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ABSTRACT

By exponentiating each of the components of a finite mixture of two exponential components model by a positive pa-
rameter, several shapes of hazard rate functions are obtained. Maximum likelihood and Bayes methods, based on square
error loss function and objective prior, are used to obtain estimators based on balanced square error loss function for the
parameters, survival and hazard rate functions of a mixture of two exponentiated exponential components model. Ap-
proximate interval estimators of the parameters of the model are obtained.
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1. Introduction

The study of homogeneous populations was the main
concern of statisticians along history. However, New-
comb [1] and Pearson [2] were two pioneers who ap-
proached heterogeneous populations with 'finite mixture
distributions’.

With the advent of computing facilities, the study of
heterogeneous populations, which is the case with many
real World populations (see Titterington et al. [3]), at-
tracted the interest of several researchers during the last
sixty years. Monographs and books by Everitt and Hand
[4], Titterington et al. [3], McLachlan and Basford [5],
Lindsay [6] and McLachlan and Peel [7], collected and
organized the research done in this period, analyzed data
and gave examples of possible practical applications in
different areas. Reliability and hazard based on finite
mixture models were surveyed by AL-Hussaini and Sul-
tan [8].

In this paper, concentration will be on the study of a
finite mixture of two exponentiated exponential compo-
nents. Due to the exponentiation of each component by a
positive parameter, the model is so flexible that it shows
different shapes of hazard rate function.

Maximum likelihood estimates (MLEs) and Bayes es-
timates (BEs), using square error loss (SEL) function are
obtained and used in finding the estimates of the pa-
rameters, survival function (SF) and hazard rate function
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(HRF) using the balanced square error loss (BSEL)
function.

Approximate interval estimators of the parameters are
obtained by first finding the approximate Fisher informa-
tion matrix.

The cumulative distribution function (CDF), denoted
by H (X|6’), of a finite mixture of k components, de-
noted by H,(x|n,),¢ =1,k , is given by

k
H(x|0) =2 p.H, (X[n,), (1

where, for ¢=1,---,k, the mixing proportions p, >0

k
and )’ p, =1. The vector of parameters
=1

O=(P,» P>+, 7 ) €O, where © is a parameter
space.

The case k=2, in (1), is of practical importance and
so,we shall restrict our study to this case. In such case,
the population consists of two sub-populations, mixed
with proportions p and q=1-p. We shall write the
CDF of a mixture of two components as

H (x|0) = pH, (x| ) +aH, (x[n,), )

where, for (=1,2, Hﬁ(x|77[) is the CDF of the /(th
sub-population, & =(p,7,,77,) and q=1-p.
AL-Hussaini and Ahmad [9] obtained the information
matrix for a mixture of two Inverse Gaussian compo-
nents. AL-Hussaini and Abd-El-Hakim ([10-12]) studied

0JS



E. K. AL-HUSSAINI, M. HUSSEIN 29

the failure rate of a finite mixture of two components,
one of which is Inverse Gaussian and the other is
Weibull. They estimated the parameters of such model
and studied the efficiency of schemes of sampling.
AL-Hussaini [13] predicted future observables from a
mixture of two exponential components. AL-Hussaini
[14] obtained Bayesian predictive density function when
the population density is a mixture of general compo-
nents. Other references on finite mixtures may be found
in AL-Hussaini and Sultan [8].

In this paper, the components are assumed to be expo-
nentiated exponential whose CDFs are of the form

H, (Xm,)=(1-e")" x> 0,(,.5,>0), (3

where 7, =(a,,f,),¢=12. So that the corresponding
probability density function (PDF) components take, for
f=1,2, the form

a;-1

h (X[, )=, Be?* (1-e7)" . )

The PDF, SF and HRF, of the mixture (2), denoted by
h(x|t9), R, (x|0) and A, (X|¢9) are given by

h(x|6) = ph, (x|m, )+ah, (x|n, ). (5)
RH(X|‘9):1_[pH1(X|’71)+qH2(X|’72)J ©)
= PR, (x|, )+ AR, (x[n,).
h(x|e b (X7, )+ ahy (X7,
/IH(x|,9):RH((X|9)):p ( ZH)(XTH)( 7.)
=B(x|0)4 (X\m)+[1-B(x[0) |2 (Xm.),
@)
where B(x|9):%,andfor /=12,
o)1= 41 ). 2 () )

