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Abstract 
 
Minimax control chart uses the joint probability distribution of the maximum and minimum standardized 
sample means to obtain the control limits for monitoring purpose. However, the derivation of the joint prob- 
ability distribution needed to obtain the minimax control limits is complex. In this paper the multivariate 
normal distribution is integrated numerically using Simpson’s one third rule to obtain a non-linear polyno- 
mial (NLP) function. This NLP function is then substituted and solved numerically using Newton Raphson 
method to obtain the control limits for the minimax control chart. The approach helps to overcome the prob- 
lem of obtaining the joint probability distribution needed for estimating the control limits of both the maxi- 
mum and the minimum statistic for monitoring multivariate process. 
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1. Introduction 
 
Multivariate statistical process control (MSPC) is parti- 
cularly important in the industries where data are col- 
lected on more than one variable. In practice, most of the 
quality characteristics to be controlled and monitored are 
not independent. The reason is that most of the variables 
involved are interconnected, that is, they are correlated. 
Hence, to monitor these interconnected or correlated va- 
riables is not simple but rather complex, especially for 
manufacturing processes. The use of multiple univariate 
control charts does not deliver a useful solution in this si- 
tuation. The problems are that, the overall probability of 
signaling a false “out-of-control” situation is not contro- 
lled and more seriously the correlation among the vari- 
ables are ignored. 

In recent years, multivariate statistical process control 
(MSPC) procedures have enjoyed wide application in in- 
dustry. This has resulted from expanded capability to 
monitor the key variables of a process with sensor and 
measurement technology, and the widespread availability 
of computers and statistical software programs that in- 
corporate multivariate SPC capability. 

Simultaneously, there have been many new technical 
developments that have made multivariate SPC more 
useful. For example, many authors have investigated me- 
thods of monitoring multivariate continuous data. [1] de- 
veloped the multivariate T2 statistic for quality control 
purposes. Multivariate generalizations of the CUSUM 
procedure have been studied by [2] and [3] developed 
and investigated multivariate exponentially weighted mov- 
ing averages to identify quality problems. The use of 
multivariate exponentially weighted moving averages in 
monitoring multivariate data have been enhanced by [4]. 
Monitoring principal components of multivariate data 
has been studied by [5]. [6] discussed multivariate mini- 
max control chart and he used the joint probability distri- 
bution function of the minimum and maximum stan- 
dardized sample means to derive the control limits to make 
decision if the process is in or out of control. However, 
the derivation of the joint probability distribution needed 
to obtain the minimax control limits as discussed by [6] 
is complex. In this paper we propose a Non-Linear Poly- 
nomial function (NLP) approach to multivariate minimax 
control chart to monitor continuous data as an alternative 
approach to the use of joint probability for both the ma- 
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ximum ( [ ]pZ ) and minimum ( [1]Z ) limits used by [6]. 
The minimax control limits derived by [6] is modified 
and the multivariate normal distribution is integrated nu- 
merically using Simpson’s one third rule to obtain a non- 
linear polynomial (NLP) function. This NLP function is 
then substituted and solved numerically using Newton 
Raphson method to obtain the control limits for the mi- 
nimax control chart.  
 
2. Non Linear Polynomial Function 
 
Polynomials are popular in curve and surface representa- 
tions and many critical problems arising in Computer 
Aided Geometric Design such as surface integration, are 
reduced to finding the zero set of a system of nonlinear 
polynomial equations 

( ) 0f x                  (2.1) 

where 1 2( , )nf f f f   and each if  is a polynomial 
of independent variables 1 2( , , )lX X X X  . Several 
root-finding algorithms for multivariate polynomial sys- 
tems (2.1) have been used in practice. Newton type 
methods, which are classified as local solution techni- 
ques, have been applied to many problems since they are 
quadratically convergent and produce accurate results. 
They, however, require good initial approximations of 
the roots of the systems, and fail to provide full assur- 
ance that all roots have been found. These limitations can 
be overcome by global solution technique, which can be 
categorized into three different types as proposed by [7]. 
The different types are algebraic and hybrid methods, 
homotropy methods, and subdivision methods. Among 
these techniques, the subdivision methods have been 
widely used in practice because of their performance and 
efficiency. The Interval Projected Polyhedral (IPP) algo- 
rithm proposed by [7] and [8] is one example, and it has 
been successfully applied to various problems. One par- 
ticular interest is locating zeros of a univariate applica- 
tion of polynomial [9].  

It is a critical problem in diverse fields such as control 
theory and many literature has been devoted to it (see e.g. 
[10]). 

