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Abstract 
 
A reasonable representation of large scale structure, in a closed universe so large it’s nearly flat, can be de-
veloped by extending the holographic principle and assuming the bits of information describing the distribu-
tion of matter density in the universe remain in thermal equilibrium with the cosmic microwave background 
radiation. The analysis identifies three levels of self-similar large scale structure, corresponding to super-
clusters, galaxies, and star clusters, between today’s observable universe and stellar systems. The self-simi- 
larity arises because, according to the virial theorem, the average gravitational potential energy per unit 
volume in each structural level is the same and depends only on the gravitational constant. The analysis in-
dicates stellar systems first formed at z ≈ 62, consistent with the findings of Naoz et al., and self-similar large 
scale structures began to appear at redshift z ≈ 4. It outlines general features of development of self-similar 
large scale structures at redshift z < 4. The analysis is consistent with observations for angular momentum of 
large scale structures as a function of mass, and average speed of substructures within large scale structures. 
The analysis also indicates relaxation times for star clusters are generally less than the age of the universe 
and relaxation times for more massive structures are greater than the age of the universe. 
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1. Introduction 
 
Formation of large scale structure in the universe is an 
important problem in cosmology [1], and the heuristic 
Press-Schechter excursion set model has been considered 
the only viable analytic approach to formation of large 
scale structure [2]. In contrast, this analysis extends the 
holographic principle [3] to consider formation of large 
scale structures, and stellar systems comprising those 
structures, in a closed Friedmann universe so large it’s 
nearly flat. That may be a reasonable approximation to 
our universe. 

In this analysis,  is the cosmic microwave 
background (CMB) radiation density at redshift , 
where r r  and the mass equivalent 
of today’s radiation energy density r

 r z

 4
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3003
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G
   g/cm3 where G = 6.67  

× 10−8 cm3·g−1·sec−2, and c = 3.00 × 1010 cm·sec−1. 
Assuming the universe is dominated by vacuum energy 
resulting from a cosmological constant , matter acc- 
ounts for about 26% [5] of the energy in today’s universe. 
So,  g/cm3 and the vacuum  
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g/cm3 [4]. Correspondingly,  is the matter density 
within structural level i  at redshift  and 0

 i z
  is 

today’s matter density in the universe as a whole. If the 
Hubble constant  km/sec Mpc, the critical  0H = 71

the observable universe is about  
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According to the holographic principle [3], the number 
of bits of information available on the light sheets of any  
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asurface with area  is 
 24 2
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, where 

3
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the Planck length and  is Planck’s constant. So, only  
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π
= = 4.0 1

2
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N
ln

 0  bits of information on the  

event horizon will ever be available to describe all 
physics within the event horizon in our universe, The 
average mass per bit of information in the universe is 
   55 122 683.6 10 g 4.0 10 = 9.0 10 g    and the holo- 
graphic principle indicates the total mass of the universe 
relates to the square of the event horizon radius by 

2=u HM fR , where  g/cm2. = 0.16f
In a closed universe, there is no source or sink for 

information outside the universe, so the total amount of 
information in the universe remains constant. Also, after 
the first few seconds of the life of the universe, energy 
exchange between matter and radiation is negligible 
compared to the total energy of matter and radiation 
separately [6]. So, in a closed universe, the total mass of 
the universe is conserved and the average mass per bit of 
information is constant. This suggests an extension of the 
holographic principle indicating the information des- 
cribing the physics of an isolated gravitationally-bound 
astronomical system of total mass M  is encoded on a  

spherical holographic screen with radius =
0.16

M
R  cm  

around the center of mass of the system.  
 
2. Assumptions 
 
In a closed universe, a hierarchical self-similar des- 
cription of the development of large scale structure in the 
universe can be obtained based on four assumptions:  

1) Extend the holographic principle by assuming all 
information necessary to describe an isolated astro- 
nomical structure of mass M  is available on the light 
sheets of a holographic spherical screen with radius  

=
0.16

M
R  cm around the center of mass of the struc-  

ture, so the average matter density within the spherical  

screen is 
2

3

0.16 0.12
= =

4 ππ
3

M

R

RR
  g/cm3.  

