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ABSTRACT 

Quantitative structure-activity relationship study using artificial neural network (ANN) methodology were conducted to 
predict the inhibition constants of 127 symmetrical and unsymmetrical cyclic urea and cyclic cyanoguanidine deriva-
tives containing different substituent groups such as: benzyl, isopropyl, 4-hydroxybenzyl, ketone, oxime, pyrazole, 
imidazole, triazole and having anti-HIV-1 protease activities. The results obtained by artificial neural network give ad-
vanced regression models with good prediction ability. The two optimal artificial neural network models obtained have 
coefficients of determination of 0.746 and 0.756. The lowest prediction’s root mean square error obtained is 0.607. Ar-
tificial neural networks provide improved models for heterogeneous data sets without splitting them into families. Both 
the external and cross-validation methods are used to validate the performances of the resulting models. Randomization 
test is employed to check the suitability of the models. 
 
Keywords: QSAR; MLR; PC; ANN; Inhibitory Activity; Cyclic Urea and Nonpeptide-Cyclic Cyanoguanidine 
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1. Introduction 

HIV-1 protease (HIV-1 PR) is an enzyme that belongs to 
the family of aspartic acid protease. The Human immu- 
nodeficiency virus (HIV), the causative agent of acquired 
immunodeficiency syndrome (AIDS), infects vital organs 
of human immune system such as CD4 + T cells, macro- 
phages and dendritic cells. Therefore, AIDS consider as 
one of the most destructive diseases and it infects mil- 
lions of people worldwide. It is characterized by reduce- 
tion of the effectiveness of the immune system leaving 
the individual susceptible opportunistic infections and tu- 
mors. AIDS is transmitted due to direct contact of blood 
or body fluids with those of a body containing AIDS. 

Not surprising that protease enzyme represents the mo- 
st attractive target site for development of therapeutic 
agents for treatment of AIDS, the most agents target this 
site are cyclic urea and non-peptide cyclic cyanoquani- 
dine derivatives. These agents contains many functional 
groups that interact with the wild type HIV-1 PR and its 
mutants, this interaction results in a complex of HIV-1 
PR with the peptidomimetic inhibitors that produce an 
inactive HIV-1 PR and so inactive HIV [1-5]. 

Number of potent inhibitors have been developed and 

approved as drugs for the treatment of HIV infection; 
there has been a continuous interest for the search of new 
drugs. Saquinavir was the first protease inhibitor appro- 
ved by FDA. It has been in clinical use since 1995 [6]. A 
review related to the current development on HIV-1 Pro- 
tease Inhibitors focuses in the first part on the general 
features of the HIV-1 PR as well as its structure and fun- 
ctions. While in the second part, the review was targeted 
to characteristic and activity of drug resistant of the nine 
FDA approval inhibitors [7]. 

Ligands having high potency against HIV may be pro- 
perly developed using quantitative structure-activity re- 
lationship (QSAR) procedures. 

The base of QSAR is the correlation between the ex- 
perimental values of the activity and theoretical molecu- 
lar descriptors reflecting the molecular structure of the 
compounds. 

Quantitative structure activity relationship (QSAR) is 
the quantitative correlation of structural properties of a 
compound with its chemical, physical, pharmaceutical, or 
biological effect. Based on this assumption, many trials 
were made to correlate various physicochemical proper- 
ties of a set of molecules with their experimentally 
known biological activity, and so QSAR goals are: 1) 
Prediction of the activity of untested molecules, depend- *Corresponding author. 
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ing on models developed using a series of molecules and 
2) Constructing ideas about mechanism of action of a 
group of compounds leading to a design of new com- 
pounds of better activity and less toxicity. QSAR model 
development process is typically divided into three steps: 
data preparation, data analysis and model validation.  

Data preparation starts by selection of the data set to be 
used; this may simply be the extraction of data from a da- 
tabase or may need additional experimental studies. There 
are two steps to complete data preparation: geometry opti- 
mization and descriptors calculation. Geometry optimiza- 
tion or minimization is finding the coordinates that repre- 
sents the potential energy minimum for the molecular stru- 
cture in its 3D form. Theoretical molecular descriptor is a 
value that describes the molecular structure numerically. 
These descriptors can be simple such as molecular weight 
or complex such as geometrical descriptors. 

In data analysis, the first step is to decide which tech- 
niques for statistical analysis and correlation to be used. 
If our correlation models to be built are linear then we 
use multilinear regression (MLR) or non linear then we 
use artificial neural network (ANN). 

Model validation is the final part of the model develo- 
pment process, the predictive power of the model is te- 
sted on an independent set of compounds, generally pre- 
dictive power is the most important characteristics of the 
model and model predictivity is the ability of the model 
to predict accurately the target activity of a compound 
that was not used for model development. 

In model validation step, most of validation processes 
implement the leave one out (LOO) and leave many out 
(LMO) cross-validation procedures. The most common 
outcome parameters resulted from cross-validation pro- 
cedures are cross-validated determination coefficient q2 
(R2

cv) and root mean squares error (RMSE). High R2
cv 

and low RMSE values is a result of good and more pre- 
dictive model and that lead to better description of the 
observed data. 

Finally and the most important advantage of QSAR is 
that we can use QSAR resultant models outside the range 
of the data set; the model can be used to design new 
drugs depending on the most effective descriptors. 

Multilinear regression (MLR) is multivariate statistical 
technique to examine the linear relationship between the 
single dependent variable (activity) and two or more in- 
dependent variables (molecular descriptors). Collinearity, 
which often exists between independent variables, gene- 
rates a severe problem in certain types of mathematical 
handling such as matrix inversion [8]. As it was recently 
reviewed by Schneider and Wrede [9], the flexibility of 
ANN for finding out relationships that are more complex 
allows this method to be widely applied in QSAR studies. 
Both linear and nonlinear mapping functions can be mo- 
deled by configuring the network properly. To obtain po- 

werful and accurate ANN models, one should train a su- 
bset of descriptors instead of all generated descriptors 
[10-15].  

