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ABSTRACT 

By exponentiating each of the components of a finite mixture of two exponential components model by a positive pa-
rameter, several shapes of hazard rate functions are obtained. Maximum likelihood and Bayes methods, based on square 
error loss function and objective prior, are used to obtain estimators based on balanced square error loss function for the 
parameters, survival and hazard rate functions of a mixture of two exponentiated exponential components model. Ap-
proximate interval estimators of the parameters of the model are obtained. 
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1. Introduction 

The study of homogeneous populations was the main 
concern of statisticians along history. However, New-
comb [1] and Pearson [2] were two pioneers who ap-
proached heterogeneous populations with 'finite mixture 
distributions’.  

With the advent of computing facilities, the study of 
heterogeneous populations, which is the case with many 
real World populations (see Titterington et al. [3]), at-
tracted the interest of several researchers during the last 
sixty years. Monographs and books by Everitt and Hand 
[4], Titterington et al. [3], McLachlan and Basford [5], 
Lindsay [6] and McLachlan and Peel [7], collected and 
organized the research done in this period, analyzed data 
and gave examples of possible practical applications in 
different areas. Reliability and hazard based on finite 
mixture models were surveyed by AL-Hussaini and Sul-
tan [8]. 

In this paper, concentration will be on the study of a 
finite mixture of two exponentiated exponential compo-
nents. Due to the exponentiation of each component by a 
positive parameter, the model is so flexible that it shows 
different shapes of hazard rate function. 

Maximum likelihood estimates (MLEs) and Bayes es-
timates (BEs), using square error loss (SEL) function are 
obtained and used in finding the estimates of the pa-
rameters, survival function (SF) and hazard rate function 

(HRF) using the balanced square error loss (BSEL) 
function. 

Approximate interval estimators of the parameters are 
obtained by first finding the approximate Fisher informa-
tion matrix. 

The cumulative distribution function (CDF), denoted 
by  H x  , of a finite mixture of k components, de-
noted by   , 1, ,H x k     , is given by 

   
1

k

H x p H x 


    


1, ,k

,          (1) 

where, for   0p 

1

1
k

p


, the mixing proportions   

and  


. The vector of parameters  

 1 1, , , , ,k kp p     

2k

, where  is a parameter 
space. 

The case  , in (1), is of practical importance and 
so,we shall restrict our study to this case. In such case, 
the population consists of two sub-populations, mixed 
with proportions p and . We shall write the 
CDF of a mixture of two components as 

1q p 

     1 1 2 2H x pH x qH x   ,      (2)  

1, 2, where, for   H x   th is the CDF of the  
sub-population,  , ,p 1 2  1q p  and . 

AL-Hussaini and Ahmad [9] obtained the information 
matrix for a mixture of two Inverse Gaussian compo-
nents. AL-Hussaini and Abd-El-Hakim ([10-12]) studied *Corresponding author. 
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the failure rate of a finite mixture of two components, 
one of which is Inverse Gaussian and the other is 
Weibull. They estimated the parameters of such model 
and studied the efficiency of schemes of sampling. 
AL-Hussaini [13] predicted future observables from a 
mixture of two exponential components. AL-Hussaini 
[14] obtained Bayesian predictive density function when 
the population density is a mixture of general compo-
nents. Other references on finite mixtures may be found 
in AL-Hussaini and Sultan [8]. 

In this paper, the components are assumed to be expo-
nentiated exponential whose CDFs are of the form 

   1 e ,xH x x
  

   0, , 0    

 , , 1, 2. 

,    (3) 

where   So that the corresponding 
probability density function (PDF) components take, for 

, the form 

  

1, 2

 h x         1
e 1 ex x       .      (4) 

The PDF, SF and HRF, of the mixture (2), denoted by 
   HR x,h x    and  H x   are given by 

     1 1 2 2h x ph x qh x    ,        (5) 
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where    
 

1 1

H

pR x
B x

R x





 1, 2, and for ,  

   1 ,H xR x          
 

h x

R x
x


 


  

 
  .  (8) 

In (5)-(8),  H x    and  h x   shall be given 
by (3) and (4), respectively, so that  



