs can be found in [1]. The concept of domination 
for Cayley graphs has been studied by various authors 
[2-7]. I. J. Dejter and O. Serra [3] obtained efficient do- 
minating sets for Cayley graphs constructed on a class of 
groups containing permutation groups. The efficient 
domination number for vertex transitive graphs has been 
obtained by Jia Huang and Jun-Ming Xu [4]. A neces-
sary and sufficient condition for the existence of an in-
dependent perfect domination set in Cayley graphs has 
been obtained by J. Lee [5]. Total domination in graphs 
was introduced by Cockayne, Dawes, and Hedetniemi [2] 
and is now well studied in graph theory. T. Tamizh 
Chelvam and I. Rani [6-8] have obtained bounds for 
various domination parameters for a class of Circulant 
graphs. 

Let Γ be a finite group. Let Ω be a generating set of Γ 
satisfying e  Ω and a  Ω implies a−1  Ω. The Cayley 
graph corresponding to Γ is the graph G = (V, E), where 
V(G) = Γ and E(G)={(x, xa) x  V(G), a  Ω} and it is 
denoted by G = Cay(Γ, Ω). Let G= (V, E), be a finite, 
simple and undirected graph. We follow the terminology 
of [9]. A set S  V of vertices in a graph G is called a 
dominating set if every vertex v  V is either an element 

of S or adjacent to an element of S. A dominating set S is 
a minimal dominating set if no proper subset of S is a 
dominating set. The domination number (G) of a graph 
G is the minimum cardinality of a dominating set in G 
and the corresponding dominating set is called a -set. A 
set S  V is called a total dominating set if every vertex v 
 V is adjacent to an element u (v) of S. The total 
domination number t(G) equals the minimum cardinality 
among all the total dominating sets in G and the corre-
sponding total dominating set is called a t-set. A domi-
nating set S is called a connected dominating set if the 
induced subgraph S is connected. The connected domi-
nation number c(G) of a graph G equals the minimum 
cardinality of a connected dominating set in G and a cor-
responding connected dominating set is called a c-set. A 
set S  V is called an efficient dominating set (E-set) if 
for every vertex v  V, |N[v]∩S|=1. 

An E-chain is a countable family of nested graphs, 
each of which has an E-set. We say that a countable fam-
ily of graphs G = {Gi, i  1} with each Gi has an E-set Si 
is an inclusive E-chain if for every i  1, there exists a 
surjective map fi: Gi+1  Gi such that 1

if
 (Si)  Si+1. 

And also we define that a finite family of graphs G = {Gi, 
i  0} is an inductive E-chain if every Gi+1 is a spanning 
subgraph of Gi and each Gi has an E-set Si. Let V(Gi) be 
any finite group and if, for each i  0, there exists a bi-
jective map i: V(Gi)  V(Gi+1) such that i(Si )  Si+1 
and Si is the subgroup of V(Gi) then we say that G is an 
inductive subgroups E-chain.  

A graph  is called a covering of G with projection 
 if there is a surjection  
G

G:p G     :p V GG V
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such that      :N vp N v N  v  is a bijection for any 
vertex  and  v V G  1v p v

D

. We use the covering 
function to show the inclusive E-chain. 

In this paper, we obtain upper bounds for domination 
number, total domination number and connected domi-
nation number in a Cayley graph  con- 
structed on the dihedral group 2n , for  and a 
generating set . Further, we obtain some E-sets in 

. Note that the dihedral group 2n  
with identity e is the group generated by two elements r 
and s with 

 2 ,ΩnG Cay D
3n 



Ω

 2 ,Ωnay D



G C D

  , 2o s 

1 2, , , ,r s sr sr
 is a gen

 

r n

2 3, , , ,D e r r r
 2 ,Ωnay D

  and . From these 
defining relations, one can take  

1rs sr

 1
2 , ,n n

n sr  
G C

 and  
, where Ω erating set of 2nD . 