2) Assume the bits of information on the holographic 
spherical screens surrounding isolated astronomical 
structures are in thermal equilibrium with the CMB 
radiation.  

3) Assume structures at any given self-similar struc- 
tural level range in mass from the Jeans’ mass at that 
level down to the Jeans’ mass for the next finer level of 

structure.  
4) Assume the number of structures of mass  in  m

any structural level  is i
K

m
, where  is constant, so  K

the amount of information in any mass bin (proportional  

to 
K

m
m

) is the same in all mass bins. This is consistent  

with the 
1

m
 behavior of the mass spectrum in the Press-  

Schechter formalism. 
 
3. Analyses 
 
Based on these assumptions, the following analysis 
identifies three levels of self-similar large scale structure 
(corresponding to superclusters, galaxies, and star clus- 
ters) between today’s observable universe and stellar 
systems. Those self-similar large scale structures can be 
seen as gravitationally-bound systems of  widely 
separated units of the next lower structural level in a sea 
of cosmic microwave background photons. In this 
approach, today’s speed of pressure waves affecting 
matter density at structural level  is  

n

i
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 [7], and the corresponding Jeans’  
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π
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(0)i si
i

L c
G  [7]. In today’s universe,  

8
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L
 cm/sec, and the first level (supercluster) 

Jeans’ length  cm. The first level Jeans’ 
mass, the mass of matter within a radius one quarter of 
the Jeans’ wavelength , is  
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ller than the Jeans’ wavelength are stable against 
gravitational collapse, and the radius of the spherical 
holographic screen for the first level Jeans’ mass is 

 cm. The matter density within the sphe- 
rical holographic screen for the first level Jeans’ mass is 
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the second level (galaxy) Jeans’ length is  
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 g. Continuing  

in this way, the third level (star cluster) Jeans’ mass 
 g, the fourth level (stellar system) 

Jeans’ mass  g, and  
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M M M M
 0 . The hie-  

rarchy of large scale structure stops with star clusters, 
because stellar systems cannot be treated as systems 
consisting of  widely separated subelements in a sea 
of cosmic microwave background photons. 

n

Identify superclusters as structures with masses bet- 
ween the first and second level Jeans’ masses, galaxies 
as structures with masses between the second and third 
level Jeans’ masses, and star clusters as structures with 
mass between the third and fourth level Jeans’ masses. 
Then, the universe can be seen successively as an aggre- 
gate of superclusters, an aggregate of galaxies, an aggre- 
gate of star clusters, or an aggregate of stellar systems. 
The Jeans’ masses identify each structural level, but a 
mass distribution is needed to estimate the number of 
entities in each structural level and the average mass of 

structures at that level. Using the assumed 
K

m
 beha-  

vior of the mass spectrum, the number of superclusters in 

the universe is 1
67.3 10 1

= =M

M

K
n dm

m

 
 
  11.8 K  and the  

mass of the universe relates to the aggregate of super-  

cluster masses by 1
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, the average mass of a supercluster  
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M
n

  g and the mass of the uni-  

verse is the number of superclusters times the average 
supercluster mass. There are  

2
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M

K
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 
 
  = 11.8 K  galaxies in a first level  

Jeans’ mass, and the first level Jeans’ mass is the 
aggregate of the galaxy masses within that Jeans’ mass,  

so 2
1 267.3 10 2

= M

M

K
M m dm KM

m

   
  . Then, 1

2

=
M

K
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,  

and the average galaxy mass  

441 2
2 = = = 1.6 10

11.8

M M
M

n
  g. A similar analysis gives  

an average star cluster mass of  g, and these 
results are consistent with observations [8-10]. 

