
Journal of Modern Physics, 2012, 3, 74-79 
http://dx.doi.org/10.4236/jmp.2012.31011 Published Online January 2012 (http://www.SciRP.org/journal/jmp) 

Phase Shift between Supersymmetric Partner Potentials 

Sabyasachi Mahapatra 
Department of Physics, St. Paul’s Cathedral Mission College, Raja Rammohan Roy Sarani, Kolkata, India 

Email: smahapatra99@gmail.com 
 

Received July 23, 2011; revised September 6, 2011; accepted October 15, 2011 

ABSTRACT 

The relationship between phase shifts produced by two supersymmetric (SUSY) partner potentials has been examined 
critically. Phase shifts produced by two SUSY partner potentials bear a simple relation irrespective of being shape in-
variant potential (SIP) or not (non-SIP). In general, the phase shift cannot be obtained algebraically, even for standard 
SIPs except the Coulomb potential. 
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 21. Introduction H

Supersymmetric quantum mechanics (SSQM) was in-
troduced by Witten [1], Coopper and Freedman [2] as a 
simple model for testing supersymmetric field theories 
which were introduced by Gel’fand and Likhtman [3] for 
a unified description of the fundamental interaction in 
nature. The study of SSQM has since been of great inter-
est, as it provided an insight into the factorization of the 
Hamiltonian and introduction of partner Hamiltonians 
having wholly or partially identical energy spectrum. It 
also explained analytical solvability of potentials, whose 
partner potentials have the same shape, introducing the 
concept of shape invarince. From a given Hamiltonian 
(H1), a partner Hamiltonian (H2) is usually obtained by 
deleting the ground state of H1, the rest of the spectrum 
of H1 being identical with the spectrum of H2 [4]. The 
partner Hamiltonian H2 can also be obtained by adding 
an energy level below the ground state of H1 or by 
matching the spectrum of H2 identical to that of H1 (iso-
spectral Hamiltonians) [5]. We will focus our attention to 
the first class of partner Hamiltonians. An elegant and 
exhaustive review of the procedure and its consequences 
can be found in Ref. [4]. The principal result is the en-
ergy degeneracy, viz.,   where 

 is the energy of the n-th excited (bound) state of 

   1 2
1 = ,n nE E (n

 has the same functional shape (but with different 
parameters) as that of the potential  of the original 
Hamiltonian 

 1V
 1H , then the potential is said to be a 

“shape invariant potential (SIP)”. It can be shown that 
the entire bound state energy spectrum and correspond-
ing energy eigen functions of  1H  can be obtained al-
gebraically if V  is shape invariant [4]. However, shape 
invariance is not a prerequisite for obtaining the partner 
potential  from any starting potential V . The 
partner potential can be constructed, if the ground state 
wave function of the original potential is known, even if 
the corresponding Hamiltonian is not solvable analyti-
cally. Hence for any given potential , one can con-
struct the partner potential V , according to a clear 
prescription (to be outlined in Section 2), such that V  
has the same energy spectrum as V , except that the 
ground state of V  will be absent in the spectrum of 

. Then extending the procedure to scattering states, 
one can show that the phase shifts produced by  and 

 bear a simple relation [5], which will also be out-
lined in Section 2. Since this procedure is valid for any 
potential , the relationship between the phase shifts 
produced by V  and V  should also hold whether 
or not  is shape invariant. Likewise, energy degen-
eracy 

 1

 2V  1

 1V
 2

 2

 1

 1

 2V
 1V

 2V

 1V
 1  2

 1V
   

= 0,1,2, ),
 i
nE
 i

 1 2=E E  1
1n n  and relation between 1n   and 

nH . The bound state eigen function  2
n  of  2H  can 

be obtained by applying an operator A  on the eigen 
function  1

1n   of  1H , viz.,  
n

 12 A 1n   . The opera-
tor A  destroys a node of an eigen function of  1H . 
This procedure can also be extended to the scattering 
(unbound) states. From the asymptotic form of the scat-
tering wave function, one can then find a relation between 
the phase shifts produced by the two partner potentials 
[5]. If the potential V  of the partner Hamiltonian  2

