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ABSTRACT 

The quality of the radiation dose depends upon the gamma count rate of the radionuclide used. Any reduction in error in 
the count rate is reflected in the reduction in error in the activity and consequently on the quality of dose. All the efforts 
so far have been directed only to minimize the random errors in count rate by repetition. In the absence of probability 
distribution for the systematic errors, we propose to minimize these errors by estimating the upper and lower limits by 
the technique of determinant in equalities developed by us. Using the algorithm we have developed based on the tech- 
nique of determinant inequalities and the concept of maximization of mutual information (MI); we show how to process 
element by element of the covariance matrix to minimize the correlated systematic errors in the count rate of 113mIn. The 
element wise processing of covariance matrix is so unique by our technique that it gives experimentalists enough ma-
neuverability to mitigate different factors causing systematic errors in the count rate and consequently the activity of 
113mIn. 
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1. Introduction 

Radiopharmaceuticals are used in nuclear medicine to stu- 
dy the functioning of organs and tissues. One of the major 
objectives of these radiopharmaceuticals in radio therapy 
is to ensure precise delivery of dose to a tumour. As ra- 
diation dose is proportional to the radioactivity, any error 
in measured activity will affect the dose deposited to the 
organ. Hence, it is important to estimate the amount of 
radiation delivered by these radiopharmaceuticals both for 
optimization of image quality and for radiation protection 
purposes. 

The quality of the dose depends upon the gamma count 
rate of the radionuclide used [1]. The error in the number 
of counts at the gamma camera is a measure of the error 
in dose deposited at the human body tissues, which is a 
cumulative effect of the errors due to instrumentation and 
nuclear characteristics of the radiopharmaceuticals. Thus, 
any reduction in error in the count rate is reflected in the 
reduction in error in the activity and consequently on the 
quality of dose. The total error in the count rate estimate 
should include both the random and the systematic errors. 
To quantify the errors, covariance matrix has been iden- 
tified as the error matrix as per international recommen- 
dation [2]. The diagonal and off diagonal elements of the 
covariance matrix represent uncorrelated random and the  

correlated systematic errors respectively. To our knowl- 
edge, so far many attempts have been made only to mini- 
mize the random error by repetition as it decreases by N  
if a measurement is repeated N times. On the contrary, the 
systematic error can never be reduced by repetition and is 
the main cause of correlation [3]. 

All the attempts made so far on systematic errors of 
SPECT imaging, either neglected them [4] or randomized 
them [5]. The only approach suggested to mitigate the sys- 
tematic errors is to assume a statistical distribution for 
them like in Linearized Bayesian Update Procedure (LBUP) 
[6]. Assuming a statistical distribution for the systematic 
error requires knowledge of the second central moment or 
the variance. In the case of the systematic errors, the initial 
estimate is taken as the mean or the first moment of the 
probability density function. The estimate of the corre- 
sponding variance or the second central moment depends 
strongly on the availability of supplementary knowledge. 
As variance is seldom available for the systematic errors, 
their probability density function cannot be assumed and 
hence, LBUP cannot be applied in principle.  

To circumvent the lack of knowledge of variance, we 
propose in this paper, estimation of limits for the system- 
atic errors. Accordingly, if the upper and lower limit of the 
systematic error can be estimated and no additional infor- 
mation exists, then one can assume a constant probability 
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density within these limits [2]. We have developed an al- 
gorithm based on the Technique of Determinant Inequa- 
lities (TDI) to estimate these limits. These limits are used 
to maximize the information theoretic concept of Mutual 
information (MI) to reduce the systematic errors. We de- 
monstrate the utilization of our approach in reducing the 
systematic errors and consequently the total error in the 
gamma count rate of 113mIn. 