In a recent study, Coutinho et al. [16] performed mo- 
lecular docking and 3D-QSAR studies of HIV-1 protease 
inhibitors on a series of 54 cyclic urea analogs. Another 
study was performed by Deeb et al., [17] related to 
QSAR for inhibitory activity of 46 non-peptide HIV-1 
protease inhibitors by GA-PLS and GA-SVM. 

This study aims to predict the anti-HIV-1 protease ac- 
tivity of the heterogeneous data set in reference [18] as 
one group without splitting them into categorizes. This is 
achieved by applying ANN to develop new statistically 
validated QSAR models utilizing different types of de- 
scriptors. The strength and the predictive performance of 
the proposed models were verified using cross validation, 
chance correlation and external test set. Therefore, the 
motivation of this work is to provide QSAR models that 
will be used to predict anti-HIV-1 protease activity of 
unknown compounds and also these models may be used 
to design new drugs. 

2. Materials and Methods 

2.1. Software 

Geometry optimizations were performed using HyperChem 
(Version 7.5; Hypercube, Inc., USA, http://www.hyper.com) 
at the AM1 level of theory. An AM1 optimization was 
chosen because it was developed and parameterized for 
common organic structures. Descriptors were calculated 
using HyperChem and DRAGON (Milano Chemomet- 
rics and QSAR Group, USA, evaluation version 5.0, 
http://www.disat.unimib.it/vhml) software. SPSS softwa- 
re (version 13.0, SPSS, Inc.) was used for the simple 
MLR analysis. ANN analysis was performed using MA- 
TLAB (Version 7.0.1 (R14), http://www.mathworks.com) 
and Multiple Back Propagation-MBP (version 2.2.1,  
http://dit.ipg.pt/MBP) software (version 2.2.1). 

2.2. Chemical Data and Descriptors 

A data set of 127 symmetrical and unsymmetrical cyclic 
urea and cyclic cyanoguanidine derivatives and their ac- 
tivity (log 1/Ki) obtained from reference [18] was used in 
this study. Compound’s name and activities are included 
in Table S1 in the supporting information.  

The structures of the compounds are drawn by hyper- 
chem software. The resultant structures are 2D then we 
convert them to 3D. HyperChem software was used to 
optimize the different compound structures using AM1 
semi-empirical level. The optimization was preceded by 
the Polak-Rebiere algorithm. To be sure that we reached 
global minima, geometry optimization was run multiple 
times with different starting points for each molecule. 
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In this study, a pool of 1481 descriptors classified into 
18 different groups was calculated using Dragon soft- 
ware. Two groups of descriptors (properties and empiri- 
cal descriptors) were constant or nearly constant for all 
the 127 compounds. Therefore, these descriptors were di- 
scarded from further analysis. The remaining 16 groups 
of descriptors are: molecular walk counts, Galves topo- 
logical charge indices, Randic molecular profiles, aro- 
maticity indices, functional groups, atom-centered frag-
ments, constitutional, charge, RDF, WHIM, topological, 
BUCT, geometrical, 3D-MoRSE, GETAWAY and 2D 
descriptors. Furthermore, chemical descriptors such as HO- 
MO, LUMO and polarizability were calculated using 
HyperChem software. Depending on the HOMO and 
LUMO values, electrophylicity, electronegativity, hard- 
ness, and softness descriptors were calculated. Other de- 
scriptors such as surface area approximate, surface area 
grid. Volume, mass, polarizability, hydration energy, o- 
ctanol-water partition coefficient (log P), and refractivity 
were calculated (group 17). Discarding highly inter-co- 
rrelated (r > 0.95) descriptors reduced the total number of 
descriptors to 223 (see Table S2 in the supporting in- 
formation). Following the procedure described in the 
next section, this number of descriptors was declined to 
11 descriptors in the “final” MLR regression model (mo- 
del 11 in Table 1). 

2.3. Multiple Linear Regression (MLR) Analysis 

Multiple linear regression analysis with stepwise selec- 
tion and elimination of variables was employed to model 

 
Table 1. Final MLR model summary. 

Descriptor names SE 2

adjR  R2 
Model 

No. 

R1p+ 1.053 0.279 0.285 1 

R1p+, R4u 0.982 0.373 0.383 2 

R1p+, R4u, H8v 0.916 0.454 0.467 3 

R1p+ , R4u, H8v, RDF010e 0.86 0.520 0.535 4 

R1p+, R4u, H8v, RDF010e, C006 0.812 0.572 0.589 5 

R1p+, R4u, H8v, RDF010e, 
C006 ,O058 

0.785 0.600 0.619 6 

R1p+, R4u, H8v, RDF010, 
C006, O-058, O-056 

0.749 0.635 0.656 7 

R1p+, R4u, H8v, RDF010, C006, 
O-058, O-056, R7u 

0.718 0.665 0.686 8 

R1p+, R4u, H8v, RDF010e, C006,
O-058, O-056, R7u, Logp 

0.69 0.690 0.712 9 

R1p+,R4u, H8v, RDF010e, 
C006, O-058 ,O-056, 
R7u, Logp, Mor10m 

0.663 0.715 0.737 10 

R1p+, R4u, H8v, RDF010e, C006, 
O-058, O-056, R7u, Logp, Mor10m, 
RDF130m 

0.635 0.735 11 

the anti-HIV-1 protease activity (log 1/Ki) relationships 
with each group of descriptors separately. Log 1/Ki is the 
dependent variable and the set of descriptors as indepen- 
dent variables. Then, the “optimal” descriptors for each 
group were selected and gathered in one group to perfo- 
rm new MLR analysis. 

