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ABSTRACT 

Einstein’s field equations with variable gravitational and cosmological constants are considered in the presence of bulk 
viscous fluid for the totally anisotropic Bianchi type II space-time in such a way as to preserve the energy momentum 
tensor. We have presented solutions of field equations which represent expanding, shearing and non-rotating cosmo- 
logical models of the universe. The physical behaviours of the models are discussed. We observe that the results ob- 
tained match with recent observations of SNIa. 
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1. Introduction 

The simplest model of the observed universe is well rep- 
resented by Friedmann-Robertson-Walker (FRW) mod- 
els, which are both spatially homogeneous and isotropic. 
These models in some sense are good global approxima- 
tion of the present-day universe. But on smaller scales, the 
universe is neither homogeneous and isotropic nor do we 
expect the universe in its early stages to have these prop- 
erties. At very early times in the evolution of the universe, 
most of the radiations and matter currently observed are 
believed to have been created during the inflation. Mod- 
ern cosmology is concerned with nothing less than a tho- 
rough understanding and explanation of the past history, 
the present state and the future evolution of the universe. 
In fact, these are theoretical arguments from the recent 
experimental data which support the existence of an ani- 
sotropic phase approaching to isotropic phase leading to 
consider the models of the universe with anisotropic back- 
ground. Spatially homogeneous and anisotropic cosmolo- 
gical models play significant roles in the description of 
large-scale behaviours of the universe. Bianchi spaces I- 
IX play important roles in constructing models of spa- 
tially homogeneous and anisotropic cosmologies. Here we 
confine ourselves to totally anisotropic space-time of Bian- 
chi type II space-time which have fundamental role in 
constructing cosmological models suitable for describing 
the early evolution of the universe. Much attention has been 
focused towards the study of locally rotationally symme- 
tric (LRS) Bianchi type II space-times. Guzman [1] ob- 
tained the general vacuum solution of Brans-Dicke field 
equations for the totally anisotropic Bianchi type II space- 

time. Singh and Shri Ram [2] presented totally anisotro- 
pic Bianchi type II cosmological models in scalar tensor- 
theories of gravitation developed by Saez-Ballester [3], 
Lau and Prokhovnik [4]. Singh et al. [5] obtained exact 
solutions of Einstein’s field equations in vacuum and in 
the presence of stiff matter for the totally anisotropic Bian- 
chi type II space-time in normal gauge for Lyra’s geome- 
try when the gauge function is time-dependent. Recently, 
Yadav and Haque [6] obtained a spatially homogeneous 
and totally anisotropic Bianchi type II cosmological mo- 
del representing massive string in normal gauge for Lyra’s 
manifold. 

At the early stages of the universe when neutrinos de- 
coupling occurred, the matter behaved like a viscous fluid. 
The coefficient of viscosity decreases as the universe ex- 
pands. Misner [7,8] studied the effect of viscosity on the 
evolution of the universe and suggested that the strong 
dissipation, due to the neutrino viscosity, may considera- 
bly reduce the anisotropy of the black body radiation. 
Murphy [9] developed a uniform cosmological model filled 
with fluid which possesses pressure and bulk viscosity ex- 
hibiting the interesting feature that the big-bang type sin- 
gularity appears in the infinite past. Grn [10], Dunn and 
Tupper [11], Coley and Tupper [12], Banerjee and San- 
tos [13,14] etc. constructed and discussed cosmological 
models under the influence of both bulk and shear vis- 
cosities. Padmanabhan and Chitre [15] investigated the 
effect of bulk viscosity on the evolution of the universe 
at large. 