ughout this paper, 3n   be integer, 2Γ nDThro an  ,  
1

2


 and k, t

t n . We take t

1 2, , , ,a nr r

1 21 a a 
b  

n
m   be i hat   

in the form at  



where  

1

ntegers such t

1, , ,k k ka n a nr   

ka m   and 
n   Let

1 ,k m 

1  he generating set Ω  th 

 1 1 2

Ω

, , , , tba a a b br r r sr sr sr


, 


tb 1 20 b   1 1d a1. , i i id a a     for 

2  i k , 1 1, 1j j jd b 
 jd d  . Some of

nc
 k-regul

d b

1 ,1i k j td    

r further re

b  and 
 the resu isted 

e. 
Theorem 1 [4] Let G be a

 
,i

fere

 for  2 j t   
lts are lmax

below fo
ar graph. Then  

 
 

1

V G
G

k
 


, with th nd only if G has an  

efficient dominating set.
G be a covering and let 

S 

e equality if a

 
: G   

tion set of 
Theorem 2 [5] Let p
be a perfect domina G. Then  1p S  is a 

perfect domination set of G . Moreover, if S is inde-
pendent, then  1p S  is in pendent. 

Theorem 3 ry subgroup of th
de

[10] Eve e d  group ihedral

2n  is cyclic or dihedral. A complete listing of the sub-
ps is as follows: 

1) cyclic subgroup

D
grou

s dr , where d divides n, with in-
de

edral subgroups
x 2d. 
2) dih  ,d ir r s , where d divides n 

an x d. Eve

In t e domina-

Lemma 4 Let be an integer, 

d 0 1i d    with inde ry subgroup of 2nD  
occur ce in this listing. s exactly on

2. Domination, Total Domination and  
Connected Domination Numbers 

his section, we obtain upper bounds for th
tion number, total domination number and connected 
domination number of graph  2 ,ΩnG Cay D . Also 
whenever the equality occurs we onding 
sets. 

 give the corresp

 and k,  

t a  thatre integers such  1 , 1k m t

 3n   
1

2

n
m




n    . Let  

 1 2 2, , , , , ,k ka n aa a br r r r r sr 1 1 1

Ω

, , , , ,k tn a bn a br sr sr 



 
 



 2 ,ΩnG Cay D . 
i k

and If 1  for  1 1, i i id a d a a   
2   , 1 1, 1j j jb b d b d     for  2 j t   and  

 jd 1 ,1max ,i k j t i    d d  , then  

 
1b

2
2 2 k t

G d
d a b

 
n

 

Proof. Let


. 

12 2k tx a d b b     and 
n

l
x

    
. Con- 

sid

1 .

er the set  

  n aix g  1, : 0 1 and 0k d b ix g

S

r sr i l g d   



     
 

2S d l  and  Clearly 

  11

0
] kl n a d b ix gix g

i
N sr

     


     [N S N r ,  

where 0 1i l    and 0 1g d    We have to e 
that 

 prov
  [ ]V G N S
r one vertex of the
0 1c n

. If , then we can write  v V G
 form v r

v  
as eithe c  or ( )tn c bv sr   , 
where    . By  algorithm,  
c xi j

 the division
  , where 0 1i l    a j 
Supp c

nd 0 1x  . 
v r . 

 
ose We have the following cases: 

. SupposeCase 1 0 1i l    and 0 1kj a d    . 
Subcase  10 j a1.1 If   , then by the definition of 
, [ ]v S N Sd   . 
Subcase 1.2 If gmj a  , for some integers m, g 

with 1 m k   and 0 1g d    then mix a gv r    
whereas ix gr S   an [ ] [ ]ix gN r N S  . 

Ca se 0 1
d so v

i l


se 2. Suppo     and  

1k k ta d b b 1j a d d     se   .
ex

 In this ca , there 
ists an integer h with 1tb b1 1dh   

Subcase 2.1 If 2Ωh  n  



, ,b b  the

 such that 
1kn a d bhv sr sr   

 , ,b

( ) .ix  

1 2 t
 ( ) [ ]ix N S   

ppose mh b g

1kn a d bv N sr  

Subcase 2.2 Su   , for some integers m, 
g with 1 m t   and 1 1g d   . 

ea
].  