2.4. Principal Components Analysis (PCA) 

Collinear descriptors add redundancy to the input data 
matrix and consequently the performances of the models 
obtained by using these descriptors would be degraded. 
PCA and more specifically factor analysis, groups to- 
gether variables that are collinear to form a composite in- 
dicator capable of capturing as much of common infor- 
mation of those indicators as possible. Each factor re- 
veals the set of variables with the highest relationship. 
The idea under this approach is to explain the highest 
possible variation in the indicators set using the smallest 
possible number of factors. Consequently, the index no 
longer depends upon the dimensionality of the data set 
but it is rather based on the “statistical” dimensions of 
the data. Application of PCA on a descriptor data matrix 
results in a loading matrix containing factors or PCs, 
which are orthogonal and therefore have no correlation 
with each other. 

The PC’s were calculated by singular value decompo- 
sition (SVD) method in MATLAB environment (Math- 
Work Inc. Version 7.0.1 (R14)). Due to the quality of 
data, a previous treatment of the data is essential before 
applying the multivariate analysis methods. Scaling and 
centering is one of the pre-processing methods needed 
before performing the regression methods joint with fea- 
ture extraction. Projection methods results depend on the 
normalization of the data. Descriptors with small abso- 
lute values have a small contribution to overall variances 
leading to biased PC’s caused by the presence of other 
descriptors with higher values. In order to have the focus 
on the important variables in the model, equal weights 
are assigned to each descriptor, with appropriate scaling. 
Furthermore, descriptors were standardized to unit vari-
ance and zero mean (autoscaling) to give all variables the 
same importance. Then, the data matrix containing the 
entire set of descriptors and activity were simultaneously 
subjected to PCA. 

2.5. Principal Component-Artificial Neural 
Network (PC-ANN) Analysis 

ANNs are computer-based models in which a number of 
nodes, also called neurons are interconnected by links 
forming netlike structure “layers”. A variable value is a- 
ssigned to every neuron. 

There are three kinds of neurons: 1) the input neurons 
which receive their values from independent variables 

0.760 
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and constitute the input layer, 2) the hidden neurons 
which collect values from other neurons, giving a result 
that is passed to a successor neuron, 3) the output neu- 
rons which take values from other units and correspond 
to different dependent variables, forming the output layer. 
In this sense, network architecture is commonly represen- 
ted as I-H-O, where I, H, and O are the number of neurons 
in the input, hidden, and output layers, respectively [5]. 

The weights are links between units that condition the 
values assigned to the neurons. The weights are adjusted 
through a training process in order to minimize network 
error. For this, a non-linear transfer function relates the 
input parameters with the outputs. Commonly neural net- 
works are adjusted, or trained, so that a particular input 
leads to a specific target output. 

In PC-ANN analysis, as a preliminary treatment, the 
input data (i.e., molecular descriptors) were normalized 
to have zero mean and unity variance, and then were su- 
bjected to PCA before being introduced into the neural 
network. It should be illustrated that for each MLR re- 
sulted model, separate ANN models were developed so 
that the input’s descriptors were the subsets selected by 
the stepwise MLR methods. In the case of each MLR 
model, a feed-forward neural network with back-propa- 
gation of error algorithm was constructed to model the 
activity-structure relationships between the descriptors 
on one hand and inhibitory activity on the other hand. 
The model development in ANN and the network archi- 
tecture is fully described by us [13] and others [14]. The 
data set was divided into training and external test sets. 
The test set is used to test the trend of the prediction pre- 
cision of the model trained at some point of the training 
evolution. The extracted PC’s for each MLR model were 
classified homogenously, based on the factors space of 
the descriptors, into training set (80%) and external test 
set (20%) according to the PCA and the first two PC’s 
were plotted against each other (see Figure 1). Afterwa- 
rd, the training set was used to optimize the network per- 
formance. The regression between the network output 
and the observed activity was calculated for the two sets 
individually. The training function “Tanh” was used to 
train the network. To find models with lower errors, the 
ANN algorithm was run many times, with different geo- 
metry and initial weights each time. 

3. Results and Discussion 

3.1. MLR Analysis 

In continuation to recent QSAR studies [19-22] done 
using similar methods including nonpeptide HIV-1PR 
inhibitors [23], we developed an ANN-QSAR model that 
describes the anti-HIV activity of a series of compounds 
using large number of different descriptors. MLR were 
performed on each one of the 17 groups of descriptors 

individually (individual approach described in Reference 
[24] by Deeb) where log 1/Ki is the dependent variable. 
Stepwise method is used to develop multilinear equation 
by correlating dependent variable (activity) and the best 
independent variables. The results of the 17 MLR analy- 
ses are summarized in Table S2 in the supporting infor- 
mation. 

Next, a new or “final” MLR analysis was performed 
by correlating the dependent variable (activity) and the 
optimal descriptors selected from the individual 17 MLR 
models. Table 1 shows the regression models suggested 
from the “final” MLR analysis. The number of descrip- 
tors in these models is varied between 1 and 11. The 
highest coefficient of determination (R2) obtained, is 
0.760 for a regression model with 11 descriptors (model 
11). Table 2 shows a key for the different descriptors 
used in the final MLR model. 

 

 

Figure 1. First and second principal components for the 
factor spaces of the descriptors and anti-HIV-1 protease ac- 
tivity data. 

 
Table 2. Key for the different descriptors used in the final 
MLR model. 