In (5)-(8), H, (X|77ﬁ) and h, (X|77ﬁ) shall be given
by (3) and (4), respectively, so that
9 = ( p”719772 ) = ( p9a19ﬂ19a29ﬂ2 )

2. Hazard Rate Function of the Mixture

It is well-known that the exponential distribution has a
constant HRF on the positive half of the real line. A fi-
nite mixture of two exponential components has a de-
creasing hazard rate function (DHRF) on the positive
half of the real line. See, for example, AL-Hussaini and
Sultan [8]. If each of the exponential components is ex-
ponentiated by a positive parameter, more flexible model
is obtained in that several shapes of the HRF of the mix-
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ture are obtained. Figure 1 shows six different shapes of
CDFs and their corresponding HRFs of the vector of pa-
rameters. Examples of such shapes are given as follows:

DHR:(p=0.9,a, =0.5,a, =1.5,8 =2,5, =3)
HR:(p=0.La, =15a,=3,8 =25, =2)
BTHR:(p=0.1,¢, =0.5,a, =3, =3,58,=0.5)
UBTHR:(p=0.1,¢, =0.5,0, =1.5, 8, =2, 3, =3)
DIDHR:(p=0.25,a, =0.5,a, =3, 8, =0.5, 3, =1.5)
IDIHR:(p=0.L,e, =2,2, =3, 8, =3,3, =0.5)

3. Point Estimation Using Balanced Square
Error Loss Function

It is well-known that the Bayes estimator (g, of a
function u (@) of a vector of parameters 6 =(6,,--,6,,)
under SEL is given by

Uge, = E[U(Q)BJ :f---Ju(H)n(HB)dQl --dg,, (9)

where the integrals are taken over the m-dimensional
space and 71:(6’|§) is the posterior PDF of & give X.

The SEL function has probably been the most popular
loss function used in literature. The symmetric nature of
SEL function gives equal weight to over- and under-es-
timation of the parameters under consideration. However,
in life-testing, over-estimation may be more serious than
under-estimation or vice-versa. Consequently, research
has been directed towards asymmetric loss functions.
Varian [15] suggested the use of linear exponential
(LINEX) loss functions. Thompson and Basu [16] sug-
gested the use of quadratic exponential (QUADREX)
loss function. Ahmadi et al. [17] suggested the use of the
so called balanced loss function (BLF), which was
originated by Zellner [18], to be of the form

L (6,6) = wp(,,6)+(1-w) p(6,5), (10)

where p(6,5) is am arbitrary loss function, &, is a
chosen “target” estimator of & and the weight w € [O, 1].
The BLF (10) specializes to various choices of loss
functions such as the absolute error loss, entropy, LINEX
and generalizes SEL functions.
If p(6,6)=(85-0)" is substituted in (10), we obtain
the balanced square error loss (BSEL) function, given by

L' (6,6)=w(6-6,) +(1-w)(6-06).

The estimator Ugg., of a function u(@), using BSEL
may be given by

Ugsg, = @y +(1 - a)) Use, (11)

where G, is the MLE of u(@) and Uy, its Bayes
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Figure 1. Different shapes of PDFs and their corresponding HRFs. D = decreasing, | = increasing, BT = bathtub, UBT = up-
side down bathtub, DID = decreasing-increasing-decreasing, IDI = increasing-decreasing-increasing.
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estimator using SEL function. The estimator of a func-
tion, using BSEL is actually a mixture of the MLE of the
function and the BE, using SEL. Other estimators, such

as the least squares estimator may replace the MLE. Also,

a LINEX or QUADREX loss function could be used
for p(ﬁ,é' ) . Having obtained the MLE and BE based on
SEL, the estimates based on BSEL function are given,
from (11), by

Peser = @ Py +(1- @) Pse »

QpseL = O +(1 —a)) Qe »

QypseL = Oy +(1—a))dZSEL,

Brese = OB +(1- @) Brser » (12)
Brose. = OB +(1- @) Boser »

Russet (%) = @R (% )+ (1= @) Reger (%)
Angser (%) = @ (%o )+ (1= @) Apser (%)

i r I o
L (9’5) o« p'q e Al ey By exp|:—ﬁlzllxli _ﬂzixzi}ﬂ(l_e_ﬁlxn ) T
i-1 i=1 i=1