The cosmological constant problem is one of the out- 
standing problems in cosmology. In recent years there has 
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been a lot of interests in the study of the role of cosmo- 
logical constant  at very early and the later stages of the 
evolution of the universe. A wide range of observations 
suggest that the universe possesses a non-zero cosmolo- 
gical constant. The  term has been interpreted in terms 
of the Higgs scalar field by Bergmann [16]. Drietlein [17] 
suggested that the mass of Higgs boson is connected with 
 being a function of temperature and is related to the 
process of broken symmetries, and therefore it could be a 
function of time in a spatially homogeneous expanding 
universe. In quantum field theory, the cosmological con- 
stant is considered as the vacuum energy density. The ge- 
neral speculation is that the universe might have been created 
from an excited vacuum fluctuation (absence of inflationary 
scenario) followed by super cooling and reheating sub- 
sequently due to the vacuum energy. 

Dirac [18] first introduced the idea of a variable G what 
he called Large Number Hypothesis and since then vari- 
ous works have been carried out for a modified general 
relativity theory with this variation in G. A number of au- 
thors such as Beesham [19,20], Berman [21], Kalligas et al. 
[22], Abdussattar and Vishwakarma [23] proposed the 
linking of variation of G and  within the frameworks of 
general relativity and studied several models with the Fried- 
mann-Robertson-Walker (FRW) metric. This approach is 
appealing since it leaves the form of Einstein equations 
formally unchanged by allowing a variation of G to be 
accompanied by a change in . Arbab [24,25] and Singh 
et al. [26] have considered cosmological models with vis- 
cous fluid considering variable cosmological and gravita- 
tional constants. Singh et al. [27] presented a number of 
classes of solutions of Einstein’s field equations with va- 
riable G,  and bulk viscosity coefficient in the frame- 
work of non causal theory. Several authors investigated 
anisotropic bulk viscous fluid cosmological models of 
various Bianchi types time-dependent G and  (see Pradhan 
and Kumhar [28], Verma and Shri Ram [29,30] and ref- 
erences cited therein). 

Bali and Tinker [31] investigated bulk viscous fluid 
flow for Bianchi type III space-time model with variable 
G and , and obtained solutions of the field equations 
under certain physical and mathematical conditions. Mo- 
tivated by this work, we present totally anisotropic Bi- 
anchi type-II bulk viscous barotropic cosmological mod- 
els with variable G and  by making the following as- 
sumptions: 1) the conditions between the metric poten-  

tials A, B, C as 31 2, ,
n n

mm mA B C
nA B Ct t

  
 

t
; 2) the matter  

energy density and isotropic pressure satisfy the equation 
of state , 0 1p     ; 3) the coefficient of bulk vis- 
cosity 0

    where 0  and   are constants. We pre- 
sent the metric and field equations in Section 2. In Sec- 
tion 3, we deal with the solutions of the field equations and 
obtain two classes of solutions for  and 1n  1.n   

We also discuss the physical features of the cosmological 
models. Some concluding remarks are given in Section 4. 

2. Field Equations and General Expressions 

We consider the totally anisotropic Bianchi type-II metric 
in the form 

 22 2 2 2 2 2ds dt A dx zdy B dy C dz      2    (1) 

where the metric potentials A, B and C are functions of 
cosmic time t. Einstein’s field equations with time-de- 
pendent cosmological and gravitational constants are 

1
8π .

2ij ij ij ijR Rg GT g             (2) 

The energy-momentum tensor  for a bulk viscous 
fluid distribution is given by 

ijT

 ij i j ijT p v v   pg            (3) 

where ;ip p v i   is the effective pressure,   is the 
coefficient of bulk viscosity,  is isotropic pressure, p
  is the energy density and is fluid four-velocity 
vector satisfying 

iv
1.i

iv v    
In commoving coordinates, Einstein’s field Equation 

(2) for the metric (1) are 
2

2 2

3
8π ,

4

B C BC A
G p

B C BC B C
    
  

     (4) 

2

2 2

1
8π ,

4

A C AC A
G p

A C AC B C
    
   

     (5) 

2

2 2

1
8π ,

4

A B AB A
G p

A B AB B C
    
  

     (6) 

2

2 2

1
8π

4

AB AC BC A
G

AB AC BC B C
    

    
     (7) 

where the overdot denotes differentiation with respect to 
time t. Moreover, an additional equation for time changes 
of G and   is obtained by taking the divergence of Ein- 
stein tensor i.e. 