1 1 2 2, , , .  1 2 ,p p, ,         

2. Hazard Rate Function of the Mixture 

It is well-known that the exponential distribution has a 
constant HRF on the positive half of the real line. A fi-
nite mixture of two exponential components has a de-
creasing hazard rate function (DHRF) on the positive 
half of the real line. See, for example, AL-Hussaini and 
Sultan [8]. If each of the exponential components is ex-
ponentiated by a positive parameter, more flexible model 
is obtained in that several shapes of the HRF of the mix-

ture are obtained. Figure 1 shows six different shapes of 
CDFs and their corresponding HRFs of the vector of pa-
rameters. Examples of such shapes are given as follows: 

 1 2 1 2DHR: 0.9, 0.5, 1.5, 2, 3p          

 1 2 1 2IHR: 0.1, 1.5, 3, 2, 2p          

 1 2 1 2BTHR: 0.1, 0.5, 3, 3, 0.5p          

 1 2 1 2UBTHR: 0.1, 0.5, 1.5, 2, 3p          

 1 2 1 2DIDHR: 0.25, 0.5, 3, 0.5, 1.5p          

 1 2 1 2IDIHR: 0.1, 2, 3, 3, 0.5p        

ˆSELu

 

3. Point Estimation Using Balanced Square 
Error Loss Function 

It is well-known that the Bayes estimator  of a 
function   u   of a vector of parameters 1, , m     
under SEL is given by 

      1ˆ π d d ,SEL mu E u x u x             (9) 

where the integrals are taken over the m-dimensional 
space and  π x  is the posterior PDF of   give x . 

The SEL function has probably been the most popular 
loss function used in literature. The symmetric nature of 
SEL function gives equal weight to over- and under-es- 
timation of the parameters under consideration. However, 
in life-testing, over-estimation may be more serious than 
under-estimation or vice-versa. Consequently, research 
has been directed towards asymmetric loss functions. 
Varian [15] suggested the use of linear exponential 
(LINEX) loss functions. Thompson and Basu [16] sug-
gested the use of quadratic exponential (QUADREX) 
loss function. Ahmadi et al. [17] suggested the use of the 
so called balanced loss function (BLF), which was 
originated by Zellner [18], to be of the form 

      0, , 1 , ,L                  (10) 

 ,where   0 is am arbitrary loss function,    is a 
chosen “target” estimator of    and the weight 0,1 .

   2
,

 
The BLF (10) specializes to various choices of loss 

functions such as the absolute error loss, entropy, LINEX 
and generalizes SEL functions. 

If      

      2 2

0, 1 .L             

ˆ

 is substituted in (10), we obtain 
the balanced square error loss (BSEL) function, given by  

 

The estimator BSELu  u of a function  , using BSEL 
may be given by 

 ˆ ˆ ˆ1BSEL ML SELu u u   

ˆ

,        (11) 

where MLu   is the MLE of u  and  its Bayes  ˆSELu  
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p = 0.9, 1 = 0.5, 2 =1.5, 1 = 2, 2 = 3 

 

 
p = 0.1, 1 = 1.5, 2 = 3, 1 = 2, 2 = 2 

 

 
p = 0.1, 1 = 0.5, 2 = 3, 1 = 3, 2 = 0.5 

 

 
p = 0.1, 1 = 0.5, 2 = 1.5, 1 = 2, 2 = 3 

 

 
p = 0.25, 1 = 0.5, 2 = 3, 1 = 0.5, 2 =1.5 

 

 
p = 0.1, 1 = 2, 2 = 3, 1 = 3, 2 = 0.5 

Figure 1. Different shapes of PDFs and their corresponding HRFs. D = decreasing, I = increasing, BT = bathtub, UBT = up-
ide down bathtub, DID = decreasing-increasing-decreasing, IDI = increasing-decreasing-increasing. s 



E. K. AL-HUSSAINI, M. HUSSEIN 31

 
estimator using SEL function. The estimator of a func-
tion, using BSEL is actually a mixture of the MLE of the 
function and the BE, using SEL. Other estimators, such 
as the least squares estimator may replace the MLE. Also, 
a LINEX or QUADREX loss function could be used 
for  ,  

   
   