3.1. Maximum Likelihood Estimation

The log-LF is given by

Suppose that r units have failed during the interval
(0,x.): r, units from the first sub-population and T,
units from the second such that r,+r,=r and n —r
units , which cannot be identified as to sub—population
are st111 functioning. Let, for ¢=1,2 and i=1L---,r,
X, denote the failure time of the ith unit belongmg to
the /th sub-population and that X, <X,. The likeli-
hood function (LF) is given by Mendenhall and Hader
[19], as

0.0 {n oh, () )}mqm (xal >}
[Ra(xl0)]"

where € is the vector of parameters involved and
X= ()(11)...,)(”1 S Xgpst s

h, (X4]7,),£=1,2, given by (4), in (13), we obtain

(13)

X2r2) , Xi <X, . By substituting

Ul il
C(6,x)=InL(6,x)cInp+nIng+ning +nIn g +nina, +nIn g, =B X —f, D Xy

i=1 i=1

(15)

+(o —l)ierlln(l—eﬂlx“ )+(a2 —l)iln(l—e’ﬂm‘ )+(n—r)ln Ry (% 10).

i=1

The MLEs Py, @G> %ws B Pow > of the
five parameters are obtained by solving the following
system of likelihood equations

/AN N

O:_:L_{_iln(l_e*ﬂlxli)

ooy o o

CA0TOP () (1men),

Ry (% ]0)
6f* S —PaXai
0= :;—22+§ln<1—e s
(N=N)A (e (e
——RH (Xr|l9)(1 e’ ) ln(l e ” ),
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Xi

or iox,e A
= X By
aﬂ] ﬁl |ZI: li ( )gl_e_ﬂlxli

(n r) Pa,; X, —ﬂlxr (1 e‘ﬂlxr)

Ry (% 16)

E

orr 2 DX, e %
0= 2
aﬂz 132 |Z:1: ( )IZ:;‘ 1— e—ﬁ‘zxzi
(n r‘)qa2xr —/J’Zx, (1 e—ﬂzx, ) -l
where

Ry (Xr|9)=1—[p<1—e'ﬁle )al +q<1—e_ﬁzxr )a2:| .

The invariance property of MLEs enables us to obtain
the MLEs Ry, (X)) and Ay, (%,) by replacing the
parameters by their MLEs in R, (X,) and 4, (X,).

Remarks

1) If n = r (complete sample case),
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b h
ML=

5 —h

D =7, —,
zln(l e - Bixii )

~ -

Dome = 2,
Zln(l e - )
i=1

. r

:Buvn_ =7 : - - 5

X {1 (5!1M|_ 1)|: ﬁ'x“/(l—e Axii )}}

i=1

. I

Bowi .

i -0 (1))

2) It can be numerically shown that the vector of pa-
rameters 6 =(p,a,,a,, 5, /3, ), satisfying the likelihood
equations actually maximizes the LF (14). This is done
by applying Theorem (7-9) on p. 152 of Apostol [20].

3) The parameters of the components are assumed to
be distinct, so that the mixture is identifiable. For the
concept of identifiability of finite mixtures and examples,
see Everitt and Hand [4], AL-Hussainiand Ahmad [21]
and Ahmad and AL-Hussaini [22].

3.2. Bayes Estimation Using SEL Function

Suppose that an objective (non-informative) prior is used,
in which p, ¢,, B, «,, f, are independent and that
p-Uniform on (0,1), so that the prior PDF is given by
1
n((9 oc—. (16)
) o fa,p,

The following theorem gives expressions for the Bayes
estimators using the SEL function.

Theorem

The Bayes estimators of the parameters, SF and HRF,
assuming that the prior belief of the expeimenter has
PDF (16), are given by

R S S, . S
PseL = So N rls—o y e, =1y Sy ﬂlSEL _S_Z’
. S . s . S
Boser :S_Z’RHSEL(XO):I_S_ZJHSEL(XO):S_:’
where
n—r ji
:Z J1Jz ( Jz’ jljz)la
Ji= (17)

>
=

d
M

OCJIJZ B(KJ +1’KJ112 )I >

Il
=)

I
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o 6o 1r171 2r27leXp _To(ﬂnﬁz)
-1 L A2