1
;

2
j j

i iR R g j
 

0  
 

           (8) 

which leads to 

 8π ;j j
i iGT g j 0.            (9) 

A semicolon denotes covariant differentiation. Equa-
tion (9) readily yields 

  .
8π

A B C G
p

A B C G G
  

   
        

  

   
 




0

  (10) 

The conservation equation for energy-momentum  
;j

iT j  gives 

  0.
A B C

p
A B C

 
 

     
 

 
              (11) 
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Using Equation (11), Equation (10) splits into the fol-
lowing equations   1 2 31 0

n

m m m

t
    

.   
 

               (20) 

  0.
A B C

p
A B C

 
 

     
 

 
        (12) Integration of Equation (20) yields 

  1 2 3 11
exp

1
nm m m

d t
n


          

       (21) 2

8π 8π .
A B C

G G
A B C

 
 

    
 

         (13) 
where d is a constant of integration. Differentiation of 
Equation (21) gives 

3. Solutions of Field Equations   

  

1 2 3

1 2 3 1

1

1
exp

1

n

n

m m m
d

t

m m m
t

n




 

  


         


       (22) 

Here we have four independent field equations contain-
ing eight unknowns viz. , , , , , , ,A B C p G    . So we 
shall assume extra conditions to obtain unique solutions 
of the field equations.  

Now using Equations (16)-(19) into Equation (7), we 
obtain 

In most of the investigations in cosmology, the bulk 
viscosity is assumed to be a simple power function of the 
energy density i.e.  

 

2
1 2 2 3 3 1

2 2

1 2 3 1

1
8π

4

2
exp .

1

n

n

m m m m m m a
G

t b

m m m
t

n





 
   

       

0
                  (14) 2c

   (23) 
where 0  and   are constants. Murphy [9] assumed 

1   in the case of small density which corresponds to 
a radiative fluid. We also assume that the fluid obeys the 
barotropic equation of state 

Differentiation of (23) gives 

 

   

2
1 2 2 3 3 1

2 1 2 2

1 2 3 1 2 3 1

8π 8π

2 1

4

2 2
exp

1

n

n

n

G G

n m m m m m m a

t b c

m m m m m m
t

nt

 





  

  
 

       
  

 

  (24) 

, 0 1p     .            (15) 

3.1. Model I 

We assume that solutions of the scale factors of the forms 

31 2, ,
n n

mm mA B C

A B Ct t
  
 

nt
        (16) 

Substituting Equations (13) and (16) into Equation (24), 
we have where n is a positive constant. On integration of Equation 

(16), we obtain 
 

 

   

2

1 2 3
2

1 2 2 3 3 1
2 1

2
1 2 3 1 2 3 1

2 2

8π 8π

2

2 21
exp

4 1

n

n

n
n

m m m
G G

t

n m m m m m m

t

m m m m m ma
t

nb c t

 





 


  


         



 

1
1 exp ,

1

nm t
A a

n

 
   

            (17) 

1
2exp ,

1

nm t
B b

n

 
   

            (18) 

1
3exp

1

nm t
C c

n

     


             (19) 

(25) 
Using Equations (14) and (22) into Equation (25), we 

find that 
where a, b, c are constants of integration and 1.n   

Using Equations (15)-(16) into Equation (12), we obtain 
 

        

        

2
1 2 2 3 3 1 1 2 3 1 2 3 1 2 31 1

1 2 2

1

2 1 2 3 10
1 2 3 1 2 3

2 11
exp exp

4 1 1

1 14π
4π 1 exp

1

n n
n

n
n

n m m m m m m a m m m m m m m m m
G t

n nt b c

m m md
d m m m m m m t

nt





 


 






 

.

t
               


  

  


     

             
    


 

(26) 



S. RAM  ET  AL. 12 

  
Again, from Equations (21), (23) and (26), we obtain 

the value of  as given in Equation (27). 
The Gravitational constant G is zero at t = 0 and 

gradually increases and tends to infinity at late times. 
The cosmological term  is infinite at t = 0 and becomes 
zero as . t ¥

The scalar expansion    and shear scalar    are 
given by 

1 2 3 ,
n

m m m

t


 
                        (28) 

   2 2 2
1 2 3 1 2 2 3 3 12

2
.