2. Generation of Covariance Matrices from 
the Neutron Activation Analysis of 113mIn 

113mIn is a diagnostic nuclear medicine agent for internal 
radiotherapy and is also used as a tracer in experimental 
studies [7]. In our laboratory, 113mIn is produced by neu-
tron activation analysis in a standard neutron field of 
252Cf, by the reaction 113In (n, n’) 113mIn. 113In foils with 
thickness 2.0 cm were irradiated for about 15 hours at a 
distance of 6 cm from the 252Cf source. The californium 
252Cf is a needle type source, containing about 500 µg of 
252Cf encapsulated in a stainless steel cylinder having 5 
mm diameter and 17 mm height. Induced gamma activi-
ties due to 113mIn were measured by a Ge (Li) detector 
having intrinsic efficiency ε and let the gamma count rate 
be C. The induced activity A of 113mIn depends upon its 
neutron absorption cross-section Σ, its atom density N and 
the induced neutron flux density φ of the 252Cf. If m is 
the tissue mass, so that (A/m) is the activeity per unit 
mass, the absorbed dose rate D = k (A/m) E, where k is a 
constant whose value depends on the units used for other 
factors in the equation and E is the average energy re-
leased per transformation. Since, E is a constant for each 
radionuclide, k and E can be combined into a single con-
stant Ω, hence, D = Ω (A/m). For a particular tissue mass 
and specific γ radiation, D = Δ A, where Δ = (Ω/m). Thus, 

D  A C                (1) 

Thus, as activity A and count rate C are proportional, 
any reduction in the error of the count rate will lead to the 
reduction in error in the activity as per law of error pro- 
pagation [8]. In the gamma count rate measurements of 
113mIn, several measurement systematic errors like back 
scattering from the room walls, geometrical factors are in- 
troduced during its formation and attenuation of the gam- 
ma ray and gamma ray intensity are introduced during its 
decay, requiring corrections. Applying the correction fac- 
tors f to the count rate, 

   C A f se N f se ,  since A N         

Here,  is the correction factor for each of the 
 systematic errors. For generality, the above equation 

is rewritten for any element i as 

 f se
 se

 i i i iC N f se    i            (2) 

In Equation (2), both Σ and φ are unknown. An unknown 

cross-section is often determined by means of reaction rate 
ratio measurement relative to a well-known cross-section. 
The principle behind such relative measurements is the 
parallel irradiation of two different foils in the same neu- 
tron field of 252Cf and subsequently counting their indu- 
ced activities. Hence, by ratio measurement, unknown neu- 
tron flux density φ is eliminated, 

   
ij i j

i j i j i ji j

R C C

N N f se  f se



                  
 

In our analysis, we consider formation of 113mIn by two 
sets of ratio measurement, i.e. 113In (n, n’) relative to 27Al 
(n, α) and 115In (n, n’) respectively in the standard neu-
tron field of 252Cf.  

Differentiating Equation (2) and writing dC/C = δC, one 
can obtain 

 i i i iiC N f se                (3) 

The relative covariance MC between the count rate Ci 
and Cj with its various components as in Equation (2) with 
their respective correlation coefficient ρij is obtained as 
follows, 

   
       

C i j ij i j ij i j

ij i j ij i j

M C C N N N

         f f se f se

       

      

    

    

   
 

The Determinant of MC is designated as G. i.e. G = 
Det. MC. 

The complete list of all the error contributions with their 
magnitude and the correlation coefficients depicted in curly 
braces are given is Table 1. The two 113In foils used for 
the relative measurements have same correction factors 
for mass N and hence the errors are fully correlated  P . 
The correction for geometrical factor  is the same for 
all measurements and so the corresponding errors show 
full correlation {Q}. 113mIn is the product nucleus in both 
the sets of relative measurement and hence the correction 
factors for half lives 

 f gf

 f hl  of 113mIn are fully correlated 
{R}. Similarly since 113mIn is a γ emitter, the correction 
factors for gamma ray attenuation  and intensity f ga 
 f gi  are fully correlated  S,  T . The sources of back 

scattering are the room walls and the correction factors 
 f bs  are fully correlated  U . The details of constructing 

the covariance matrix given the various correlation coef-
ficients for the above activation measurement is de-
scribed in detail in [8].  

3. Reduction of Systematic Error by Entropy 
Based Mutual Information  

The fundamental property of systematic error is that they 
vary between a lower limit L and an upper limit U. If a 
probability distribution of the error over these limits is  
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Table 1. Errors and their magnitudes and their correlation in 113In activation measurement. 