Most of the root finding algorithms, however, experi- 
ence difficulties in dealing with roots with high multi- 
plicity such as performance deterioration and lack of ro- 
bustness in numerical computation. For example, the IPP 
algorithm, which belongs to the subdivision class of me- 
thods, slows down drastically and suffers from prolifera- 
tion of boxes that are assumed to enclose roots. More- 
over, since a root with high multiplicity is unstable with 
respect to small perturbation, round-off errors during flo- 
ating point arithmetic may change the topological aspect 
in such a way that a cluster of roots could be formed 
around the root. 

Solving univariate polynomials with multiple roots is 
an important but difficult task. [9] collated nine methods 
to bound multiple roots of polynomials and compared 
them rigorously. He also proposed a new hybrid algo- 
rithm which gives numerically nearly optimal bounds for 
multiple roots of univariate polynomials. Even though 
these methods work well in most cases, it is not easy for 
a user to control the size of the bound of a root in general. 
[11] used the Sturm sequences to compute all roots of a 
univariate polynomial, but his approach relies on the di- 
vision of polynomials to compute Sturm sequences. So, 
it is not numerically robust unless exact arithmetic or 
symbolic computation is used.  

This paper focuses on the particular case where the 
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polynomials.  
Thus, we write ( )X f s  where f is a nonlinear 

function : N Qf C  C  and 1 Qf f  constitute the com- 
ponent of f. The source separation problem consists of 
recovering the sources 1 Ns s  from the observation 

1, , Qx x  for all i , ( )if C s , where  stands for 
the set of polynomials in variables 1

( )C s
, , Ns s  and with 

coefficients in C. This restriction is partly justified by the 
difficulty to tackle the nonlinear case because of its gene- 
rality. In addition, polynomials constitute an important 
class of nonlinear models which may represent accept- 
able approximations of certain nonlinearities. 

Finally, an important reason to deal with this model is 
the following:  

Consider the case where the multidimensional source 
vector belongs to a finite set . 
Although seemingly restrictive, this situation is highly 
interesting since it occurs in digital communications, 
where the emitted source sequences belong to a finite 
alphabet depending on the modulation used. 

 (1) ( ), , nas a a   

An important observation is that if s    and A is 
finite, all instantaneous mixtures of the sources can be 
expressed as polynomial mixtures. This follows immedi- 
ately from the fact that any function on a finite set can be 
interpolated by a polynomial in a way similar to La- 
grange polynomial interpolation [12]. It follows that po- 
lynomial mixtures constitute the general model of non- 
linear mixtures in the case of sources belonging to a fi- 
nite alphabet. 
 
The Model 
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is a polynomial, and in order to be able to resort to alge- 
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braic techniques, we will restrict the separator to the 
class of polynomial functions in 1, , Qx x , that is,  

 ,i ig C x .  
 
2.1. Simpson One Third Rule 
 
The Simpson’s 1/3rd rule is a numerical method for find-  

ing the integral ( )d
b

a
f x x  within some finite limits a  

and b. Simpson’s 1/3rd rule approximates ( )f x  with a 
polynomial of degree two p(x), i.e., a parabola between 
the two limits a and b, and then finds the integral of that 
bounded parabola, and is used to represent the approxi- 

mate integral ( )d
b

a
f x x . The integral of the approxi-  

mated function is the area under the parabola bounded by 
the points a and b by the positive side of the x axis. The 
quadratic function has three points common to the 
function f(x), as follows: The end points of the approxi- 
mate quadratic function p(x) is the same as the function 
f(x) at points a and b. p(x) takes the same value of the 
function f(x) at point ( )m a b  2 . 

Thus three points are fixed each in equal interval 
a m b   and a parabola is drawn through these three 
points f(a), f(m), f(b). The area under the parabola 
through these points bounded by a and b with the 
positive side of the X axis is found and used as the 
approximated integral value. The iterative formula below 
can be used to find the integral of a function f(x) using 
Simpson’s 1/3rd rule. 

0 1 2( ) ( ) ( )
3SI

h
I f x f x f x              (2.3) 

 
2.2. Newton Raphson Method 
 
The Newton-Raphson method is based on the principle 
that if the initial guess of the root of f (x) = 0 is at ix , 
then if one draws the tangent to the curve at ( )if x , the 
point 1( )ix   where the tangent crosses the x-axis is an 
improved estimate of the root. 

Using the definition of the slope of a function, at x = xi 

1
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Form Equation (2.4) we have 
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              (2.5) 

Equation (2.4) is called the Newton-Raphson formula 
for solving nonlinear equations of the form ( ) 0f x  . 
So starting with an initial guess, ix , one can find the 
next guess, 1ix   by using Equation (2.5). One can re- 
peat this process until one finds the root within a desir-

able tolerance. 
 