391.2 10

Down to the third (star cluster) structural level, the 
total number  of next lower level 
substructures inside the holographic screens for the 
Jeans’ length at each structural level are the same as the 
total number of superclusters in the observable universe. 
Furthermore, considering the large scale structures within 
the universe, there are  average mass galaxies  

6= 11.8 = 1.6 10n K

51.4 10

in an average mass supercluster,  average mass 
star clusters in an average mass galaxy and (if the 
average stellar system mass is 4.3 times the solar mass) 

 average mass stellar systems in an average 
mass star cluster.  

51.4 10

51.4 10

To understand the self-similarity (scale invariance) of 
large scale structures within the universe, consider 
gravitationally-bound systems of  entities with mass 

 and total mass 
n

m =M nm
m
. For structures with 

, the substructure mass  is much less than the 
mass 

510n 
M  of the next highest level of structure. From the 

virial theorem, the gravitational potential  

energy of the systems is 
2

=
2G

GM
V

R
 .  The extended  

holographic principle indicates the information needed to 
describe gravitationally-bound astronomical systems of 
total mass M  consisting of empty radiation-filled space 
and  smaller entities with mass  is available  n m M

on a spherical holographic screen of radius =
0.16

M
R   

surrounding the system. Then, the gravitational potential 
energy of the structure of mass M  within the holo-  

graphic screen is 
2 2(0.16)

= =
2 2G

GM G R
V

R
 

3

,

, so self-  

similarity (scale invariance) of large scale structures 
occurs because the average gravitational potential energy 
per unit volume at each structural level depends only on 
the gravitational constant and is identical for all levels of 
large scale structure. 

Now consider development of large scale structure at 
 Stellar systems are the basic elements of self- 

similar large scale structures (star clusters, galaxies, 
superclusters, and the universe as a whole), and for- 
mation of the first stellar systems depended on ther- 
monuclear reactions between (strongly interacting) 
protons in the baryon fraction of the matter density in the 
universe. This suggests the mass of the smallest gravi- 
tationally bound systems that become stellar systems at 
redshift  can be estimated by setting the escape 
velocity of protons on the holographic screen for the 
minimum mass stellar system, with radius min , equal to 
the average velocity of protons in equilibrium with CMB 
radiation outside the screen. For , the escape 
velocity (escaping proton temperature) on the holo- 
graphic screen is such that escaping protons are at higher 
temperature than the CMB and can transfer heat (and 
energy) to the CMB. Correspondingly, for the 
escape velocity (escaping proton temperature) on the 
holographic screen is such that escaping protons are at 
lower temperature than the CMB and cannot transfer 
heat (and energy) to the CMB. Any protons outside the 
holographic screen for the minimum mass stellar system 

> 0.z

z

R

min>R R

< minR R
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that are in equilibrium with the CMB (such as those 
escaping from structures larger than minimum size) can 
transfer heat (and energy) to structures less than mini- 
mum size until they grow to minimum size. 

The escape velocity for a proton of mass pm  gra- 
vitationally bound at radius  from the centroid of a 
structure with mass 

R
M  is calculated from 

21
=

2
p

p

GMm
m v

R
. If the escape velocity of a proton on  

the holographic screen for the minimum mass stellar 
system at redshift  is the velocity of a proton in ther-  z

mal equilibrium with the CMB, 
3

=
2

pGMm
kT

R
, where  

the CMB temperature  and the Bolt- 
zmann constant 

= (1 )2.725 KT z 

16.38 10= 1k   (g cm2/sec2)/ . Since 
the radius  of the holographic screen for a structure  

K

R

of a mass M  is =
0.16

M
R , the minimum mass of a  

stellar system at redshift  is  z
2

1 1.5 (1 )2.725
=

0.16stellar
p

k z
M

Gm

 

 

 . If outgoing protons  

near the holographic screen are in thermal equilibrium 
with the CMB and the outgoing photon flow from the 
minimum mass star, the outgoing photon flow from 
stellar systems with mass less than the minimum stellar 
system mass is at lower temperature than the CMB and 
cannot transfer energy to the CMB or appear as a star 
against the CMB background. Note that radii of 
holographic screens for stellar systems are considerably 
larger than radii of stars themselves. For example, the 
radius of the holographic screen for our sun is 
comparable to the radius of the entire solar system 
including the Oort cloud. 