=00y

n-r
ZOCthB( j2° JlJz)I >
0 j,=
l 2. (18)
n-r Ji
Sy=2, 2.Cy,B(xy 5, ) s
§1=0 =0
n-r J
S, = . OCjIjZB(’(jz’Kjljz)'w
=0 =
19
n-r J ( )
SS = . CJ] I3 B(sz ’KJllz ) !
1=0j2=0
n-r J
SG =4 CJljZ |:B(Klz +1’Kjljz ) |5
j1=0 j=0 (20)
+B (e, rey, 1)1 |,
n-r i o i3
S; = Z Z CJ]JzJ;[rB(szJ'A +1’Kj|jzj3j4)|7
71=0 J2=0 j3=0 j4=0 (21)

+rZB(szj4 ’Kj1j2j3j4 +1) Ig:l’

p(n=r\(] i
Cy, =(-1)’ ( j{ .I}Cnmg =C;,C55Cy, :( -3j,
Jl Jz J4

B(a,b) is the standard beta function,

K, =r+j,+1, Kij, = n+Jj—J+1

K, =W+ b+ 1ok, =h+h—L+ik-1

o dpds . (22)
[T (8] [T ()]

=] Iwﬂ{‘ ;> exp[ T, (4.5)]

T [ ()]

. fwﬁl” 2 exp[ T, (4:8)]

[T [T ()]

s texp[ T, (5.5,)]
' [ i (ﬂl)] [ itia (ﬂz)]

=[] < B BE exp[ Ty (6. 5,) ]

T )] [T 8]
BB exp T, (8. 5,) ]

T -mn(1=e ) ['[17,(8)]

dgdp,, (23

dgdp,, 24

dgdp, (25)

dgdp, , (26)

—dpdp,,

(27)

. I °°J‘ } BB exp |:—T0 (,6’1,,6’2 )} dpdp
0Jo [Tj,; (ﬁl )]ﬁ |:Tj’1‘j2(ﬂ2 ) _ ln(l _e P )]rz

(28)
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= BB exp[—T;* (8.5, )]
0 |:T1* (:81 ):|"1+1 |:Tz* (ﬁz ):|r2
® 1r] 71ﬂ2r2 exp |:_T6** (ﬁlaﬂz ):|
"] )]
Tiz (ﬁl ) = _|: > ln(l —e A% )+ iln(l —e X ):| ,

Sin(1-e )},

i=1

N

dgdg,, (29

=1,

dgdp, ., (30)

Thjz (ﬂz) = _|:( - j2)1n(l—e_ﬂlxr )+

(31
To(ﬂlaﬂz) = i[ﬂlxli +ln(1_e—ﬂ1xli ):|
+i|:ﬂzxzi +1n(1—e’ﬁzx2i )]’ (32)
Th(B)=B+T,(B). Ty, (B)= B+ Ty, (Bo),
T (B)=T ( ) — (J4+1)ln(1 eﬂ]Xo)
T (ﬁz): i (ﬂz) ( L)ln(l—e’ﬂzxo ),
L (ﬁl’ﬂz) =T (ﬂpﬁz)+ﬁ1X0 +ln<1—e’51x0 ),
(33)
T (B) =T () hin(1-e ),
TsM (ﬁ ) TJ'Tiz (ﬂz)_( j3 - j4 +1)1n(l—e’ﬂ2xo ),
T (B Be) =To (B Bo)+ BrX +1n(1—e’ﬂ2"0 )

The proof of the theorem is given in Appendix 1.

4. Approximate Confidence Intervals

Let 0=(6,=p,0,=c,,0,=0,,0,=f,,6,=f3,) . The
observed Fisher information matrix F (see Nelson [23]),
for the MLEs of the parameters is the 5 x 5 symmetric
matrix of the negative second partial derivatives of
log-LF (15) with respect to the parameters. That is

2 p%
F=- ot , evaluated at the vector of MLEs 6.
06,00
The second partial derivatives are given in Appendix 2.
The inverse of F is the local estimate V of the asymp-
totic variance-covariance matrix of

0= (9 Py, alMLﬂe aZMLﬂe ﬂlML’e ﬂZML)
That is,

V=F"=(oy) .. (34)

5x5”
where oy = Covlgéi,éj

The observed Fisher information matrix enables us to
construct confidence intervals for the parameters based
on the limiting normal distribution. Following the gen-
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eral asymptotic theory of MLEs, the sampling distribu-

tion of (é’i—é’i)/,/V(é),izl,---,S, can be approxi-

mated by a standard normal distribution, where

9 ) =0, the ith diagonal element of the matrix V,
given by (34).