 2  should also hold even if  is not shape invari-
ant. In Reference [5], it was shown analytically that the 
phase shift relation holds for the Coulomb potential, 
which is well known to be shape invariant. In connection 
with that derivation, to be outlined in Section 2.2, it was 
shown that if the original potential  is taken with an 
orbital angular momentum l, then the phase shift of the 
partner potential corresponds to angular momentum 

 1V

 1V

 1l  . For the Coulomb potential (an SIP), the partner 
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where nl  is the energy of the eigen state with radial 
and orbital quantum numbers n and l respectively. In this 
case the partner potential has an explicit orbital angular 
momentum . It is important to note that the orbital 
angular momentum  becomes the shape invariance 
parameter, and it changes to 

 1l 
 l

 1l 

   1= 1l R a 

 2 1= = 1.a l 
 2

 1l

 by the condition of 
shape invariance 

     2 1
1 2; = = ;V r a l V r a  

with                        (1) a f

Consequently, the phase shifts associated with V  
corresponds to orbital angular momentum  . On 
the other hand, for a non-SIP, there is no shape invari-
ance condition, Equation (1). Hence  is not explic-
itly associated with orbital angular momentum 

 2V
 1l  . It 

is actually associated with orbital angular moentum l, but 
its  behavior is 0r     21 2l l 

 1

r

 2V l

 (as will be 
shown in Section 2.2). This may cause a serious pitfall in 
assigning orbital angular momentum for the partner po-
tential : if an explicit   is taken for V , it 
will give wrong results. Instead, one should include l in 

 only and then calculate its partner V , without 
additional inclusion of any l. We wish to stress this point 
in this paper, to avoid a possible pitfall. 

 2

 1V  2

 1

 2V
 1V
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   1 r

   1 r 2r

In the present work, we critically examine the rela-
tionship between phase shifts produced by the two part-
ner potentials for both SIP and non-SIP. We find that the 
difference between the phase shifts produced by V  
and  for both SIP and non-SIP do not obey the 
SSQM predicted relation, if  and its supersymmetric 
partner  are taken with l and  respectively, 
whereas it is obeyed when both V  and  are taken 

 1l 

with the same l. Thus, unless the parameter involved in 
the shape invariance relation, Equation (1), change 
automatically from l to , one should not change l 
for the partner. 

The paper is organized as follows. In Section 2, we 
briefly recapitulate the basic relations between energies, 
eigen functions and phase shifts of the partner potentials. 
We also indicate how the partner potential can be con-
structed for any potential, if its ground state wave func-
tion is known. In Section 3, results will be presented for 
the finite square well potential, which is a non-SIP, along 
with the Pöschl-Teller potential (SIP). The difference of 
their phase shifts will be compared with the expectations 
from SSQM. In Section 4, we draw our conclusions. 

2. Partner Potentials: Relations between 
Their Observables 

2.1. Energy Degeneracy and Shape Invariance 

In this sub-section, we present an outline of energy de-
generacy associated with partner potentials, following the 
review article of Cooper, Khare and Sukhatme [4]. Con-
sider a spherically symmetric potential V . The 
energy scale is so chosen that the ground state of orbital 
angular momentum l in this potential has zero energy. 
We assume that V  goes slower than   for 

 and approaches a constant value V0r    for 
. Then the Schrödinger equation for the ground 

state of orbital angular momentum l in this potential is 
r 

             
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0 02
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 
where,    
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




   1
effV r

   

. Then one can 

obtain  as 

   
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1 0

1
0

= .
2
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r
V r
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




 W r
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              (3) 

Define a “super potential”  through 

   
   

1
0

1
0

= ,
2

' r
W r

m r







     

            (4) 

so that 

 1 2= .
2

'
effV r W r W r

m




     

       (5) 

Define a partner potential 

 2 2= ,
2

'
effV r W r W r

m




 

      (6) 

and the corresponding Hamiltonian 

   
2 2

2 2

2

d
= .