Description 
Descriptor 

symbol 

R maximal autocorrelation of lag 1/weighted 
by atomic polarizabilities 

R1p+ 

R autocorrelation of lag 7/unweighted R4u 

H autocorrelation of lag 8/ weighted 
by atomic van der waals volumes 

H8v 

Radial Distribution Function-0.1/weighted 
by atomic Sanderson elecronegativities 

RDF010e 

CH2RX C006 

=O O-058 

Alcohol; O-056 

R autocorrelation of lag 7/unweighted R7u 

Octanol water partition coefficient Log P 

Radial Distribution Function-13.0/weighted 
by atomic masses 

RDF 130 m 

3D-MoRSE signal10/weighted 
by atomic masses 

Mor 10 m 
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The following equation represents the best MLR mo- 
del: 

Log 1/Ki = 13.443 (±1.450) – 0.376 (±0.108) × C006 
– 31.230 (±5.216) ×R1p – 4.665 (±0.539) 
× R4u –5.871 (±0.905) × H8v 
+ 0.341 (±0.058) × RDF010e 
+ 0.758 (±0.103) × O058 + 0.466 (±0.145) 
× O056 + 15.911 (±3.928) × R7u 
+ 0.257 (±0.055) × Log P +0.697 (±0.156) 
× Mor10 m – 0.110(±0.033) × RDF130 m. 

According to the above equation, the most important 
descriptor in this equation is R1p which reflects the po- 
larizability of the compounds; it is inversely proportional 
to the activity of the compounds. The second important 
descriptor is R7u which reflects the geometrical matrix 
of the compound. 

Then, leave many out (LMO) cross validation was per- 
formed on models 6-11 since these models have coeffi- 
cients of determination larger than 0.6 [25]. The results 
of LMO cross validation are summarized in Table S3 in 
the supporting information. This table shows that the 
cross-validation coefficient of determination ( cv ) has 
positive values starting from model 6 to model 11. Table 
S3 shows also those models 8-11 have the highest R2 and 

cv  values as well as the lowest root mean square error 
(RMSE) values. Thus, models 8-11 were chosen for fur-
ther analysis with ANN. 

2R

2R

2

3.2. PCA 

The inputs of the ANN were the subset of the descriptors 
used in different MLR models (Table 1). First, PCA was 
performed to classify the molecules into training (80%) 
and test (20%) sets. Plotting the first and second PC’s, 
shows that compounds SD146 (molecule 124) and XP- 
521 (molecule 118) are outliers (see Figure 1). 

This indicates that these 2 molecules behave differen- 
tly from other molecules with respect to both molecular 
structure (descriptors) and anti-HIV1 protease activity. 
Therefore, these molecules are not used in future analysis. 
According to the pattern of the distribution of the data in 
factor spaces (Figure 1), the training and test sets mole- 
cules were selected homogenously so that molecules in 
different zones of Figure 1 belong to the two subsets. 
After removing the outliers and subjecting the data of the 
remaining 125 molecules to the preliminary treatment 
mentioned previously, the classified data were used as an 
input for the ANN. 

3.3. ANN 

In this study, a three-layered feed-forward ANN model 
with back propagation learning algorithm [26] was em- 
ployed. At first, non-linear relationship between the sub- 

set of descriptors selected by stepwise selection-based 
MLR and anti-HIV-1 protease activity was preceded by 
ANN models with similar structure. The number of hid- 
den layer’s nodes was set to 6 for all models, and the 
number of nodes in the input layer was the number of 
descriptors. 

The correlation coefficients and cross-validation pa- 
rameters of ANN analysis for ANN model numbers 8-11 
are given in Table S4 in the supporting information. This 
table shows that the lowest prediction RMSE (RMSEP) is 
obtained for model 8 while the lowest calibration (train- 
ing) RMSE (RMSEC) is obtained from model 10. Table 
S4 in the supporting information shows that model 8 has 
the highest coefficient of determination for the test set 
( pR  = 0.800). However, the calibration and cross vali-
dation coefficients of determination for this model are 
0.693 and 0.550, respectively. 

On the other hand, the highest coefficients of deter- 
mination for calibration and cross validation are obtained 
for model 10 ( C  = 0.796 and cv  = 0.734). However, 
the 

2R 2R
2
pR

2R 2R
2

 value for this model is 0.772. Hence, these two 
models were subjected for further analysis by optimizing 
the number of hidden nodes. 

To optimize the performance of the ANN models 8 
and 10, these models were trained using different number 
of hidden nodes starting from 2 to 20. Choosing the best 
model was based on cross-validation parameters and de-
termination of minimum prediction error [27]. For the 
evaluation of the predictive ability of a multivariate cali- 
bration model, RMSEP is an important statistical pa- 
rameter to find the best number of hidden nodes. More- 
over, because large numbers of hidden nodes often draw 
attention to the risk of overfitting [28], considering mo- 
dels with low prediction error is avoided if a large num- 
ber of hidden nodes are used in their network training. 

The results of optimizing the number of hidden nodes 
for models 8 and 10 are summarized in Tables S5 and S6 
in the supporting information respectively. 

Figure 2(a) shows RMSEC and RMSEP values against 
the number of hidden nodes for model 8. This figure 
shows that the lowest RMSEC (0.619) is obtained when 
using 8 hidden nodes. This value is close to the obtained 
RMSEP (0.632). Using 8 hidden nodes gives the highest 
coefficients of determination ( C  = 0.746 and cv  = 
0.653). Furthermore, the pR

2

 value (0.743) is close to 
that obtained for the training set. 

Figure 2(b) shows RMSEC and RMSEP against the 
number of hidden nodes for model 10. This figure shows 
that the lowest RMSEP (0.607) is obtained when using 6 
hidden nodes. The RMSEC obtained when using this 
number of hidden nodes is 0.644. The coefficient of de- 
termination obtained for the test set ( pR

2
CR

2
cvR

 = 0.750) is 
close to that obtained for the training set (  = 0.756). 
The  obtained for this model is 0.675.   
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        (a)                                           (b) 

Figure 2. RMSE of calibration and prediction against hidden nodes number for (a) model 8 and (b) model 10. 
 