0 i

In this case,  
1( )m kb n a d b ix gsr sr      , which m ns that  
)( [ ka d b ix gnv sr N S    

2l

v

Case

1

 3. Suppose     and  

k t1k t 1 1ka d b b d j a d b b d a            .  

xists an in  with In this case, there e teger h 1 h ak   
such that x( 1)h iv r r   . 

Subcase 3.1 If  1 1 2Ω , , , kh a a a   , then  
 ) x( 1iv N r  [ ]N S . 

ppose h a gSubcase 3.2 Su m  , for some integers m, 
g, with 1 m k   and 1 1g d   . In this case,  

( 1)ma i x gr rv   , which means that  
 ) x g( 1 [ ]iv N r S . N
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Case 4. Supp

.  

Then there exists an integer h with  such  
.  

Subcas Su ers m, 
g  an 1 . In this 

ose 1i l   and  

j 1k t k 1 1t ka d b b d a d b b d a          

1 kh a 

 0

that
0hv r r 

Subcase 4.1 If 1Ωh , then [ ]v S  . 
e 4.2 

N r N
g  , for some integppose m

with  1 m k   1 g case, 
h a

d d 
ma gv r r   which means   [ ]gr N S . 

Suppose tbv s . We lowing cases: 
Suppose 0 1i l  

 that v
 have th

N
e fn cr  ol

Case 1.  and  
 

1

ase 1.2 Su rs m, 
g and In this case,  

. In this case, the
 that  

 then  

 for some integers m, 
g with  and . In this case,  

1 . In this case, 
1  such 

[

g with  and 

1

ith 0 th b b   ch that 

2Ω , then   [ ]ixv N r N S  . 
Subc mb g , for ge

0 d
h w

Subcase 1.1 If h

1 . In

1 d   su


tj b b    this case, there exists an integer
x. h iv sr r  

ppose h 
1 1   . 

ns that v
l   and

some inte
with 1 m t   g d

mb ix gsr r  , which mea   [ ]ix gN r N S .  
Case 2. 0 1i 

1t kb b d a     re 

v  
  Suppose 

1 1

ists an integer h w ka  such

Subcase 2.1 If Ωh

tb b d j  
ex

1kn a d bhv r sr   
ith 1 h 

( )ix . 

1
  ix 

ppose 

1 [ ]kn a d bv N sr N S   . 
Subcase 2.2 Su mh a g  ,

1 1g d  
hich mea
. 

0

1 m k 

1d b ix  

 3. Suppose 

1( )m ka n a d b ix gr sr      , w ns that  
( [ ]kn av sr N S 

1i l   and  
2 2

v
g

Case

)


1 1 k

  0 kh 

Subcase 3.1 If 10 h a  , the on of  
,d v

t kb b d a j a     
there exists an integer 
that kn ahv r sr  

n by th

tb b d  
h with

1( )d b xi  . 
a d 

e definiti
]

pose h 
S N S  . 

Subcase 3.2 Sup ma g , for some integers m, 
1 m k  0 1g d 

hich mea
  

g

 . In this case, 

 
The following lemma pr es an upper bound for the 

to .  

, 

1( )m ka n a d b ix gr sr      , w ns that  
( [ ]kn a dv sr N S   . 

 set of G. 
ovid

v
)

Thus S atin

1b ix g 

is a domin

tal domination number in G Ca  2 ,Ωny D

Lemma 5 Let 3n   be an integer
1

2

n
m

   and   
 

k, ch tha . Let  

and  If 1

t be integers su t 1 , 1k m t   n

 a n a n aa a b  11 2 1 1 2

Ω

, , , , , , , , , , ,k k k tbn a br r r r r r sr sr sr 



   ，
 

 2 ,ΩnG Cay D . 1 1, i i id a d a a     for  
2 i k  , ,1 11 1j j jd b d b b      for 2 j t   and  

d d then  1 ,1max ,j t i jd    , i k    2
2t

k

G d
a

 . 
n

d




Proof. Let 2 kx d a   and 
n

l
x

    

  , 0  0 1ix g
tS r s i g d 1 :  andn ix g br l        . 