2 d eff


H V r

m r


  





   1
eff r    2

eff
†

        (7) 


The supersymmetric partner of V  is V r . 
Defining the operators A and A  as 

   †d d
= , = ,

d d2 2
W r A W r

r rm m
  

 

   1 2† †= , = .

A (8) 

one sees that 

H A A H AA

               1 1 1 1 1†= = ,n n n n

       (9) 

The eigenvalue equations satisfied by these Hamilto-
nians are 

H r A A r E r  

               2 2 2 2 2†= =n n n n

 

H .r AA r E r      (10) 
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Then one can easily see that (energies are expressed in 
the scale in which ) [4]  1

0 = 0E

        
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 
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  (11) 

This shows that H  has the same spectrum as that 
of  1H , except that there is no state in  2H  corre-
sponding to the ground state of  1H . 

If  has the same functional shape as that of 
, but have different parameters, then the potential 

 2  effV r
   1V r

   1V r

eff

is said to be a shape invariant potential (SIP). The pa-
rameters of the partner are obtained as a simple mathe-
matical function of the original parameters of eff . 
Then it is easily seen that the entire energy spectrum is 
obtained algebraically [4]. 

From Equations (4)-(6), we have 
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This shows that the r  behavior of effV  cor-
responds to angular momentum l + 1, since for , 

0

   r
   r

 goes as . Both the potentials  and 
 approach the same value  in the limit . f

From Equations (4) and (8), we have 
V
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d d
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The operator A takes an eigenfunction of H  into an 
eigenfunction of  2H (including those corresponding to 
continuous eigenvalues). 

2.2. Relation between the Phase Shifts Produced 
by the Partner Potentials 

For scattering states, energy should be in the continuum. 

In the energy scale chosen so far,  and 

. Now we change our energy scale by 

shifting it by  such that each one of V  

  and  vanish in the limit . 

Energies of the bound states are expressed as 
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 ( E ) in the 

potentials  and  respectively. These 

states are connected by the operator A 
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To calculate phase shifts, we need the asymptotic 
forms of these wave functions. For , 

   , 

where 
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0 02
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The asymptotic form of  is 
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where l  is the phase shift produced by eff , 
corresponding to orbital angular momentum l and energy 
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. Substituting it in Equation (17), we have 
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is the phase shift produced by , corresponding to 

energy 
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=
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k
E

m


0r 
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. Note that the  behavior of the 

partner potential corresponds to orbital angular momen-
tum   [see the discussion following Equation (12)], 
which justifies the subscript  of  1l   2 . Note also 
that 1l  is the phase shift produced by effV r , 
which is the supersymmetric partner of , and not 

   2 k    2
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V r ] (where 

 is the supersymmetric partner of V ), 
even though 1l  corresponds to the phase shift of 
the  1l  -th partial wave. Thus it will be wrong to take 
the phase shift of the explicit -th partial wave of 

, unless l is the shape invariance parameter of 
Equation (1), such that 

 1l 
   2V r

  = 1f l l 
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. For a shape invari-
ant potential, for which Equation (1) holds, l  and 

1l  correspond to the same functional form of the 
potential. Hence in this case, use of Equation (20) per-
mits the derivation of an algebraic expression for the 
phase shift. This is true only for the Coulomb potential 
[5,7]. In the above derivation, we have not assumed the 
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shape invariance property [4]. Hence, Equation (20) 
should hold equally well for both SIP and non-SIP. 

3. Results 

3.1. Application to a Square Well Potential 

As a simple application, we consider the  partial 
wave in a square well potential having the form 

= 0l

0= ,

= 0,     > .