 Randomization test is performed to investigate the 
probability of chance correlation for the optimal models 
(models 8 and 10 with 8 and 6 hidden nodes in the net- 
work, respectively). Chance correlation was done using 
the same configuration parameters and the same active- 
tion functions of all our ANN models. The results of 
chance correlation for models 8 (using 8 hidden nodes) 
and 10 (using 6 hidden nodes) are summarized in Tables 
S7 and S8 in the supporting information, respectively. 
These tables show that the coefficients of determination 
obtained by chance are low in general while the RMSE 
values are high. This indicates that the models obtained 
from ANN are better than those obtained by chance. 

Copyright © 2012 SciRes.    

Model 10 has higher coefficients of determination and 
lower RMSEP than those obtained for model 8. Further- 
more, the optimal number of hidden nodes obtained for 
model 10 (6 hidden nodes) is smaller than that obtained 
for model 8 (8 hidden nodes). However, the differences 
between the two models are not large. 

As we can see, our models were validated by calcula- 
teing different statistical parameters, using external test 
set and finally performing randomization test. 

Figure 3(a) shows plot of the predicted activity 
against observed ones for the training and test sets com- 
pounds of model 8 while Figure 3(b) shows their resi- 
duals. Similarly, Figure 3(c) shows plot of the predicted 
activity against observed ones for the training and test 
sets compounds of model 10 while Figure 3(d) shows 
their residuals. 

Correlation between calculated and observed log (1/Ki) 
for the training set of model 8 is given by: 

 
 i

0.745

d log 1 K

iCalculated log 1 K 2.202  

observe

 


   (1) 

and for the test set of this model is given by: 

 
i

i

Calculated log 1 K 1.531  0.816 

                                        observed log 1 K

 


   (2) 

while the correlation between calculated and observed 
log (1/Ki) for the training set of model 10 is given by: 

 
 

i

i

Calculated log 1 K 2.144  0.754

                                        observed log 1 K

 


   (3) 

and for the test set of this model is given by: 

 
 

i

i

Calculated log 1 K 0.943  0.881

                                        observed log 1 K

 



2R

   (4) 

To check the presence of outliers in a model, for the 
training and test sets, the standard deviation of the ob- 
served activity data was calculated. The residue which is 
equal to the difference between the predicted and ob- 
served one were calculated also. Finally, if the value of 
the residue is larger than two times the standard devia- 
tion of the observed activity, then this point is considered 
as an outlier. We found that there was no outlier in our 
data. 

4. Comparison with Other QSAR Studies 

Speranta, et al. [18] have performed QSAR study on the 
same dataset of anti-HIV-1 protease compounds used in 
this study. They have modeled the HIV-1 protease in- 
hibitor activity (log 1/Ki) from different families using 
Comparative Molecular Field Analysis (CoMFA) metho- 
dology. They found that no simple or multiple regres- 
sions gave any statistically significant model. They have 
obtained  of 0.63 and R2 of 0.70. CV

Khedkar, et al. [16] used comparative molecular field 
analysis (CoMFA) and comparative molecular similarity 
indices analysis (CoMSIA) to build QSAR models for 54 
compounds out of 127 compounds used in this study.  
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Figure 3. (a) Plot of the predicted anti-HIV-1 protease activities against observed ones and (b) their residuals for model 8; (c) 
Plot of the anti-HIV-1 protease activities against observed ones and (d) their residuals for model 10. 
 
Two different alignment schemes viz. receptor-based and 
atom-fit alignment, were used to build the QSAR models. 
The cv  values for CoMFA and CoMSIA derived from 
receptor-based alignment were 0.68 and 0.65, respecti- 
vely. 

2R

Higher calibration and cross validation coefficients of 
determination were obtained in this study. However, the 
results obtained by Speranta and Khedkar are for one 
group of compounds that have the same core structure 
while in this study, an ANN-QSAR model was built for 
one heterogeneous group of compounds that contains 
many families of anti-HIV-1 protease compounds with- 
out splitting them into families. The ANN approach used 
in this study succeeds to explain the non-linear relation- 
ships for the data of interest considering the nature of the 
heterogeneous data set. Although our results seems to be 
close to Separanta and Khedkar results, our models are 
more predictive because we used more compounds with 
different core structures in our data, also we calculated a 
wider range of descriptors. 

5. Conclusions 

The performance of the ANN modeling method combi- 

ned with the individual [24] factor selection approach is 
applied to predict the anti-HIV inhibitory activity of a set 
of 127 compounds. The optimal two models have cali- 
bration and prediction coefficients of determinations of 
0.746 and 0.756. The lowest RMSEP obtained is 0.607. 
ANN provides improved models for heterogeneous data 
sets without splitting them into families and gives good 
regression models with good prediction ability. 

Generally, the models obtained from the ANN analy- 
sis are better than those obtained by MLR analysis. Both 
the external and cross-validation methods are used to 
validate the performances of the resulting models. Em- 
ployed randomization test indicates that the models ob- 
tained from ANN are better than those obtained by chance. 
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Supporting Information 

Table S1. Molecular structures and observed activities of the 127 HIV-1 PR cyclic urea and non peptide cyanoguanidine de-
rivative inhibitors expressed as log 1/Ki (R) and (X) in all structures represent the substituent. 