0

0

ˆ ˆ1 ,

ˆ1 ,

HSEL

HSEL

R x

x 





. Having obtained the MLE and BE based on 
SEL, the estimates based on BSEL function are given, 
from (11), by 
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 (12) 

Suppose that r units have failed during the interval 
 0, rx : 1  units from the first sub-population and 2  
units from the second such that 1 2  and n – r 
units , which cannot be identified as to sub-population, 
are still functioning. Let, for  and 

r r
r r r 

1, 2 1, , ,i r   

i


x  denote the failure time of the ith unit belonging to 
the  sub-population and that 0ixth x . The likeli-
hood function (LF) is given by Mendenhall and Hader 
[19], as  

   

 

1 2

1 1 1 2 2 2
1 1

( , )

,

r r

i i
i i

n r

H r

L x ph x qh x

R x

  





 



   
    
   

   

 
  (13) 

where   is the vector of parameters involved and 

 1 211 1 21 2, , , , ,r rx x x x x   0ix x . By substituting , 

  , 1, 2ih x      , given by (4), in (13), we obtain 

 

       
1 21 2

1 2
1 1 2 21 2 1 1 2 2

1 1

1 1 2 2 1 1 2 2
1 1 1 1

, ex 1 e 1 e .i i

r rr r n rx xr r r r r r
i i H r

i i i i

L x p q x x R x
         

   

   

         
   p    (14) 

3.1. Maximum Likelihood Estimation 

The log-LF is given by 
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1 2
1 1 2 2
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          (15) 

 
The MLEs ˆMLp ˆ, 1ML , 2ˆ ML , 1̂ML , 2

ˆ
ML , of the 

five parameters are obtained by solving the following 
system of likelihood equations 
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where 

     1 2
1 21 1 e 1 er rx x

H rR x p q
          .   

The invariance property of MLEs enables us to obtain 
the MLEs  R̂ x  0

ˆ
HML0HML  and x

 0HR x
 by replacing the 

parameters by their MLEs in  and  0H x . 
Remarks 
1) If n = r (complete sample case), 
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2) It can be numerically shown that the vector of pa-
rameters 1 2 1 2    

1

, satisfying the likelihood 
equations actually maximizes the LF (14). This is done 
by applying Theorem (7-9) on p. 152 of Apostol [20]. 

3) The parameters of the components are assumed to 
be distinct, so that the mixture is identifiable. For the 
concept of identifiability of finite mixtures and examples, 
see Everitt and Hand [4], AL-Hussainiand Ahmad [21] 
and Ahmad and AL-Hussaini [22]. 

3.2. Bayes Estimation Using SEL Function 

Suppose that an objective (non-informative) prior is used, 
in which p,  , 1 , 2 , 2  are independent and that 
p-Uniform on , so that the prior PDF is given by 0, 1

 
1 1 2 2

1
π

 


   
 .           (16) 

The following theorem gives expressions for the Bayes 
estimators using the SEL function. 

Theorem 
The Bayes estimators of the parameters, SF and HRF, 

assuming that the prior belief of the expeimenter has 
PDF (16), are given by 
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4. Approximate Confidence Intervals 
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The proof of the theorem is given

1 ln 1 eT T j      

x 1. 

               . The 
F (see Nelson [23]), 

etric 
ma

is 

observed Fisher information matrix 
for the MLEs of the parameters is the 5 × 5 symm

trix of the negative second partial derivatives of 
log-LF (15) with respect to the parameters. That 

2

i j

F
 

    
ˆ

 
 


, evaluated at the vector of MLEs  . 

The second partial derivatives are given in Appendix 2. 
The inverse of F is the local estimate V of the asymp-

totic variance-covariance matrix of  
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where  ˆ ˆ,ij i jCov   .  
The obse

 c
rved Fisher information matrix enables us t
onfidence intervals for the parameters based
iting normal distribution. Following the gen-

eral asymptotic theory of MLEs, th

o 
construct  
on the lim

e sampling distribu-  

   tion of ˆ ˆ , ,5i i V i     , can be approxi-  

m

, 1i

ated by a standard normal distribution, where  
 î iiV   , the ith diagonal element of the matrix V, 

given by (34). 
An approximate two-sided  100 1 %  confidence 

, is given for 1, ,i   5 , by interval for i
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5. Numeri al Example 

ility of c. 