V r R

r R
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

 

Note that the finite square well potential, although 
solvable semi-analytically, is not an SIP. A bound state 
in this potential is obtained using the continuity of the 
wave function and its first derivative at . This 
gives a transcendental equation for the binding energy 
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The numerical solution of Equation (21) with the larg-
est possible value of 0  gives binding en-
ergy of the ground state. Corresponding to this value of 

0 , we can get the ground state wave function 0 . 
Then the superpotential for the square well is given by 
Equation (3) as 
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where 0K  and 0  are values of K and   respectively, 
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(23) 

3.2. Numerical Calculation of the Phase Shift 

For the potential  (with V  subtracted, so that 
 vanishes asymptotically) the radial Schrödinger 

equation for the l-th partial wave takes the form 
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The asymptotic solution is given by Equation (18). We 
integrate Equation (24) numerically using the Runga- 
Kutta algorithm from  (subject to E ) 
to two large values of r (say R1 and R2) to obtain 

 and . Then 
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For calculation of , we follow the above pro-
cedure, replacing V  by  in Equaiton (24). eff eff

The partner potential is calculated using Equations (2), (4) 
and (6). No explicit l-dependent term is inserted in 

. 

3.3. Numerical Results 

We choose dimensionless units: = 2 = 1m
= 50,V = 1, = 0

B
   2V r

0r  r 

B

   1 r    2 r
0 < < 1E

   0 = 0, 0.3cm ( = 1,2)i i

   1 k    2 k

   1 r    2 r

   1
effV r

   

 and take 

0  R  which support two bound states for  l  
in this square well potential. Numerical solution of Equa-
tion (21) gives the binding energies of the ground and 
first excited state as B0 = 42.374903 and B1 = 20.714111 
respectively. The partner potential is calculated from 
Equation (23), using the numerical value of 0 . Since 

eff  is no more analytically solvable, we solve the 
corresponding Schrödinger equation numerically by Runga- 
Kutta algorithm with appropriate boundary conditions for 

 and . We checked that this potential 
supports only one bound state, whose binding energy is 

1 , to within numerical error. Furthermore, the calcu-
lated eigenfunction agrees with the second of Equation 
(11), within numerical errors. We also solved Equation 
(2) by the Runga-Kutta algorithm and verified that the 
energies and wave functions of the ground and excited 
states were reproduced correctly within numerical errors. 
These indicate the accuracy of the numerical procedure. 
Finally we obtained E  and E  in the range 

, by the Runga-Kutta algorithm, subject to 

E . Phase shifts were calcu-
lated using Equation (25). Calculated phase shifts satisfy 
the supersymmetric relation Equation (20), within esti-
mated numerical errors, when l  and 1l  
are obtained from the solutions of the Schrödinger equa-
tion with effV  and effV  respectively. We have 
verified that the relationship Equation (20) is not valid 
between the phase shifts produced by  and 

  2
2

2

1 2

2

l l
V r

m r

  
 

 



= 0
   1V r

. 

We again stress that for the l  effective potential 

eff    = ,V r    2 r the partner potential effV  is given 
by Equation (23), without any additional l-dependence. 
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   2
effV r

   1V r

 1l 

   1V r

       

between phase shifts produced by two supersymmetric 
(SUSY) partner potentials. A simple analytic reation, 
Equation (20), holds for both SIP and non-SIP, which 
relates the phase shift produced by the l-th partial wave 
of , i.e. by the potential 

yright ©

As a further check, we verified these relations by a nu-
merical calculation for the Pöschl-Teller potential [4], 
which is an SIP. Thus the phase shift relation is valid 
whether the potential is an SIP or not, when  is 
obtained as the supersymmetric partner of eff , with 
no change in the l value, even though it may appear from 
Equation (20) that the phase shift for the partner potential 
should be for the -th partial wave. The calculated 
results are presented in Tables 1 and 2 for the square 
well and Pöschl-Teller potentials, respectively. 