  Ratio I  Ratio II  

Description of Error Quantities Symbols of Errors 113In (n,n’) % 27Al (n,α) % 113In (n,n’) % 115In (n,n’) % 

Efficiency ε 2.08 1.06 2.08 2.23 

Mass Determination N 0.1 {P} 0.1 0.1 {P} 0.1 

Geometrical Factor f (gf) 2.0 {Q} 2.0 {Q} 2.0 {Q} 2.0 {Q} 

Half Life f (hl) 0.11 {R} 0.13 0.14 {R} 0.01 

Gamma Ray Attenuation f (ga) 1 {S} 0.5 1 {S} 1 

Gamma Ray Intensity f (gi) 1 {T} 0.1 1 {T} 1 

Back Scattering f (bs) 1 {U} 0.7 {U} 1 {U} 1 {U} 

Irradiation and Cooling Time f (ic) 0.35 0.08 0.35 0.13 

Cross-Section Σ 4.77 2.77 4.77 4.08 

{P} represents fully correlated with ρ = 1.0, as Indium foils are used in the two measurements; {Q} represents fully correlated with ρ = 1.0 as the correction 
factor is the same for the same geometry of foils and {R,S,T} represents fully correlated with ρ = 1.0, as 113mIn is the end product in the two measurements; {U} 
represents fully correlated with ρ = 1.0 as the source of back scattering is from the room walls. 

 
known, then it can be used to describe the error. However, 
in most of the cases, such a distribution is not known, and 
it seems reasonable to choose a maximally uncertain den- 
sity function. The appropriate measure of uncertainty for 
a distribution is a positive quantity called entropy H, gi- 
ven by, 

    H a x log a x dx   

The larger the entropy, the greater the uncertainty and 
hence we should choose a density function  that ma- 
ximizes the entropy subject to the following constraints, 

 for all values of x 

 a x

 a x 0
L x U   

 a x dx 1  between the Upper and lower limits. 

When data on known standards are available, then, the 
standard techniques for estimating the end points of a uni- 
form distribution can be used to estimate the limits L and 
U. But, where no such standards are available, the value 
of end points should be estimated using the knowledge of 
the measurement process. Further, in our case, systematic 
error in cross-section dominates over the statistical and 
hence conventional central limit theorem fails [9] making 
it necessary to use information theory approach [10]. A 
novel property of entropy principle is that it remains valid 
even if one of the sources of errors is highly correlated 
and dominant [10]. Further, entropy principle does not 
make assumptions about the distribution of data thereby 
belonging to the non-parametric family of statistics. Ac- 
cording to information theory, MI is a measure of statis- 
tical correlation between the variables, A and C [11]. We 
show below, how in maximizing the MI, the systematic 

errors are reduced. 
The MI between A and C is expressed as [12] 

      MI A; C H C H A H C, A     

or 

      H C, A H C H A MI A; C     

where  H C  and  H A  are the entropies or the uncer- 
tainty of C and A respectively and  is the joint 
entropy of C and A. 

H C, A

1) When,  MI A; C 0 , then,      H C, A H C H A  , 
i.e. joint entropy or uncertainty is the sum of individual 
uncertainty of C and A. 

2) When,  MI A; C 0 , then      H C, A H C H A   
i.e. joint entropy or uncertainty is less than the sum of 
individual uncertainty of C and A. Thus, maximizing, MI 
implies, minimizing the total uncertainty in both C and A. 

When, C is having Gaussian distribution, MI is given 
by [12], 

     CMI A; C log Det. M log G        (4) 

MI thus depends on the determinant of the covariance 
matrix MC and is always positive and maximizing MI is 
equivalent maximizing the determinant of the covariance 
matrix MC. 

As an illustration, let us consider a simple case of just 
two count rates, 

11 12
C

21 22

Det. M
c c

c c

 
  
 

 

The elements of the covariance matrix can be written 
as the variances of C1 and C2 
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2 2
11 1 22 2 12 21 1 2 12c , c , c c       



 where ρ12 is 

the correlation coefficient between C1 and C2. 

2 2 2
C 1 2 12G Det. M 1             (5) 

From Equation (5), the maximum value of G is  
 when ρ12 = 0 and minimum value of G is 0, when ρ12 

= ±1. 

2
1σ

2
2σ

Thus, G depends upon, ρ12 in addition to  and . 
As mentioned earlier, MI quantifies the amount of corre-
lation between the variables A and C and G can be ma- 
ximized by minimizing ρ12. Minimization of ρ12 by esti- 
mating its limits leads to minimization of correlated sys- 
tematic errors. Hence, an index of minimization correla- 
ted systematic errors is the maximization of MI by the 
estimation of upper and lower limits for the correlated 
elements of M. The technique of determinant Inequalities 
(TDI) to obtain these upper and lower limits [13] and the 
algorithm [14] based on TDI is described elsewhere and 
would not be repeated here. The total error (TE) in the count 
rate, is given by the sum of Uncorrelated Statistical Error 
(UCSTE) and the Correlated Systematic Error (CSYE). 