N N

O

RR

OHOH  

Cmpd. Index* Substituent (R) (log 1/Ki) observed 

1 Mol 1 Benzyl 8.47 

2 Mol 8 methyl 5.30 

3 Mol 16 4-isopropylbenzyl 8.96 

4 Mol 25 4-(methylthio) benzyl 8.47 

5 Mol 27 2-(methylthio) ethyl 5.96 

6 Mol 28 3-indolylmethyl 6.24 

7 Mol 29 cyclohexylmethyl 7.56 

8 Mol 30 phenethyl 6.50 

9 Mol 31 2-naphthylmethyl 8.01 

10 Mol 32 3-furanylmethyl 8.08 

11 Mol 33 3-(methylthio) benzyl 8.61 

12 Mol 34 4(methylsulfonyl) benzyl 8.61 

13 Mol 35 2-metoxybenzyl 7.23 

14 Mol 36 2-hydroxybenzyl 7.46 

15 Mol 37 3-metoxybenzyl 8.33 

16 Mol 38 4-metoxybenzyl 8.07 

17 Mol 39 4-hydroxybenzyl 8.96 

18 Mol 40 3-aminobenzyl 8.56 

19 Mol 41 3-(dimethyl aminobenzyl) 8.37 

20 Mol 42 4-aminobenzyl 8.08 

21 Mol 44 4(dimethylamino) benzyl 7.34 

22 Mol 45 4-pyridylmethyl 7.66 

23 Mol 46 3-(2,5dimethylpyrolyl) benzyl 6.80 

24 Mol 47 3,4(methylenedioxy)benzyl 8.89 
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N N

O

R R

OHOH  

Cmpd. Index* Substituent (R) (log 1/Ki) observed 

25 Mol 2 benzyl 8.73 

26 Mol 51 isobutyl 7.07 

27 Mol 52 isopropyl 6.61 

28 Mol 53 2-(methylthio)ethyl 5.61 

29 Mol 54 4-fluorobenzyl 8.24 

30 Mol 55 2-metoxybenzyl 7.19 

31 Mol 56 3-metoxybenzyl 9.07 

32 Mol 57 3-hydroxybenzyl 7.89 

33 Mol 58 4-metoxybenzyl 8.54 

34 Mol 59 2-naphthylmethyl 8.37 

35 Mol 60 3,5-dimetoxy-benzyl 8.57 

 

N N

O

RR

OHOH

OHOH

 

Cmpd. Index* Substituent (R) (log 1/Ki) observed 

36 Mol 61 benzyl 9.57 

37 Mol 62 2-(methylthio) ethyl 5.41 

38 Mol 63 cyclohexylmethyl 7.50 

39 Mol 64 4-fluorobenzyl 9.36 

40 Mol 65 3-metoxybenzyl 9.96 

41 Mol 66 3,4-difluorobenzyl 9.33 

42 Mol 67 4-pyridylmethyl 8.32 

43 Mol 68 4-metoxybenzyl 9.62 

44 Mol 69 isobutyl 7.43 
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N N
R

O
R

OHOH  

Cmpd. Index* Substituent (R) (log 1/Ki) observed 

45 9b alyl 8.29 

46 9c n-propyl 8.10 

47 9d n-butyl 8.86 

48 9e 3,3-dimethylallyl 8.80 

49 9f 3-methylbutyl 7.93 

50 9g cyclopropylmethyl 8.68 

51 9h cyclobutylmethyl 8.89 

52 9I cyclopentylmethyl 8.37 

53 9j cyclohexylmethyl 7.44 

54 9k benzyl 8.53 

55 9l 3-nitrobenzyl 8.56 

56 9m 4-nitrobenzyl 7.50 

57 9n 3-aminobenzyl 9.56 

58 9o 4-aminobenzyl 8.96 

59 9p 3-cyanobenzyl 8.53 

60 9q 4-cyanobenzyl 7.29 

61 9r 3-hydroxybenzyl 9.93 

62 9s 4-hydroxybenzyl 9.93 

63 9t 3-(benzyloxy) benzyl 6.47 

64 9u 4-(benzyloxy) benzyl 6.27 

65 9v 3(hydroxymethyl) benzyl 9.86 

66 9w 4(hydroxymethyl) benzyl 9.47 

67 9x 2naphthylmethyl 9.51 

 

N N
RR

OHOH

N

N

 

Cmpd. Index* Substituent (R) (log 1/Ki) observed 

68 8b Alyl 7.44 

69 8c n-propyl 7.86 
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Continued 

70 8d n-butyl 8.57 

71 8e 3,3-dimethylallyl 7.53 

72 8f 3-methylbutyl 8.43 

73 8g cyclopropylmethyl 7.66 

74 8h cyclobutylmethyl 8.70 

75 8I cyclopentylmethyl 8.83 

76 8j cyclohexylmethyl 8.25 

77 8k benzyl 7.70 

78 8l 3-nitrobenzyl 7.05 

79 8m 4-nitrobenzyl 7.18 

80 8n 3-aminobenzyl 8.14 

81 8o 4-aminobenzyl 7.61 

82 8p 3-cyanobenzyl 7.58 

83 8q 4-cyanobenzyl 6.90 

84 8r 3-hydroxybenzyl 9.15 

85 8s 4- hydroxybenzyl 8.59 

86 8v 3-(hydroxymethyl) benzyl 8.77 

87 8w 4-(hydroxymethyl) benzyl 7.96 

88 8x 2naphthylmethyl 7.66 

 

N N

OHOH

O

PhPh

X

RR

X

 

Cmpd. Index* Substituent (R) (log 1/Ki) observed Cmpd. 

89 5a H O 9.36 

90 5b Me O 10.23 

91 5c Et O 9.68 

92 5d nPr O 8.86 

93 5e CF3 O 10.44 

94 5f tBu O 8.45 

95 6a H N(OH) 11.01 

96 6b Me N(OH) 10.75 

97 6c Et N(OH) 10.51 

98 6d nPr N(OH) 10.51 

99 6e CF3 N(OH) 8.41 
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N N

OHOH

O

PhPh

RR

 

Cmpd. Index* Substituent (R) (log 1/Ki) observed 

100 10a NH
N

 
10.57 

101 10b NH
N  

9.21 

102 10c 

N

N
H  

9.80 

103 10d NH
N  

9.73 

104 10e NH
N

N  

9.77 

105 10f NH
N

N  

10.29 

106 10g NH
N

N N  

8.19 

O

N N

Ph

R

OHOH

Ph

NNH

 