If the number of structures  in a mass bin  is   n m m

  =
K

n m
m

, the smallest scale structures are most nu-  

merous. The mass of the largest known star is about 
 g [11]. This holographic analysis suggests 

stellar systems with mass  g would be the 
minimum mass stellar structures and the most numerous 
luminous structures in the universe at , consistent 
with indications that the first stars formed at 

356.4 10
356.4 10

62z 
65z   

[12]. Today, at , this analysis indicates the 
smallest stellar systems have 0.08 times the solar mass, 
consistent with the mass of the smallest stars [13]. The 
fact that the mass of the smallest stars can be estimated 
from the extended holographic principle using only the 
Boltzmann constant, CMB temperature, gravitational 
constant and proton mass suggests a relation between 
organization of information and gravity, electromag- 
netism and strong interactions underlying that embodied 

in specific equations modeling details of thermonuclear 
reactions and stellar dynamics. 

= 0z

When matter dominates, the speed of pressure waves 
affecting matter density at redshift z within structural  

level  is i
    

 

4
4 1 0

=
9

r
si

i

z
c z c

z





 [7], and the  

Jeans’ length at that level  

   
   1 3

π
=

1
i si

i

L z c z
G z z




 [7]. The first level of  

large scale structure within the universe is determined by  

the Jeans’ mass      
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1
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B
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  , so the resulting  

Jeans’ mass  
 
3

1 1 2
0

π
= =

48 0

B
M z M


 is independent of  

z  [7].  
Evolution of large scale structure is characterized by 
 N z  , the number of structural levels between the 

Jeans’ mass 1M  and stellar systems, and  n z , the 
average number of next lower level structures within a 
structure at any given level, as structures in the  N z  
levels coalesce into the three levels present today. The 
Jeans' mass  iM z  of structures in level i  is 
determined by the Jean's length  in the next 
highest structural level and the holographic density 

 iL z

 1i z   inside the holographic screen for the Jeans’ 
mass  1iM z  of the next highest structural level. So, 
the ratio of the Jeans’ mass i  M z  to the Jeans’ mass 

 1iM z  in the next subordinate level is  

 
 

   
   

 
 

3 2
1 1
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i i i i
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 

 

z 
. The holographic  

density    
3

= ,
4πi

i

A
z

R z
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2

g
= 0.16 
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A  and  

the radius of the holographic screen for the Jeans’ mass 

 iM z  is    
 
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2

π 1
= .

48i
i

B z
R z

A z


 So,  

 
 

 
     

32 5

2 6
1 1

3 1 1.37 10
= = =

π 1 1

i i

i i

M z z A

M z Bz z z


 

 
 
    6

. 

The average mass  iM z  of structures in level  is  i

the total mass of the next lowest level of structures 
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within level i  divided by the total number of next 
lowest level of structures within level . So,  i

 

   
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

  
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. 

Then, the number  n z  of average mass structures of 
next lower level within the average mass at any structural 
level is  

   
 

 
 

   
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3 5

6 6
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A
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. 

The growth of  n z  tracks development of self- 
similar large scale structure. Self-similar large scale 
structures began to emerge when  at , 
with 16 structural levels exceeding the minimum stellar 
system mass of 2

10n  = 3.9z

M . As time went on,  at 
 with eight structural levels exceeding the mini- 

mum stellar system mass of 0.9

= 100n
= 2.3z

M ,  at 
 with five structural levels exceeding the 

minimum stellar system mass of 0.4

=n 1000
= 1.3z

M , and 
 at  with four structural levels 

exceeding the minimum stellar system mass of 0.2
= 10,n 000 = 0.55z

M . 
This analysis allows quick simulation of the formation 

of self-similar large scale structures, since the number 
 of self-similar structural levels exceeding the 

minimum stellar system mass 
 N z

 min stellarM z  is the in-  

teger truncation of 
 

1

min

1

1
log

log


 
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 
stellari

i

M
M zM

M

, and  

the number of average mass structures of next lower 
level within the average mass at any structural level, is  

 
   

3 5

6 6

3 1 1.37 10
= =

π 1 1

A
n z

B z z

 
 
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. 