 

4. Conclusion 

In this work, we have critically examined the relationship 

2
1 1

2

1
=

2eff

l l
V r V r

m r





   2V r

 

and that by its SUSY partner eff . The latter phase 
shift corresponds to the  1l  -th partial wave. However, 
there is no relation between phase shifts produced by 

     1
effV r     and 

2
2

2

1 2

2

l l

m r

 



 

V r , 

 

 1 l k   and  Table 1. Results of our calculation for the square well potential. 2
1 l k

   1
effV r

 stand for the phase shifts produced by 

the potentials  and    r

  1

l k

2
effV , respectively. 

Energy (E)     2

+1l k        1 2

+1l lk k    1 0tan
k

  
 
 

 

0.10000000 –0.27066200 1.34833100 1.52259965 1.52231290 

0.20000000 –0.38196900 1.25693000 1.50269365 1.50228403 

0.30000000 –0.46682000 1.18731400 1.48745865 1.48695173 

0.40000000 –0.53787800 1.12906600 1.47464865 1.47405634 

0.50000000 –0.60005800 1.07814400 1.46339065 1.46272181 

0.60000000 –0.65588400 1.03246800 1.45324065 1.45249847 

0.70000000 –0.70685900 0.99080400 1.44392965 1.44311896 

0.80000000 –0.75396300 0.95234500 1.43528465 1.43440894 

0.90000000 –0.79787700 0.91652900 1.42718665 1.42624721 

1.00000000 –0.83909800 0.88294800 1.41954665 1.41854544 

 
Table 2. Results of our calculation for the Pöschl-Teller potential.    1 l k   and  2

1 l k

   1
effV r

    2

+1l k        1 2

+1l lk k 

 stand for the phase shifts produced 

by the potentials  and , respectively.    2
effV r

  1

l kEnergy (E)    1 0tan
k

  
 
 

 

0.10000000 1.16132000 –0.10319000 1.26451000 1.26451896 

0.20000000 1.14997100 –0.00025100 1.15022200 1.15026199 

0.30000000 0.79424100 –0.27541900 1.06966000 1.06970331 

0.40000000 –1.53982200 0.59497400 1.00679665 1.00685369 

0.50000000 –1.28742700 0.89890900 0.95525665 0.95531662 

0.60000000 0.71413300 –0.19753900 0.91167200 0.91173829 

0.70000000 0.84755500 –0.02647400 0.87402900 0.87409797 

0.80000000 –1.18922000 1.11268500 0.83968765 0.84106867 

0.90000000 0.68730200 –0.12435500 0.81165700 0.81172612 

1.00000000 0.04691800 –0.73736500 0.78428300 0.78539816 
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where  is the SUSY partner of V . It 
would be wrong to take  to be the phase shift 
produced by the 

   2V r    1 r
 2

1l   k
 1    2V r

   1 r

r

   1
l k

r

l 

  2V
   1

effV r

  1
l k

l 

-th partial wave in . Our 
numerical calculation of the phase shifts produced by a 
non-SIP as well as an SIP confirm this. It would be of 
great interest, if the phase shift could be obtained alge-
braically. This would be possible, if  were shape 
invariant. But, even if  is shape invariant, i.e. 

 and  have same mathematical shapes, 
in general  is not shape invariant. Thus, in gen-
eral the phase shift cannot be obtained algebraically, 
even for standard SIPs. Since Equation (20) relates 

 with , an algebraic derivation of the 
phase shift is possible if  and  relate to 
potentials which have the same mathematical shape. This 
is possible, if SUSY partner of  explicitly cor-
responds to the  partial wave, i.e. l is the shape 
invariance parameter of Equation (1) and 

effV
r

 k

  1
effV

 1V


2

l 





 
1

   1V r

   2
1 kl

1
  = 1f l l  . 

Such a restrictive condition is valid only for the Coulomb 
potential [4], only for which analytic expression for the 
phase shift is possible [5-7]. 
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