3 n

m m m m m m m m m

t


    
  (29) 

The coefficient of bulk viscosity has the value given by 

  1 2 3 1
0

1
exp

1
nm m m

d t



n
  

      
  

  (30) 

An important observational quantity is the deceleration 
parameter q which is defined as 

2

VV
q

V


                 (31) 

where  The sign of q indicates whether the 
model inflates or not. The positive sign corresponds to 
standard decelerating model whereas negative sign indi- 
cates inflation. For the present solutions of A, B and C, 
the decelerating parameter has the value given by 

3 .V ABC

 
1

1 2 3

3
1

nnt
q

m m m



  
 

.          (32) 

Clearly q is positive for 
 1 1

1 2 3

3

n
m m m

t
n


    

 
 and 

is negative for 
 1 1

1 2 3

3

n
m m m

t
n


  

 


 . The decelera-

tion parameter indeed has a sign flip at 
 1 1

1 2 3

3

n
m m m

t
n


    

 
. For 

 1 1

1 2 3

3

n
m m m

t
n


    

 
, 

the solution gives an accelerating model of the universe. 
when  

 1 1

1 2 3

3

n
m m m

t
n


  

 


 , our solution represents a de- 

celerating model of the universe. 
The spatial volume V of the model has the value given by 

   
 

1 3 1 2 3 1exp
3 1

nm m m
V abc t

n


     
  

.     (33) 

We observe that the spatial volume is constant at 
0t  . At this epoch the energy density   is finite and 

,   are zero. For  0 t   , the physical parameters 
, ,p ,  

n

 and  are well behaved and are decreasing 
functions of time. As , the spatial volume tends to 
infinity if 

t 
1  and the physical parameters tend to zero. 

Thus, for physical reality of the model, we must have 
0 n 1  . The model essentially gives an empty space-  

time for large time. We also find that 



 tends to a con-  

stant limit as , which shows that the anisotropy in 
the universe is maintained throughout. Since 0

t 
    

and 0  , the model leads to the inflationary phase of 
the universe [32]. 

3.2. Model II 

We now obtain solution of the field Equations (4)-(7) for 
1n  . For 1n  , the scale factors in Equation (16) are 

given by 

31 2, ,
mm mA B C

A t B t C t

 
            (34) 

which, on integration, gives 

31 2
1 2, , mm m

3A k t B k t C k t          (35) 

where  are constants of integration. 1 2 3
Substituting Equations (15) and (35) into Equation (12), 

we obtain 

, ,k k k

  1 2 31 0
m m m

t
        

 
       (36) 

which, on integration, leads to 

  1 2 31 m m mMt                   (37) 

 

       

        

2
1 2 2 3 3 1 1 2 3 1 2 31 1

2 2 2

2
1 2 2 3 3 1 1 2 3 1 2 3 1 2 31 1

1 2 2

2 11
exp 8π exp

4 1 1

2 11
exp exp

4 1 1

n n
n

n n
n

m m m m m m m m m m m ma
t d t

n nt b c

n m m m m m m a m m m m m m m m m
t t

n nt b c





 

 


                      
         

                 
      

         
1

2 1 2 3 10
1 2 3 1 2 3

1 14π
4π 1 exp

1
n

n

m m md
d m m m m m m t

nt

  








.




 

              
    

 (27) 
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where M is a constant of integration. 