Algorithm 
The steps of the Newton-Raphson method to find the 
root of an equation ( ) 0f x   are: 

Step 1. Evaluate ( )f x  symbolically 
Step 2. Use an initial guess of the root, i xi, to estimate 

the new value of the root, 1ix   as 1

( )

( )
i

i i
i

f x
x x

f x  


 

Step 3. Find the absolute relative approximate error 

  as 

1

1

*100i i

i

x x

x





  

Step 4. Compare the absolute relative approximate 
error with the pre-specified relative error tolerance, 

, Ifs     , then go to Step 2, or else stop the algo- 
rithm. Also, check if the number of iterations has ex- 
ceeded the maximum number of iterations allowed. If so, 
one needs to terminate the algorithm and notify the user. 

 
2.3. Minimax Control Chart 
 
The Minimax control chart developed by Sepulveda [6], 
and as discussed in [13] is similar to the charts proposed 
by [14] and [15]. The minimax control chart uses the mi- 
nimum and maximum standardized sample means to 
make the decision if the process should be considered in 
control or out of control. However, the minimax chart 
uses both lower and upper control limits on both the ma- 
ximum and minimum standardized sample means. This 
is facilitated by the development of the capability to de- 
termine the value of the joint density function of the 
maximum and minimum standardized sample means. This 
not only facilitates a method for setting the control limits, 
but also allows for the comparison of the performance of 
the minimax chart relative to other charts through com- 
putation of the out-of-control average run length. 

Minimax control chart is used to standardize all p 
means and to monitor the maximum and the minimum of 
those standardized sample means. To do this, the sample 
average vector 21( , , , )pX X X X 


 is calculated and 

its elements are standardized using the expression: 

( )n X
Z












             (2.6) 

where   is the population mean and   is the stan- 
dard deviation. The vector [ ], 1, 2, ,iZ Z i  p  is 
now defined as the standardized sample mean vector. 
The maximum sample mean ( )pZ  is defined as the 
maximum of the elements of the vector Z, that is,  

[ ] ( ),maxp iZ Z  Also, the minimum standardized sam-
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)ple mean [1](Z  is defined as the minimum of the ele-
ments of the vector Z. 

The control limits that was proposed by [6] is modi-
fied to solve for both upper and lower of maximum and 
upper and lower of minimum as given in the expression 
below:  
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     (2.7) 

 
3. Results 
 
The data for this research work were collected from the 
production line of a manufacturing company that pro- 
duces soft drinks. The samples were drawn from the lines 
on each variable of the production. The data are secon- 
dary and multivariate in nature. The data had five vari- 
ables which are: X1 = Contents in ml, X2 = Brev brix, X3 
= pressure, X4 = Gas volume (CO2) and X5 = Tempera- 
ture. Thus,  1 2, , , nX X X X


. We assumed that the 

variables are normally distributed since we are dealing 
with continuous data. The multivariate normal distribu- 
tion was integrated numerically using Simpson’s one 
third rule. Simpson’s rule is a numerical method that 
approximates the value of a definite integral by using 
quadratic polynomials. This approach was applied to the 
multivariate normal distribution to obtain a non-linear 
polynomial (NLP) function. This (NLP) function over- 
comes the problem of obtaining the joint probability dis- 
tribution needed for the control limits of both the maxi- 
mum ( [ ]pZ ) and the minimum ( [1]Z ) statistic. This 
method was used to determine the position of the five 
control limits of the chart stated in Equation (2.4). In 
other to obtain the control limits, an algorithm was deve- 
loped and implemented on C language to fit the polyno- 
mial function in the form Z = 0.0024x5 + 0.000005x4 – 
0.0444x3 – 0.00006x2 + 0.3805x + 0.4988. Using the ob-
tained polynomial equation, the algorithm in 2.2.1 was 
then used to obtain the control limits for both the mini- 
mum and the maximum statistics. The numerical solution 
for the control limits using the developed algorithm is 
presented in the Appendix. The control limits for mini- 
mum and maximum statistics for the five variables under 
consideration are presented in Table 1. 

Using the obtained control limits in Table 1, the pro- 
cess under study was tested for stability. To test for the 
stability of the process, Equation (2.6) was used to trans- 
form the data to obtain the minimum and the maximum 

Table 1. The upper and lower control limit for both maxi- 
mum and minimum statistics. 

UCL[p] LCL[p] UCL[1] LCL[1] 

2.4185 1.954 3.0306 2.7195 

–2.9458 –1.3148 –3.877 –3.3942 

 
Table 2. The maximum and the minimum values. 