An approximate two-sided 100(1-7)% confidence
interval for 6, is given for i=1,---,5, by

0-2.,N(0)<0<6+2,,N(8), (39

where z, . is the percentile of the standard normal dis-
tribution with right—tale probability of C.

5. Numerical Example

5.1. Point Estimation of the Parameters, SF and
HRF

A sample is generated from the mixture in such a way
that X, <X,,/=1,2,i=1,---,r,. We generate 100 sam-
ples of size n = 50 each, from a finite mixture of two
exponentiated exponential components, whose PDF is
given by (5) and (4), as follows:

1) Generate U, and U, from Uniform (0,l) distribu-
tion.

2) For given values of p, oy, a, B, [», generate X ac-
cording to the expression:

——1n(1 w), u<p
X = fl .
——In(1-u)*), u, >
g
An observation X, belongs to sub-population 1, if
U; < p and to sub-population 2, if u, > p, where the
sample is generated from the mixture in such a way that
X, <X, 0=12,i=1,

3) Repeat until you get a sample of size n.

The observations are ordered and only the first r = 45
(90% of n) out of the n = 50 observations are assumed to
be known. Now we have I, observations from the first
component of the mixture and r, observations from the
second component (I =1, +1, =45).

The value of X, is chosen to be equal to 1.

The estimates of p, a1, @, B, B, Ry(X) and
Ay (%) and absolute biases are computed by using the
ML and Bayes methods. The Bayes estimates are ob-
tained under SEL function. An estimator of a function,
using BSEL, is actually a mixture (@ = 0.2, 0.4, 0.6, 0.8)
of the MLE of the function and the BE, using SEL.

The MLEs are computed using the built-in MATLAB®
function “ga” to find the maximum of the log-LF (15)
using the genetic algorithm. This is better than solving
the system of five likelihood equations in the five un-
knowns, by using some iteration scheme. Neverthless,
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Table 1. Estimates of the parameters, SF and HRF under BSEL function and absolute biases.

Estimate w=0 “B-SEL” 0w=0.2 w=04 w=0.6 0w=0.8 w=1 “MLE”
A 0.416229 0.416139 0.416049 0.415959 0.415869 0.415779
p
0.016229 0.016139 0.016049 0.015959 0.015869 0.015779
. 2.380074 2.432918 2.485761 2.538598 2.591441 2.644284
a,
I 0.380074 0.432918 0.485761 0.538598 0.591441 0.644284
. 2.712658 2.840706 2.968753 3.096802 3.224850 3.352898
a
’ 0.287342 0.159294 0.031247 0.096802 0.224850 0.352898
N 2371177 2.407887 2.444589 2.481294 2.517997 2.554707
B
I 0371177 0.407887 0.444589 0.481294 0.517997 0.554707
R 2.586853 2.705871 2.824898 2.943908 3.062934 3.181952
B
0.413147 0.294129 0.175102 0.056092 0.062934 0.181952
R ( ) 0.253611 0.236527 0.219444 0.202361 0.185277 0.168194
R, (X
o 0.067411 0.050327 0.033244 0.016161 0.000923 0.018006
R ( ) 2.106139 2.190786 2.27544 2.360092 2.444747 2.529393
A, (X
N 0.203461 0.118814 0.03416 0.050492 0.135147 0.219793

the system is needed for the computations of the asymp-
totic variance-covariance matrix.

The (arbitrarily) chosen actual population values are
p=04, =2, =3, i =2,and B =3. For X, =1,
the actual values for Ry, (x,) and A, (X,) are given,
respectively, by 0.1862 and 2.3096.

The estimates of the parameters, SF and HRF under
the BSEL function are given in Table 1, for different
weights o . It may be noticed that when @ =1, we ob-
tain the MLEs while the case @ =0, yields the Bayes
estimates under SEL(B-SEL) function.

5.2. Interval Estimation of the Parameters

The asymptotic variance-covariance matrix (34), based on
the generated data, is found to be

0.00546 —0.0106 0.00941 0.01345 0.010974

1.1651 -0.3266 0.66019 -0.23199

V= 1.0099 -0.23629 0.54097
0.68764 —0.21231

0.49433

So that the asymptotic variances of the estimators of the
parameters are given by:

V(p)=0.00546,V (&) =1.165LV (&, ) =1.0099,
V()=0.68764,V (B,) = 0.49433

Copyright © 2012 SciRes.