The coefficient of bulk viscosity has the value given by 

  1 2 31
0

m m mM t         .        (38) 

The effect of bulk viscosity is to produce a change in 
perfect fluid and hence exhibit essential influence on the 
character of the solution. The effect is clearly visible in 
isotropic pressure and energy density. 

Using Equations (34) and (35) into Equation (7), we have 

   1 2 3

2
21 2 2 3 3 1 1

2 2 2
2 3

1
8π

4
m m mm m m m m m k

G t
t k k

   
     

(39) 
Equation (39), on differentiation, yields 

 
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(40) 
Combining Equations (13), (34) (37), (38) and (40), 

we obtain Equation (41). 
Substituting for G and   in Equation (11), we obtain 

Equation (42). 
The expansion    and shear scalar    have values 

given by 

 1 2 3 ,
m m m

t


 
                        (43) 

   2 2 2
1 2 3 1 2 2 3 3 12

2
.

3

m m m m m m m m m

t


    
   (44) 

We observe that the gravitational constant G is zero at 

0t   and gradually increases and tends to infinite as 
. We also see that the cosmological term  is infi-

nite at 
t 

0t   and a decreasing function of time, and it 
approaches a small positive value at late time which is 
supported by recent results from the observations of the 
type Ia supernova explosion (SNIa). Naturally a cosmo- 
logical model is required to explain acceleration in the 
present universe. Thus, this model is consistent with the 
results of recent observations. 

The deceleration parameter q has the value given by 

 1 2 3

3
1q

m m m
  

 
.          (45) 

From Equation (45), we observe that 

1 2 30 if 3q m m m     

and 

1 2 30 3q if m m m    . 

Thus, our solution represents an accelerating model of 
the universe if  1 2 3 3m m m    and decelerating mo- 
del if   3m1 2 3m m   . 

The spatial volume V of the model is given by 

   1 2 33
1 2 3

m m mV k k k t              (46) 

which is zero at 0.t   At  the energy density0t   , 
expansion   and shear scalar   all are infinite. Thus, 
the model starts with a big-bang singularity at 0.t   The 
above parameters decrease with passage of time. The 
spatial volume increases as time increases and becomes 
infinite at late time. As  t  , , ,p    and   tend 
to zero. Thus, the model represents an expanding shear- 
ing and non-rotating universe which essentially gives an  

empty space for large time. We also find that 



 does not  

 

        

          

1 2 3 1 2 3

1 2 3

2
11 2 2 3 3 1 1 1 2 3

2 2 2
2 3

1
1

1 10 1 2 3
1 2 3

1

4

4π 1

m m m m m m

m m m

m m m m m m k m m m
G t

t k k

M m m m
M m m m t

t




 



    




    

             

         
    

t

                 (41) 
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  (42) 
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tend to zero as . Therefore, the anisotropy in the 
model is maintained throughout. 

t 

4. Conclusion 

In this paper we have studied totally anisotropic Bianchi 
type-II bulk viscous fluid cosmological models with time- 
dependent gravitational and cosmological constants. We 
have presented two classes of physically viable cosmo- 
logical models for  and  We have obtained 

expressions for physical parameter 

1n  1.n 
, , ,p  G and   

as functions of time t. For 1n  , the model evolves with 
a finite volume at  and does not approach isotropy 
as  For large time, the energy density becomes zero. 

The model is accelerating for 

0t 
.t 

 1 1n

1 2

3

m m

n
3m

t
 



 




  

and is decelerating for 
 1 1

1 2 3 .
3

n
m m m

t
n


    

 
 For 

, the model starts evolving with a big-bang singu- 
larity at  This model represents an accelerating or 
decelerating universe according as  is 

greater than 3 or less than 3. The anisotropy is main- 
tained throughout in the model. The cosmological term is 
infinite initially and approaches to zero at late time. The 
gravitational constant G is zero initially and gradually 
increases and tends to infinity at late time. These are sup- 
ported by recent results from the observations of the type 
Ia supernova explosion (SNIa). 

1n 
0.t 

1 2t m m m   3
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