2
1σ

2
2σ

     
0.52

TE UCSTE CSYE 

        (6) 

where  and    2 2
1 2UCSTE      

  12 1 2CSYE ?              (7) 

Hence lesser the value of ρ12, the lesser is the CSYE 
and consequently decreases the TE in the count rates. 

4. Robustness of the Analysis 

According to Hadamard’s inequality [11], 

ijG det M M              (8) 

The equality is achieved if and only if ρij = 0. The ma- 
ximum value of the determinant is the product of the dia- 
gonal elements and the least positive value is zero, when 
ρij is either +1 or –1. Since, MI cannot be negative, the 
value of either the upper or the lower limit of ρij which  
maximizes G is the robust value which maximizes the MI. 

5. Results 

The complete covariance matrix MC generated with the 
contributions due to uncorrelated and correlated errors 
mentioned in Table 1 is depicted in Table 2. As we have 
to minimize the correlated systematic error, we focused 
our attention on the correlated non-diagonal elements in 
the Matrix MC. The values of the upper and lower limits for 
these elements are determined by TDI and are tabulated 
in Table 3 along with the corresponding values of G. 

6. Discussion 

Systematic errors pervade in all types of physical meas-
urements and affected by errors due to instrumentation, 
environment and personnel. The best investment is there- 
fore to spend the maximum possible effort on identifica- 
tion and minimization of systematic errors. According to 
Table 3, the maximum value of G is 465303 for the ideal 
case of ρij = 0. Only the values of lower limit of matrix 
MC yield the second largest value of 424657 as compared 
to both the upper limits and the existing element values of 
matrix MC. Further, it is apparent that the value of corre- 
lation coefficient is also less for the these lower limits 
and consequently, the corresponding correlated system-
atic errors is also less according to Equation (7). Since the 
systematic error is reduced by the lower limits, the total 
error in count rate is also reduces according to Equation 
(6). As activity and dose are proportional to the count rate 
as per Equation (1), any reduction in error in the count 
rate is reflected in the reduced errors of dose and activity. 
From Table 3, it is evident that in using our TDI, ele- 
ment wise processing to minimize the systematic error is 
feasible by using the concept of MI where the entire stru- 
cture of the covariance matrix is taken and not by the 

 
Table 2. Covariance Matrix MC for the 113In Activation Mea- 
surement. 

34.22 4.7 7.03 5.0

4.7 13.57 4.7 4.7

7.03 4.7 34.23 5.0

5.0 4.7 5.0 28.64

 
 
 
 
  
 

 

 
Table 3. Upper and lower limits of the non-diagonal elements of the Matrix MC of Table 2 and the corresponding values of G 
where G = Det. MC. 

No. 
Value of Mij of  
matrix MC of  
Table 2 

Lower limit of  
Mij of matrix MC 

Upper limit of  
Mij of matrix MC 

Value of G with 
Mij as in Table 2

Value of G with  
Upper limits of Mij

Value of G with  
Lower limits of Mij 

Value of G by  
Haddamard  
Inequality with ρij

 = 0

1 M12 = 4.7 –1.3 8.11     

2 M13 = 7.03 –3.61 11.47     

3 M14 = 5.0 –2.86 11.41 370401 236656 424657 465303 

4 M23 = 4.7 –1.3 8.11     

5 M24 = 4.7 –3.17 8.25     

6 M34 = 5.0 –2.87 11.42     
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Principal Component Analysis (PCA) and Factor analysis 
methods where the covariance matrix is only decorrelated 
and factored into dominant eigen values. The element wise 
processing of covariance matrix is a boon to experimen-
talists as it gives them enough maneuverability to improve 
the different factors causing systematic errors by way of 
improving either the quality of measurement or the asso-
ciated instrumentation. Hence in our case, upper and lower 
limits have been given for all the correlated elements as 
an aid for the experimentalists to venture and such flexi-
bility exists only by method of MI and not by PCA and 
other methods. 
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