2tS d . Clearly l We have to prove that  
   tV G N S  If  v V G , then we can write v

n c 
 as 

either on  of the form v r  or 
wher 0 1n

e vertex
e c

c  1bv sr , 
   . By th vision algorithm,  

c xi j
e di

  , where 0 1i l    and 0 1j x   . We 
have the following cases: 

Case 1. Suppose 0 1i l    and 0 j a  . For 
some integer g with 0 1

1

g d    and nition 
of c

 by the defi
d, if v r , then 1  or if  

 1n c bv sr   , then 

 x g b   tN S n isr  v N

 ix gN r   tv N S .  

Case 2 pose 0



. Sup 1i l  
ma g

 and 
We can wri

1 ka j a   1d  . 
te j   , for some integers m, g with 

1 m k   and 0 1g d   . If
ix gr 

 v r
mix g av r    whereas tS  and so  

c , then  

   tS  or if ix gv N r N   1n c bv sr   , then  
1mg a b    whe  1n ix g b n ixv sr 

. Consider the set  

reas tsr S     and so  
  1v N sr N 

Case 3. Suppos
 tS . n ix g b  

e 0 i l 2    and  
2k kd a j d a    . 

h w
In this case, there exists an integer 

ith 1 kh a   su r
 1( 1)n i x bh   

ch that x  or  ( 1). h iv r 
v r sr . 

ase 3.1 SSubc uppose  , , kh a a a    and if 
cv r

1 1 2Ω ,
 , then  ( 1)i x N  v s tS   or ifv r  1n c br   ,  

then   1(n i bv N sr   

case 3.2 

 N S . 1)x
t

Sub Suppose mh a g  , for som , e integers m
thg wi  1 m k   and 1 1g d   . In this case, if 
cv r , then mv r r  1i x ga   , which  means that  

    N
 

1i x g
tv N r S   o  1n c b  , then  v srr if 

 1i x g ba    1mv r ,
 

nsr   implies that   which
 11n i x g bv N sr     

Case 4. Suppose 
 tN S . 
1i l   and kd a

ith 1 h a 
2j d a    . 

k  such that 
k

Then there exis  wts an integer h
0hv  r r  or v r 1n bsrh  . 

Subcase 4.1 When 1Ωh , an rd if cv  , then 

   0r N S   or if n csr tv N  , the1bv n  

   1n b
tN sr N S  . 

pose h

v  

Subcase 4.2 Sup ma g  , fo ntegers m, 
g with 

r some i
1 m k   and 1 1 g d   . In this case, if 

crv   and ma gv r r  , w s that  hich mean

   tN Sgv N r   or if 1bv s  , then  
 nsr  h means that  

cnr
1m g bav r  ,

 
 whic

 1n g bv N sr   
Thus tS  is a t

 tN S . 
f G.  otal dominating set o

2S d t t l . 
nnected 

do
Now we obtain an upper bound for the co
mination number. 

Copyright © 2012 SciRes.                                                                                OJDM 
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Lemma 6 Let 3n   be an integer, 
1

2
m

n  

at . Let 

,

and  If 1

   
 and  

k, t be integers such th 1 , 1k m t n   

 , , , , , , ,k k kr r r r r   11 2 1 1 2

Ω

, , , , ta n a n a ba a n a b br sr sr sr  


 

 2 ,ΩnG Cay D . 1 1 1, i i id a d a a    
1

 for 
2 i k  , 1 11, j j jbd b d b      for 2 j t  and  

 1 ,1max ,i k j t i j    d  , thed d n  
1d 

2c
k

G d
a




 . 

Proof. Let 

n

1and kx a d  
n

l
x

    
. Consider the set  

1 

In a 5 1 = 1 an
and is a total dominating set. Since 
each  with , we have paths

 note
) and  

Hence the 

3. Subgroups as Efficie

 obta in  

n 

  1, : 0 1 and 0n ix g bix gS r sr i l g d       . t

 the notation of Lemm , a d 1kx a d    
r  and for cS  

i 0 1i l    
1 ( 1), , ,ix ix ix dr r r    and  

     1 1 11 1, , ,n i n ix b n ix d bsr sr sr         . Also  that  
( 1)ix dr    and  1ix i xr r  , ( 1n ix dsr   



x b

 d 

 11 kix d a bn nsr sr    
induced subgraph 

1 ka 
1   are

cS   is connected

1b

 connected. ( 1)i x b 

. 

nt Domination Sets 

In this section, we in some E-sets 
 2 ,ΩnG Cay D . Moreover we have identified certain 

subgroups of D  which are also efficient dominatio2n

sets in G . 