Some other comparisons with observations are worth 
noting. First, combining the virial theorem with the 
holographic relation 2= 0.16 ,M R  the average root 
mean square velocity of subelements in a self-similar 
large scale structure of mass M  within the universe is  

 
1

4= 0.16
2rms

G
v M . For an average supercluster mass  

of  g, the r.m.s galaxy velocity is  
cm/sec. This compares favorably with the estimated 

 cm/sec closing velocity of the colliding “bullet 
cluster” galaxies 1E0657-56 [14]. Second, the extended 
holographic principle can be used to derive a relation 
between angular momentum of large scale structures and 

their mass, similar to that found by Wesson [15]. The 
angular momentum 

492.2 10

810

82.5 10

4.8

=J I , where the moment of in- 
ertia I  of a spherical system of mass M  is  

22

5
=I MR , and   is the angular velocity of the system.  

Using the holographic relation 2.16= 0M R  yields  

22
= 0.16

5
J M  

 
 

. The angular velocity can be deter-  

mined by considering a mass  fixed on the surface of 
the rotating structure just inside the holographic screen 
for the structure, with radius 

m

sR

sR
. The radial acceleration 

of that particle  results from the gravita-  2=ra 

tional force 
2
s

GmM

R
=rF   attracting the particle to the  

centroid of the structure, so 2
2

= =
0.16s

GM G

R
. The  

M

result is  
 

0.5
2 2

0.25

2
= =

5 0.16

G
J p M M

M
M . Then,  

  15= 1.5 10p M 
441.5 10

16= 8 10p

 for an average galactic mass of 
 g, about twice Wesson’s empirical value 
  [15]. 

Finally, Forbes and Kroupa [16] suggest galaxies and 
star clusters can be distinguished by their relaxation 
times, with galaxies having relaxation times greater than 
the age of the universe and star clusters having relaxation 
times less than the age of the universe. Based on standard 
texts (Shu [17] and Binney & Tremaine [18]), Bha- 
ttacharya [19] considers a system of mass M  and 
radius  composed of  stars with average mass   R N m

and number density 
3

3
=

4π

N
n

R
. He then approximates  

the two body relaxation time for the system as  
0.1

ln
R

N
t

N Gmn
 . Using the holographic relation  

=
0.16

M
R  between the mass and the radius of a system,  

its relaxation time is 

3

40.1 4π

ln 3 0.1

N M

m

 6Rt N G

 
 

. This ex-  

tended holographic analysis indicates the average star 
cluster today has mass  g. If the (imprecisely 
known) mass of the average star is the solar mass 

 g, the relaxation time for an average mass star 
cluster is  sec. If the age of the universe is 

 yr  sec and the average stellar 
mass is about twice the solar mass, the relaxation time of 
the average mass star cluster equals the age of the 
universe. This indicates star clusters have relaxation 
times of the order of the age of the universe or less, and 
larger mass structures have longer relaxation times. So, a 

391.2 10

1710

332 10

13.6 10

178.54 10
= 4.299 
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direct consequence of the extended holographic principle 
and the fact that the average stellar mass is near the solar 
mass is that relaxation times for galaxies are greater than 
the age of the universe, consistent with Forbes and 
Kroupa [16].  
 
4. Conclusions 
 
The above analyses, based on four simple assumptions, 
produce numerical results in general agreement with 
astrophysical observations of large scale structures in our 
universe. It is unlikely that all of these results are mere 
coincidence, so the four assumptions probably provide a 
reasonable basis for studying development of large scale 
astrophysical structures if our universe turns out to be 
closed. 
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