c

5.1. Point Estimation of the Parameters
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that , 1, 2, 1, ,

, SF and 
HRF 
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x 0i x i r    . We generate 100 sam-
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For given values of p, 1

 
ples of size n = 50 each, fro
exponentiated exponential components, whose PDF is
given by (5) and (4), as follows: 
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3) Repeat until you get a sample of size n. 
The observations are ordered and only the first r = 45 

(9  n
be kno

second component ( 1 2 45r r

0% of n) out of the  = 50 observations are assumed to 
wn. Now we have 1r  observations from the first 

component of the mixture and 2r  observations from the 
r  ).  

The value of 0x  is chosen to be equal to 1. 
The estimates of p, 1, 2, 1, 2,  0HR x  and 
 0H x  and absolute biases are computed by using the 

ML and Bayes methods. The Bayes estimates are ob-
tained under SEL function. An stimator of a function, 
using BSEL, is actua  = 0.

 e
lly a mixture ( 2, 0.4, 0.6, 0.8) 

of e 
h u in MATL

function

knowns, by using some iteration scheme. Neverthless,  

 the MLE of th function and the BE, using SEL. 
The MLEs are computed using t e b ilt- AB® 

 “ga” to find the maximum of the log-LF (15) 
using the genetic algorithm. This is better than solving 
the system of five likelihood equations in the five un-
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HR
  

Table 1. Estimates of the parameters, SF and F under BSEL function and absolute biases. 

Estimate 0   “B-SEL” 0.2   0.4   0.6   0.8   1   “MLE” 

0.416229 0.416139 0.416049 0.415959 0.415869 0.415779 
p̂  

0.016229 0.016139 0.016049 0.015959 0.015869 0.015779 

1
ˆ

2.380074 2.432918 2.485761 2.538598 2.591441 2.644284 
  

0.380074 0.432918 0.485761 0.538598 0.591441 0.644284 

2.712658 2.840706 2.968753 3.096802 3.224850 3.352898 
2̂  

0.287342 0.159294 0.031247 0.096802 0.224850 0.352898 

2.371177 2.407887 2.444589 2.481294 2.517997 2.554707 
1̂  

2.586853 2.705871 2.824898 2.943908 3.062934 3.181952 
2

ˆ

0.371177 0.407887 0.444589 0.481294 0.517997 0.554707 

  

0.253611 0.236527 0.219444 0.202361 0.185277 0.168194 
 ˆ

H

0.413147 0.294129 0.175102 0.056092 0.062934 0.181952 

0R x  

2.106139 2.190786 2.27544 2.360092 2.444747 2.529393 
 0

ˆ
H

0.067411 0.050327 0.033244 0.016161 0.000923 0.018006 

x  
0.203461 0.118814 0.03416 0.050492 0.135147 0.219793 

 
the system is needed omputat e asymp
totic varian -covariance matrix. 

The (arbitrarily) c tual pop alues ar
 = 0.4,   = 2,   = 3,   = 2, and   = 3. For 1x

for the c ions of th -
ce

hosen ac ulation v e  

SciR s.    

p 1 2 1 2 0  , 
the actual values for  0HR x  and  0H x  are given, 
respectively, by 0.1862 and 2.3096. 

fferen

 
The estimates of the parameters, SF and HRF under 

the BSEL function are given in Table 1, for di t 
weights  . It may be  that w 1noticed hen   , we ob-
tain the MLEs while the case 0  , yields the Bayes 
es

eters

0974

9 0.54097

0.21231

0.49433






 



 

mators of the
parameters are given by: 

     1 2ˆ ˆˆ 0.00546, 1.1651, 1.0099,V p V V   

It then follows that the ate 95% nce 
intervals of the parameters p, 

approxim  confide

1 , 2 , 1  and 2    , 
ven by ( given, r ly, by: ( p < 

0.561), (0.5287 <   < 4.7599), (1.3832 < 2 < 5.3226), 
1.8039 < 2 < 4.56). 