Theorem 7 Let 3n   be an integer,  
1

2

n
m

    
 and 

k, t be i

 

ntegers such that  and d is 
an  

and Then 

1 ,k m   
2k

d k n

1 t n 
 Let 

  

 integer such that 1t   divides n.

 2 ( ) ( 1), , , , , , ,kd n k dr r d r d r r   
  

d

( ) 2       , ,n d dr sr sr , , td sr d

 2 ,ΩnG Cay D .   2

2 1

n
G

k t
 

 
. In this  

case, has an E-set. 

. Let

G  

Proof
 

2

2 1

n
l

d k t 
. In    and

ta a 4, ’s and ’s are same, 
 for  and d all 

  2 1x d k t  

the no tion of Lemm
 all 1 i k 

id id 
 for ia id jb j 1 j t  .  

Let  and  2 1x d k t  
n

l
x

    
  , : 0 0n k gix gr sr g d    

. By Lemma 4,  

1   

dominating set nce 

1,d ixS i l   

is a and he   2n
G  . 

2 1k t


 
Since  

 is regular, by Theorem 1, one can conc e 

m 3 identifies 
gr  th

G 2k t  lud

that S  is an E-set in G . 
Remark 8 Note that Theore all sub-
oups of e dihedral group 2nD . Now we us identify 

some f the subgroups efficient dominating sets.  o as 

Theorem 9 Let 3n   be an integer, 
1

2

n
m

    
 and  

k, t be integers such that 1 k m  , 1 t n   and 
2 1k t   divides n . Let ,a n bH r sr be  

he dihedral group where 2a k t   
0 1b k

  a subg
1  an

roup
d of t 2nD , b ,

    Then, there exists a generating set   of 

2nD  such that H is an efficie ti r the 
Cayley graph 

nt domina ng set fo
  . 2 ,ΩnG C D

Proof. Let 
ay

 ( 1) 1 2, , , , , , , , , ,k n k n tr r r sr sr sr        2 , ,kr r rn

2 1k t

n
l 

 
 and 2 1x k t . By taking 1d     in  

Theo  7,  rem
       110 , , , , , , n k l xn k xkS r r sr sr        ,l xx nsr

g
r th
omin

r

 is an

is an efficien  set of 
0 Unde e assumptions of Theorem 9, 

 efficient d ating set for the Cayley graph 

t dominatin G . 
Remark 1

.S x
 2 ,Ωny DG Ca  for all 2nx D . 

4. E-Chains in Cayley Graphs 

orem 7 and 9 provide a tool to produce E-sets and 
 the subg s 

The
visuali e some of roups a E-sets in  z

 2 ,ΩnCay D . We use this tool to ob
E-chain and inductive subgroups E-

tain an inclusive 
chain of Cayley 

graphs on the dihedral group. 

Theorem 11 Let 3n   be an integer, 
1

2

n
m

    
  

and k be an integers such that1 k m  ,  
 0 2 2, { }n nG Cay D D e  ,  

 2Ω , , in bn sr 2 ( 1) 1, , , , , , , ,k n k n
i r r r r r sr sr       ,kd r

and  2 ,Ω ( 1)i n iG Cay D i  e th Assum at Ω 1i    
divides n  and 1Ω 1i   divides Ω 1i  . Then the finite 
fami  graply of hs { ,i 0}G i    is inductive subgroups 
E-

. Let 
chain. 

oofPr Ω 1i i . B on y the assumpti 1i   . 
divides i . Defi map  ne the  1:i i iV G V G   by 

 i v v   for all v Gi . By Theor
is of the form  

em 9, iG  has an 
efficient dominating set and it 

1
20 , , ,i i

n

n

S r e r r


 
 

 

  

 




( )

1
( 2 )

, , ,

         , , ,

i
i i

i
ii

n k
i

n k
n kn k

r sr

sr sr sr

 





  

          









 


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and also ’s are subgroups. It implies that  
 for every . Hence the family of 

is ve subgroups E-chain. 
sive E-chain of ayley 

graphs is based on the following lemma. 