Cmpd. Index* Substituent (R) (log 1/Ki) observed 

107 12a H 9.59 

108 12b 
COOMe

 

9.86 

109 12c 
COOH

 

9.80 

110 12d 

NH2

 

10.46 

111 12e 

N  

9.77 

112 12f 
OH 

10.68 

113 12g 

O

NH N
O

 

10.29 
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N N

OHOH

O
RR

 

Cmpd. Index* Substituent (R) (log 1/Ki) observed 

114 XK234 
 

8.24 

115 DMP323 
OH

 
9.08 

116 DMP450 

N H 2

 

9.39 

117 XNO63 

OH

 

10.10 

118 XP521 
NH

O

NH2

 

10.53 

119 XR835 
N
N H

 

10.40 

120 XZ442 N
N H

O

9.75 

121 SB561 N

O
NH

 

10.05 

122 SB570 N

O
N H

 

10.10 

123 SB571 N

O
NH

 

10.05 

124 SD146 

O
NH

NH
N

 

10.01 

125 XV638 

O
NH

S
N

 

9.96 

126 XV643 

O
N H

S
N

9.86 

127 XV652 

O
NH

NH
N

 

10.31 

*According to reference [21]. 
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Table S2. Regression models suggested from the 17 MLR analysis; their coefficients of determination and standard error 
(SE). 

Group no. Type of descriptors R2 
2

adjR  SE  Selected descriptors 

1 Constitutional 0.464 0.386 0.972 
nDB, nS, nTB, nR04, nR05, nBnz, RBF, RBN, nN, nSK, Ss, Ms, Mv, 
nBM, nF, nCIC 

2 3D-MoRSE 0.672 0.618 0.767 
Mor13v, Mor10m, Mor16v, Mor22m, Mor14u, Mor06m, Mor31m, 
Mor26m, Mor16m, Mor06v, Mor15m, Mor02u, Mor04u, Mor27u, 
Mor20u, Mor02v, Mor19m, Mor19u 

3 2D 0.778 0.737 0.637 
GATS2m, MATS6e, MATS8m, ATS5e, MATS4m, MATS7e, GATS8p, 
GATS1e, GATS4p, ATS7e, MATS6p, GATS6p, GATS7p, MATS4e, 
GATS4e, GATS8m,  ATS8v, ATS1p, MATS8v, MATS5e. 

4 Randic 0.204 0.191 1.116 DP04, SHP2 

5 Molecular 0.245 0.220 1.095 MWC05, MWC10, SRW03, MW09 

6 Aromatic 0.200 0.180 1.123 HOMT, ARON, HOMA 

7 Atom-centerd 0.636 0.563 0.819 
H050, O058, N069, C006, C039, C037, O056, C001, N073, C034, C043, 
C044, C007, C033, C017, H052, C024, C003, C025, H048, F084 

8 Geometrical 0.537 0.465 0.907 
MAXDP, GN..O, GO..S, TIE, GN..N, GN..S, MAXDN, GN..F, FDI, 
SPAM, W3D, H3D, J3D, ASP, GO..O, DELS, LBw 

9 Charge 0.392 0.351 0.999 RNCG, PCWTe, Qmean, RPCG, LDip, qpos, Qtot, TE2 

10 Functional groups 0.568 0.496 0.881 
nCaR, nHDon, nRSR, nCONHRPh, nCOPh, nNH2Ph, nNHR, nCN, nCs, 
nCq, nNO2Ph, nHAcc, nRORPh, nNR2Ph, nCt, nNN, nCNPh, nOHPh 

11 BUCT 0.490 0.432 0.935 
BEHv3, BEHm7, BEHp7, BEHv4, BEHp8, BEHm8, BEHm6, BEHp6, 
BEHm3, BEHm1, BELv7, BELe8, BELm7 

12 Galvez topological  0.316 0.275 1.056 GGI5, GGI3, JGI2, JGI4, JGI6, JGT, JGI1 

13 GETAWAY 0.741 0.698 0.682 
R1P, R4u, H8v, R5m-A, R3e, HATS4m, R4m, R6m-A, R7u-A, H6u, 
HATS7u, R4v, HATS4u, H2e, H2m, HATS4v, R1u, R5u-A. 

14 RDF 0.679 0.625 0.759 
RDF050m, RDF050u, RDF010e, RDF030v, RDF125m, RDF100u, 
RDF135e, RDF060m, RDF025m, RDF140m, RDF130m, RDF075m, 
RDF020m, RDF020u, RDF020v, RDF105u, RDF025u, RDF155v 

15 Topological 0.610 0.566 0.817 
X4Av, TIC1, LP1, RDSUM, X0Av, SIC1, ISIZ, CIC4, IDDE, SEigZ, 
SIC2, DDr03, X2v 

16 WHIM 0.569 0.483 0.892 
G3s, E2s, E2u, Av, P1s, E3m, E3v, E2v, P1e, E1s, E1e, E1u, G2u, G3m, 
G3e, G2s, G1m, G1e, G3p, Vs, G3u 

17 Chemical 0.357 0.319 1.024 
Surface Area (Approx), total, EPH, Dmy, Log P,  
HydrationEnergy, Polarizability 

R2 is coefficient of determination,  is adjusted R2, SE is standard error. 2

adjR
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Table S3. LMO cross validation parameters for the final MLR models 6-11. 

Model # 
2

cvR  RMSE PRESS SPRESS 

6 0.375 0.765 74.218 0.786 

7 0.516 0.693 61.016 0.716 

8 0.576 0.670 57.021 0.695 

9 0.587 0.682 59.038 0.710 

10 0.612 0.675 57.905 0.707 

11 0.674 0.637 51.531 0.669 

2R

2

CR  2

cvR  2

PR  

cv
 is cross-validated correlation coefficient, RMSE is root mean square error. PRESS is predictive residual sum of squares, SPRESS is uncertainty of predic-

tion. 
 