6. Concluding Remarks 

In this article, we have considered point and interval es-
tim

xp nt  co nts

f-fit. This 
asymmetric loss function may be considered as a com-

 non-Bayesian estimates. 

gi 35), are espective 0.271 < 
1

(0.9294 < 1 < 4.18) and (

ation. Point estimation, of the parameters of a finite 
mixture of two exponentiated e one ial mpone , 
SF and HRF is based on BLEF which is a weighted av-
erage of two losses: one of which reflects precision of 
estimation and the other reflects goodness-o

timates under SEL(B-SEL) function. 

5.2. Interval Estimation of the Param  

The asymptotic variance-covariance matrix (34), based on 
the generated data, is found to be promise between Bayesian and

0.00546 0.0106 0.00941 0.01345 0.01
1.1651 0.3266 0.66019 0.23199

1.0099V

   


We have also estimated the parameters of the mixture by 
obtaining the asymptotic variance-covariance matrix and 
hence the approximate confidence intervals. 
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Appendix 1 

Proof of the Theorem 
By expanding the last term in LF (14), using the binomial expansion, it can be seen that  
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1 2
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2 1 2 1
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1 1 e 1 e
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j j

   
  

  

 
 

where .   1

1 2
1

j

j jC  

So that LF (14) can be written in the form 

    
1

1 2 2 1 2 1 2 1 2

1 2 2 1 2
1 2

1 2 1 2 1 1 2 2
0 0

, exp
jn r

r j r j j r r r r
j j j j j

j j

L x C p q T T      


  

 
  0 1 2,T       

 

  , 

where 
2 1jT  , 

1 2 2j j  T  ,  0 1 2,T    are given by (31). Suppose that the prior PDF is as in (16). It then follows that 
the posterior PDF is given by 

        
1

2 1 2 1 2 1 2

1 2 2 1 2
1 2

1 1 1 1 1 1
1 2 1 2 1 1 2 2

0 0

π , π expj j j
jn r

r r r r
j j j j j

j j

x L x A C p q T T
          


       

 
  0 1 2, ,T       

2 1,

   (34) 

where 
2

 
1 2 2 1j r j j  1 2 1,j jr j     

2 1jT   and  
1 2 2j jT   are given by (32). The normalizing constant A 

is given by 

       
   

 1
0 1 21 2

1 2 2 1 2 1 2
1 2

2 1 2

,1 2 1 11
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    r r S

0S 0

, 

 
where  is given by (17), in which I  is given by 
(22). 

Applying (9) when  

   0 0( ) , , , , , , ,H Hu p R x x      1 2 1 2  

their Bayes estimates using SEL function are given by 

  1

0

S
p E p x

S
  1Sˆ SEL ,  is given in (17). 

  2
1 1 1

0

S
E x r

S
  2S

1

ˆ SEL  ,  is given in (18), in which 

I  is given by (23).   3
2 2 2

0

ˆ SEL

S
E x r

S
   3S

2

,  is 

given in (18), in which I  is given by (24).  

  4
1 1

0

ˆ
SEL

S
E x

S
   4S 3,  is given in (19), in which I  

is given by (25). 

  5
2 1

0

ˆ
SEL

S
E x

S
   5S

4

,  is given in (19), in which 

I  is given by (26). 

 

         1 0 2 0 6
1 2

0

1 exp ln 1 e exp ln 1 e π d 1 ,x x
H

S
E R x x p q x

S
                     

5

0 0
ˆ

6S

HSELR x  

I  is given by (27) and  is given in (20), in which 6I  by (28). 

   0 0
ˆ ,HSEL Hx E x x     

   
 

where 

         10
0 1 0 2 0 1 0 2 0

0

1H
H

h x
x ph x qh x pH x qH x

R x



        .  

Since p ≤ 1, then 

           1 0 2 0 2 0 1 0 2 0 1 0 1,pH x qH x H x p H x H x H x         

so that 
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where . It then follows that 
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By substituting, for  01, 2, H x     , and using π x  given by (34), it can be shown that 
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where 6 1 2 1 1  

 

  are given by (33). By in-
tegrating both sides of (35) with respect to the five pa- 

rameters, we obtain   7
0

0

,
S

x x
S

   0
ˆ
HSEL Hx E    

where S7 is given by (21), in which I7 is given by (29)  

and I8 by (30). 

Appendix 2 

Second Partial Derivatives of the Log-likelihood Func-
tion 
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