Lemma 12 Let 3n   be an integer, 

iS
S S


e const

  1i i i 

graphs 
Th r

1i 
 inducti

an inclu
{ , 0}iG i   
uction of C

1

2

n
m

    
be in ch that 1 k m  , 1 t n   and d is an in- 
teger su   2 1d k t   divides n . For 1i  , let  

, k, t  

tegers su
ch that

i . The is

surjective m

i

 2 2 2 2, , , , , , ,
i id k n d n d

i r r d r d r r   

2 2        , ,
i n tr s sr d sr d , ,kd dr

 

and  2
,ΩiiG Cay D n 1i  a covering of 

iG . 
n

Proof. Define the 

G   

ap  

  1:i if V G V G   by    2ij j mod n
if r r  and  

   2ij j mod n
if sr sr  for all j, where  0 2ij n   . 

rphism from 12i n
D   

r  with  

1 1
a group homomo

ts 

Note that if  is 

2i n
D . Let ,

adj ent in 1iG  . Th
onto i 1 . Suppose u  and v  are 

ac k
u v G 

en, there exis
1n

k
    or t1
2  

sr  with 1 t n  1  such that  

or  group homomor

 

. ku v r  .u v sr 
 

k . Since if  is a - 
phism and 

    2  2i ik k mod n k t t mod n t
i if r r sr sr    , we have 
    k

i if u f v r    or     t
i if u f v sr    and so 

,r f sr
 if u  

and  if v  are adjacent in iG . Consider th

 

e map 
   :i N vf N v N  for an  v y verte  x  i 1v V G   

and  iv V G . Claim  i N vf   is bijection. Any ele-
ment x  in  N v  as either ne vertex of the form 

e
 o

x r  or ex sr
 . ,

, where  j n 10 2i  1 . Let 
x y N v   

 1. Let 
Then we have following three cases: 

Case 1ex r  and 2ey r  with 1 2e e . Sup-
pose    i if x

1 2d 2 mie n 
e e 

f y , i.e.  
1 2 mod 2ie e nr r r e  . i.e.  

  1 2 2io r mod n  ich is a contradiction to 
 o r n . There  

mo 
n

od 2ie n


fore

,  wh
 i if x f y .  

 2. Let 1eCase x r  and 2ey sr . Suppose  

   i if x f y ,  Th ns  
 1 2e er   e e n

i.e. 1 2mod 2 mod 2i ie n e n is mea

 or

r sr
imod 2 n 

i

e 1 2 mod 2s sr e

ore
 , which is a

f
 

contradiction. There    i if x f y
1e

. 
Case 3. Let x sr  and 2ey sr with 1 2e e . Sup- 

  pose i if x f y , i.e.  

 1 21 2mod 2i ee n e  imod 2mod 2i e nnsr s r r e   . i.e.  

   1 2 2io r e e n n  
Therefore    i i

mod a contradiction which is . 
f x f y . H

pe
 t elements of 

 N v  are distinctly map 
ence distinc

d onto  and so  N v

 i N v  is a req jection

The  3n   

f uired bi

1

2

n
m

    

. 

orem 13 Let be an integer, ,  

k, t, be integers such that 
 such that 

1 k m  , 1 t n   and d is 
an integer  1k t2d    divides n . For  

1i  let  


2 2i n kd t

2 2, , , ,d k
i r r d r d r  2 2, ,

        , , , ,

i in d n d

d

r

r sr sr d sr d

 


 

,

and  Ω . 
 for iG . Then

{ , 1}iG i

2
,ii in

G Cay D be an effi
g set

Let cient domi-
natin  th nite family of graphs 

iS  
e fi

   is an inclu s in. 
Proof. Since by above Lemma, is a covering of 

ive E-cha

1iG   
 ,  1iG i  . Since by Theorem 2,  i i iS1f S

1
1}   is an 

. Hence 
ily of graphs inclu-

Th d 
sistance P /2007) of Un

warded to the
undaranar 

-2012. 

91(93)90054-O

the finite fam
sive E-chain. 

  { ,iG i 
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