It then follows that the approximate 95% confidence
intervals of the parameters p, «,, a,, f and fS,,
given by (35), are given, respectively, by: (0.271 < p <
0.561), (0.5287 < ¢ < 4.7599), (1.3832 < o, < 5.3226),
(0.9294 < S <4.18) and (1.8039 < 3, < 4.56).

6. Concluding Remarks

In this article, we have considered point and interval es-
timation. Point estimation, of the parameters of a finite
mixture of two exponentiated exponential components,
SF and HRF is based on BLEF which is a weighted av-
erage of two losses: one of which reflects precision of
estimation and the other reflects goodness-of-fit. This
asymmetric loss function may be considered as a com-
promise between Bayesian and non-Bayesian estimates.
We have also estimated the parameters of the mixture by
obtaining the asymptotic variance-covariance matrix and
hence the approximate confidence intervals.
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Appendix 1

Proof of the Theorem
By expanding the last term in LF (14), using the binomial expansion, it can be seen that

e ey

= Z Z Cj]jz ijqjl_jz exp|:0{1 jz ln<1_e‘ﬁlxr )+0€2(j1 _ jz)ln(l—e_ﬁzxf ):I,

1=0 j2=0

w7

where C,
So that LF (14) can be written in the form

n-r

L (6,x)c D Z Cii pitlgRtichgligh gi ph exp[—alsz (B)-a, T, (8)-To (5.5 )] ,

71=0j=0

where T, (5,), T, (8.). To(B.B,) aregiven by (31). Suppose that the prior PDF is as in (16). It then follows that
the posterior PDF is given by

n-r i s it T RO R * *
7(6]x) < L (6,%)7(6) = Az JZOCMZ P e B exp| e T ()~ anTy, (8) =T (B o) | (B4
1=0 )=

where &, =+ ), +Lx;, =6+j—j,+L T;(B) and T}
is given by

i ot J o po F(I’I)F(I’z) -1 ph-1_-To(B.5)
Al =|n(0|x)do = C.. B(x, ,x. . B e dpds, =T (n)I()S,,
[(6]x) DI CRSRIN: A T B Bdp, =T (v)r(r,)

(B,) are given by (32). The normalizing constant A

where S, is given by (17), in which |, is given by
(22).
Applying (9) when

. S .
I, is given by (23). d,q = E(a2|§):r28—3, S, is
0

given in (18), in which |, is given by (24).
UO) =Pt @0, B oo R (%) 2 (%), B = E(ﬁ1|5):%, S, is given in (19), in which I,

their Bayes estima;es using SEL function are given by is given by (25). 0
Poe, = E(plx):s—l, S, is given in (17).

0

. S

Prser =E (] 5):5—5, S, is given in (19), in which
0

. S L . . . L

Ui, = E(a1|§) = I’,S—2 , S, is given in (18), in which 1, is given by (26).

0

Ruser (%) = E[RH (X0)|§] :1—_[{ pexp[a, ln(l—e’ﬁ"(0 )}+qexp[0¢2 ln(l—efﬂ2X0 )}}n(ﬁu)dﬁzl—%,

0

S is given in (20), in which I is given by (27) and 1, by (28).

e (%)=E [/IH (% )|X]’
where

Ay (%)= RhH(z(OXO)) =[ph1 (% )+ah, (XO)}[l—{le(x0)+qH2(x0)}T.

Since p < 1, then
PH, (%) +aH, (%) =H, (%) + p[H1 (xo)—Hz(xo)]g H, (%) <1,

so that
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[1-{pH, (%) +aH, (%)} ] = 3 {pH, (%) +aH, (%)} = 3 3¢, pHa" [H, (x)]" [Ha (x) ] .

where Cj3 =[}3J.
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0

3=0 j3=0 j4=0

It then follows that

A (%)= i i Ci plghh [H1 (Xo)]j4 [Hz (% )]h_h {phl (%)+q 2(X0)}

J3=0 J4=0

—izch

J3=0 J4=0

and using (0| ) given by (34), it can be shown that
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By substituting, for ¢=1,2,H,(x,)=(1-e7*)",
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