Maximum 0.018725 0.021426 0.021987 0.022794 0.0357959

Minimum 0.005012 –0.00226 –0.03127 –0.03031 –0.00954

 
values for the five variables. The obtained minimum and 
maximum values are presented in Table 2. 
 
4. Discussion of Result 
 
The values in Table 2 are arranged from the lowest to 
the highest. Thus minimum of Z[p] is 0.018725, and ma- 
ximum of Z[p] is 0.0357959. Also the minimum of Z[1] is 
–0.031271 and the maximum of Z[1] is 0.005012. Com-
paring these values with the control limit in Table 1, the 
result shows that the minimum and maximum values 
obtained are within the control limits. Hence, the produc-
tion process under consideration can be adjudged as be-
ing stable. 

 
5. Conclusions 
 
Minimax multivariate control chart is another sensitive 
multivariate control chart that has upper and lower con- 
trol limits for both maximum and the minimum statistics 
for monitoring a multivariate process. The paper has ad- 
dressed the use of numerical solution for obtaining the 
control limits of the minimax control chart as an alterna- 
tive to the use of joint probability distribution. 
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Appendix: Numerical Solution 
 
The numerical solutions for the control limits is 

5 5 4 3 5 2( ) 0.0024 5 10 0.444 6 10 0.3805 0.4988Z x X X X X X          

The multiple integral of Equation (2.6) is solved below: 
 

 5 5 4 3 5 2

6 6 5 4 5 3 2

0.0024 5 10 0.444 6 10 0.3805 0.4988 d

0.0024 5 10 0.444 6 10 0.3805
0.4988

6 5 4 3 2

X X X X X

X X X X X

x

X

 

 

       

 
    


 

6 6 5 4 5 3 2

7 6 6 5 5 4 3 2

0.0024 5 10 0.444 6 10 0.3805
0.4988 d

6 5 4 3 2

0.0024 5 10 0.444 6 10 0.3805 0.4988

7 6 6 5 5 4 4 3 3 2 1 2

X X X X X
x

X X X X X X

 

 

  
     

 
 

    
     

 
 

7 6 6 5 5 4 3 2

8 6 7 6 5 5 4 3

0.0024 5 10 0.444 6 10 0.3805 0.4988
d

7 6 6 5 5 4 4 3 3 2 1 2

0.0024 5 10 0.444 6 10 0.3805 0.4988

7 6 8 6 5 7 5 4 6 4 3 5 3 2 4 1 2 3

X X X X X X
x

X X X X X X

 

 

  
           
 

    
           

 
 

9 6 8 7 5 6 50.0024 5 10 0.444 6 10 0.3805 0.4988

7 6 8 9 6 5 7 8 5 4 6 7 4 3 5 6 3 2 4 5 1 2 3 4

4X X X X X  
    

                 
X

 

 
The possible solutions for the numerical algorithm of the multiple integral are given below. 

7.5249

4.2219 4.8351

4.2219 4.8351

2.9458

i

i


 
 


 

3 5 2 43.1708 10 2.0783 10 0.95), :x x roots      

0.24197 2.5085

0.24197 2.5085

2.4185

8.0042 4.6104

8.0042 4.6104

i

i

i

i







 

 
7 9 9 8 5 7 7 67.9366 10 2.9763 10 5.2857 10 1.6667 10x x x         x   

 

7.5651

4.223 4.7726

4.223 4.7726

1.3148

i

i


 
 


 

3 5 2 43.1708 10 2.0783 10 0.05), :x x roots      

        

2

2

5.8498 10 1.2355 ,

5.8498 10 1.2355

1.1954

8.0048 4.6049

8.0048 4.6049

i roots

i

i

i
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7 9 9 8 5 71 2*3.141592654 (7.9366 10 2.9763 10 5.2857 10x x x           

         

7.4507

4.2262 4.928

4.2262 4.928

3.877

i

i


 
 


 

7 6 3 5 2 41.6667 10 3.1708 10 2.0783 10 )) 0.95), :x x x        root  

         

0.36978 3.1125

0.36978 3.1125

3.0306

8.0031 4.6195

8.0031 4.6195

i

i

i

i







 

7 9 9 8 5 71 ( 2*3.141592654 (7.9366 10 2.9763 10 5.2857 10x x x           

         

74962

4.2229 4.8741

4.2229 4.8741

3.3942

i

i


 
 


 

7 6 3 5 2 41.6667 10 3.1708 10 2.0783 10 )) 0.05, :x x x roots         

         

0.30276 2.8096

0.30276 2.8096

2.7195

8.0037 4.614

8.0037 4.614

i

i

i

i







 

 