Table S4. Coefficients of determination and cross validation results for ANN models 8-11. 

Model # RMSEC RMSEP 

8 0.693 0.550 0.680 0.800 0.552 

9 0.757 0.660 0.606 0.763 0.600 

10 0.796 0.734 0.558 0.772 0.610 

11 0.768 0.688 0.590 0.776 0.595 

2

CR 2

CVR 2

PR

2

CR  2

cvR  2

PR  

 is calibration (training) coefficient of determination,  is cross validation coefficient of determination,  is prediction coefficient of determination. 

RMSEC is root mean square error of calibration, RMSEP is root mean square error of prediction. 
 

Table S5. Coefficient of determination and cross validation parameters for optimizing number of hidden nodes for model 8. 

hn. # RMSEC RMSEP 

2 0.656 0.495 0.553 0.756 0.722 

3 0.679 0.535 0.553 0.796 0.696 

4 0.669 0.526 0.573 0.781 0.707 

5 0.646 0.513 0.556 0.799 0.733 

6 0.699 0.598 0.583 0.785 0.675 

7 0.688 0.536 0.578 0.777 0.686 

8 0.746 0.658 0.632 0.743 0.619 

9 0.719 0.592 0.582 0.773 0.652 

10 0.692 0.562 0.566 0.786 0.681 

11 0.682 0.549 0.581 0.775 0.698 

12 0.727 0.603 0.599 0.762 0.643 

13 0.684 0.546 0.565 0.787 0.690 

14 0.716 0.590 0.542 0.804 0.655 

15 0.724 0.619 0.606 0.756 0.644 

16 0.742 0.653 0.644 0.734 0.629 

17 0.686 0.567 0.576 0.786 0.689 

18 0.715 0.619 0.664 0.728 0.658 

19 0.689 0.555 0.573 0.782 0.685 

20 0.719 0.611 0.525 0.826 0.653 

Hn is hidden nodes. C  is calibration (training) coefficient of determination, CV  is cross validation coefficient of determination,  is prediction coeffi-

cient of determination. RMSEC is root mean square error of calibration, RMSEP is root mean square error of prediction. 

2R 2R 2

PR
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Table S6. Coefficient of determination and cross validation parameters for optimizing number of hidden nodes for model 10. 

hn. # 
2

CR 2

cvR 2

PR  RMSEC  RMSEP 

2 0.718 0.603 0.652 0.750 0.629 

3 0.753 0.670 0.610 0.736 0.643 

4 0.769 0.692 0.591 0.73 0.668 

5 0.757 0.67 0.605 0.734 0.664 

6 0.756 0.675 0.607 0.750 0.644 

7 0.774 0.700 0.584 0.719 0.674 

8 0.799 0.734 0.552 0.714 0.686 

9 0.779 0.71 0.576 0.773 0.622 

10 0.77 0.692 0.593 0.771 0.610 

11 0.765 0.683 0.596 0.752 0.621 

12 0.761 0.679 0.604 0.743 0.652 

13 0.825 0.782 0.515 0.708 0.725 

14 0.771 0.680 0.590 0.779 0.588 

15 0.774 0.698 0.583 0.786 0.584 

16 0.756 0.678 0.606 0.827 0.526 

17 0.816 0.756 0.529 0.797 0.557 

18 0.753 0.660 0.610 0.768 0.603 

19 0.690 0.544 0.684 0.802 0.550 

20 0.710 0.579 0.660 0.786 0.602 

Hn is hidden nodes, C  is calibration (training) coefficient of determination, CV  is cross validation coefficient of determination,  is prediction coeffi-

cient of determination. RMSEC is root mean square error of calibration, RMSEP is root mean square error of prediction. 

2R 2R 2

PR

2

CR 2

cvR 2

PR

 
Table S7. Coefficients of determination and cross validation parameters for chance correlation results for model 8 with 8 
hidden nodes. 

Trial no.   RMSEC  RMSEP 

1 -5.019 1.110 0.002 1.316  

2 0.110 –9.884 1.160 0.098 1.398 

3 0.158 –5.259 1.129 0.166 1.145 

4 0.307 –2.402 1.029 0.044 1.535 

5 0.285 –2.630 1.051 0.006 1.341 

6 0.211 –4.444 1.104 0.005 1.321 

7 0.129 –11.833 1.158 0.081 1.332 

8 0.257 –2.794 1.064 0.027 1.265 

9 0.082 –18.769 1.182 0.120 1.160 

10 0.133 –4.935 1.146 0.044 1.423 

2R 2R 2

PRC  is calibration (training) coefficient of determination, CV  is cross validation coefficient of determination,  is prediction coefficient of determination. 

RMSEC is root mean square error of calibration, RMSEP is root mean square error of prediction. 
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2

CR 2

cvR 2

PR

Table S8. Coefficients of determination and cross validation parameters for chance correlation results for model 10 with 6 
hidden nodes. 

Trial no.   RMSEC  RMSEP 

1 0.306 –3.339 1.079 0.000 1.335 

2 0.177 –4.517 1.114 0.011 1.400 

3 0.177 –3.996 1.113 0.011 1.392 

4 0.172 –3.436 1.146 0.006 1.454 

5 0.123 –6.893 1.154 0.160 1.473 

6 0.293 –1.455 1.050 0.018 1.455 

7 0.135 –9.250 1.146 0.058 1.197 

8 0.265 –2.780 1.060 0.079 1.207 

9 0.242 –2.576 1.073 0.041 1.417 

10 0.283 –0.986 1.043 0.001 1.442 

2R 2R 2

PRC  is calibration (training) coefficient of determination, CV  is cross validation coefficient of determination,  is prediction coefficient of determination. 

MSEC is root mean square error of calibration, RMSEP is root mean square error of prediction. 
 


